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SOME INEQUALITIES ON SUBLINEAR FUNCTIONALS RELATED
TO THE INVARIANT MEAN FOR DOUBLE SEQUENCES

M. MURSALEEN AND S. A. MOHIUDDINE

(Communicated by J. Pecari¢)

Abstract. In this paper we define invariant mean for double sequences and construct a sublinear
functional which dominates and generates invariant mean.

1. Introduction

A double sequence x = (xj;) is said to be convergent in the Pringsheim sense
(or P-convergent) if for given € > 0 there exists an integer N' such that [x;; — | < &
whenever j,k > N. We shall write this as

lim xj =/,
Jok—oo

where j and k tending to infinity independent of each other (cf[15]). We denote by c;,
the space of P-convergent sequences. Throughout this paper limit of a double sequence
means limit in the Pringsheim sense.

A double sequence x is bounded if

[ x]|= sup |xj| <ee.
J:k=0
Note that, in contrast to the case for single sequences, a convergent double se-
quence need not be bounded. By ¢, we denote the space of double sequences which
are bounded convergent, and by ¢35 the space of bounded double sequences. Note that
5 C 3.
In this paper, firstly we define the concept of invariant mean for double sequences.
DEFINITION. Let ¢ be a one-to-one mapping from the set N of natural numbers
into itself. A continuous linear functional ¢, on ¢35 is said to be an invariant mean or
a o-mean if and only if
(i) @2(x) >0if x>0 (i.e. xj3 >0 forall j,k);
(i) @(E)=1,where E = (ej), ejr =1 forall j,k;
(i) @2(x) = ¢2((x5(j).0k))) = P2 ((X5(j) k) = P2((Xj.00))) -
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Throughout this paper we consider the mapping ¢ which has no finite orbits, that
is, oP(k) # k for all integer k > 0 and p > 1, where o”(k) denotes the pth iterate
of o at k. Note that, as in case of single sequences [12], a ¢ -mean extends the limit
functional on ¢5 in the sense that ¢, (x) = limx forall x € ¢5 .

The space Vy’ of o-convergent double sequences was introduced in [2] and fur-
ther studied by Mursaleen and Mohiuddine [10]. That is, a double sequence x = (x i)
of real numbers is said to be o -convergent to a number L if and only if x € V)7, where

Vy ={xe€l3: lim Tpuy(x) =L uniformlyin s,7;L = o-limx} (1.1)
pg—ee

2 Zxc! k(1)

Toast (X
)= G 2,2

andqu\t Tp,flst—Tlflxt—O

For o(n) =n+1, the set Vy is reduced to the set f> of almost convergent double
sequences [7]. The concept of almost convergence for single sequences was introduced
by Lorentz [6]. Note that ¢’ C Vy’ C (5.

For matrix transformations of double sequences and related methods, we refer to
Altay-Basar [1], Gokhan-Colak [3, 4], Hamilton [5], Patterson [14], Mursaleen [13],
Mursaleen-Edely [8], Mursaleen-Mohiuddine [10, 11], Mursaleen-Savas [9], Robinson
[16], and Zeltser [17].

2. Sublinear Functionals that Generate Invariant Means

A sublinear functional P on /3 generates invariant means if ¢, € (E;")/ and @; <
P implies ¢, is an invariant mean. Here ¢, < P means ¢, (x) < P(x) forall x = (xj) €
05 and (£5)" is the continuous dual of /5, that s, (¢5)" is the set of all continuous linear
functionals defined on ¢35 . We define a subset of /5 as

(V)o={x=(xjp) €45 : I;I}Ilqust (x) = 0 uniformly in s,7}. (2.1)

Itis trivial that x = (xjx) € €5 implies x4(j) o) — X € (V3 )o because for any o -mean
(p2 9
02(Xo(j).0(k) =) = Q2 (Xo(j),0k) — P2(x) = 0.

From (11), it is clear that
x) = lim T4 (x),
(P2( ) g pq‘t( )

uniformly in s,#. Now we define V : £ — R such that

Vix) = inf limsup(xix+ pix), -
) p=Pj eV jk p( ik jk) (22)

V is well defined if and only if V(p) > 0 forall p = (pjx) € (V5 )o-
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PROPOSITION 2.1. V is sublinear on {7 .

Proof. For x,y € (5,

Vix+y)= inf limsup(xjx + yjx + pji)-
r=p)e(V)o  jk ‘ .

Hence

V(xty) < limsup(r+ e+ 2p 1),
jk
< limsup(xjx + pjx) +limsup(yjx + pji),

jk 7k

taking infimum over p = (pjx) € (V5 )o, we have
Vix+y) <V(x)+V(y).
For any o > 0,

Viox) = inf limsup(oxjx+pj) = o inf  limsup(x +p;k) =aV(x),
r=Pj)e(Vy)o  jk ’ p;kE(VZU)O jk ’

where p/jk =pji/c.
Hence V is a sublinear on 5. [J
PROPOSITION 2.2. If p = (pjx) € (V5 )o then V(p) = 0.

Proof. We have
Vip) = inf limsup(2p ir),
®) p=pieVo  jk P30
<0, since {0} € (V5 )o.

Since —p € Z,, we have V(—p) < 0. But V being sublinear, V(p) > —V(—p). Hence
V(p)=0.

This completes the proof. [l
THEOREM 2.3. V generates o -means.

Proof. Let ¢, € (63")/ and @, < V. We have to show that ¢, is a 0-mean. From
(2.2), we get V(x) < limsupx ;. Hence for x = (xj;) >0, V(x) >0 as V is sublinear.
As @r(x) <V(x) forall x = (xjx) € /5, we get

@2(x) = 0forall x = (xj) > 0. (2.3.1)
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Now, @ (E) < V(E) where E = (ej;) = 1 forall j, k; and
V(E) = inf limsup(1+pir),
) p=Pj)eVS)o  jk ( )
<limsupl =1.

Jjk

Since V is sublinear, we get
®m(E)=1. (2.3.2)
Again,
V(xg(i —x)= inf limsup(xqg ;). — X+ pir),
Cotpow =¥ = inf o HmSup(io().o) =ikt Pik)

=0; by Proposition 2.2.

Hence ¢z (x5 (j),0(x) —X) = 0, so that

02(X6(j).0(k) = P2(X). (2.3.3)

Similarly, @, (x) = (pg(xc,(j)’k) = (pg(xjﬁ(k) —x). From (2.3.1), (2.3.2), and (2.3.3), we
see that ¢, is a o-mean.
This completes the proof of the theorem. [

3. Sublinear Functionals that Dominate Invariant Means

A sublinear functional P on ¢3 dominates invariant means if every invariant mean
@ is less than P, that is, @, € M7 implies ¢, < P, where MJ denotes the set of all
O -means.

Now we show that sublinear functional V dominates invariant mean. First we
prove the following lemma which will be used in our next theorem.

LEMMA 3.1. Let 0 have no finite orbits, i.e. 6P (k) # k for all integer k > 0 and
p = 1. Then any invariant mean @, is such that

02(x) < Ly(x) forall x € 43,

where

Ly(x) = limsupx .
Jk

Proof. From the definition of L,(x), we have that for given &€ > 0 there exists
N = N(¢) such that

xj < Lp(x)+¢eforall j,k>N.
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Hence
|xjt —La(x)| < & forall j,k >N,

and
|xjk—L2(x)| >E, (311)

for some j,k <N. Since x = (xj) € £5,
i — La(x)| < M, (3.1.2)

for a positive real number M and for all j, k. Now

Tpast — Lo (X X —L
s Anhﬁwﬁi%%mck 20

1
ICESCESSIA
+ X () — La(X) + -+ Xgn(5) — L2(X) + X6 (5),0(:) — L2 (X)

— La(x) +xg,5() — L2 (x) + -+ + X, 50() — L2(x)

+ o+ Xop(s),00() — L2(x)]s

<— (lxy— - et |y _
< DT 20l ot~ Lo+ v —La()

+ |x0'(s),t —Ly(x)|+---+ ‘XO'”(S),I —L (x)| + ‘XO'(S),O'(I) -L (x)|
tee |x0l’(s),cq(t) —Ly(x)]. (3.1.3)

Taking p,q very large so that atmost N of the numbers differ from L, (x) by more
than ¢ by relation (3.1.1). The rest (p+ 1)(¢+ 1) — N numbers differ from L,(x) by
less than €. Hence from (3.1.3)

1
W(M"H' ((p+1)(g+1)=N)e),

B NM (p+1D(g+1)—N
C(p+D(g+1) (p+1)(g+1)

If p,q are very large and independent of j,k then

N
|Tpgst — La(x)] < €+ (8_ m)

|Tpgss = Lo (x)] <

(3.1.4)

Hence
Tpgst < Lo (x) +2€.

Since € was arbitrary small,

Tpgst < Lo (x) forall x = (xj) € 5.
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Letting p,q — oo, we get

lim Tp4y < Lo(x) foralls,z.
R

Since @, is an invariant mean, @>(x) = lim 7,4y uniformly in s,7; we have
=

¢2(x) < Lo (x).

This completes the proof of the lemma. [

THEOREM 3.2. V dominates o -means.

Proof. Let ¢, be a o-mean. For x,y € {5
P2(x) = 902(x+y0'(j),cr(k) =)
Using Lemma 3.1, we have

< La(x+Yo(j),0(k) — )
=Ly(x+a),

where & =y (j). o) — Y € (V3 )o- Taking infimum over o, we get
P2(x) <V ().

This completes the proof of the theorem. [
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