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SOME INEQUALITIES ON SUBLINEAR FUNCTIONALS RELATED

TO THE INVARIANT MEAN FOR DOUBLE SEQUENCES
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(Communicated by J. Pečarić)

Abstract. In this paper we define invariant mean for double sequences and construct a sublinear
functional which dominates and generates invariant mean.

1. Introduction

A double sequence x = (x jk) is said to be convergent in the Pringsheim sense
(or P-convergent ) if for given ε > 0 there exists an integer N such that |x jk − �| < ε
whenever j,k > N . We shall write this as

lim
j,k→∞

x jk = �,

where j and k tending to infinity independent of each other (cf[15]). We denote by c2 ,
the space of P-convergent sequences. Throughout this paper limit of a double sequence
means limit in the Pringsheim sense.

A double sequence x is bounded if

‖ x ‖= sup
j,k�0

|x jk| < ∞.

Note that, in contrast to the case for single sequences, a convergent double se-
quence need not be bounded. By c∞2 , we denote the space of double sequences which
are bounded convergent, and by �∞2 the space of bounded double sequences. Note that
c∞2 ⊂ �∞2 .

In this paper, firstly we define the concept of invariant mean for double sequences.

DEFINITION. Let σ be a one-to-one mapping from the set N of natural numbers
into itself. A continuous linear functional ϕ2 on �∞2 is said to be an invariant mean or
a σ -mean if and only if

(i) ϕ2(x) � 0 if x � 0 (i.e. x jk � 0 for all j,k );

(ii) ϕ2(E) = 1, where E = (e jk) , e jk = 1 for all j,k ;

(iii) ϕ2(x) = ϕ2((xσ( j),σ(k))) = ϕ2((xσ( j),k)) = ϕ2((x j,σ(k))) .
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Throughout this paper we consider the mapping σ which has no finite orbits, that
is, σ p(k) �= k for all integer k � 0 and p � 1, where σ p(k) denotes the pth iterate
of σ at k . Note that, as in case of single sequences [12], a σ -mean extends the limit
functional on c∞2 in the sense that ϕ2(x) = limx for all x ∈ c∞2 .

The space Vσ
2 of σ -convergent double sequences was introduced in [2] and fur-

ther studied by Mursaleen and Mohiuddine [10]. That is, a double sequence x = (x jk)
of real numbers is said to be σ -convergent to a number L if and only if x ∈Vσ

2 , where

V σ
2 = {x ∈ �∞2 : lim

p,q→∞
τpqst(x) = L uniformly in s, t;L = σ - limx} (1.1)

τpqst(x) =
1

(p+1)(q+1)

p

∑
j=0

q

∑
k=0

xσ j(s),σ k(t)

and τ−1,q,s,t = τp,−1,s,t = τ−1,−1,s,t = 0.
For σ(n) = n + 1, the set Vσ

2 is reduced to the set f2 of almost convergent double
sequences [7]. The concept of almost convergence for single sequences was introduced
by Lorentz [6]. Note that c∞2 ⊂Vσ

2 ⊂ �∞2 .
For matrix transformations of double sequences and related methods, we refer to

Altay-Başar [1], Gökhan-Çolak [3, 4], Hamilton [5], Patterson [14], Mursaleen [13],
Mursaleen-Edely [8], Mursaleen-Mohiuddine [10, 11], Mursaleen-Savas [9], Robinson
[16], and Zeltser [17].

2. Sublinear Functionals that Generate Invariant Means

A sublinear functional P on �∞2 generates invariant means if ϕ2 ∈ (�∞2 )
′
and ϕ2 <

P implies ϕ2 is an invariant mean. Here ϕ2 < P means ϕ2(x) � P(x) for all x = (x jk)∈
�∞2 and (�∞2 )

′
is the continuous dual of �∞2 , that is, (�∞2 )

′
is the set of all continuous linear

functionals defined on �∞2 . We define a subset of �∞2 as

(V σ
2 )0 = {x = (x jk) ∈ �∞2 : lim

p,q
τpqst(x) = 0 uniformly in s,t}. (2.1)

It is trivial that x = (x jk) ∈ �∞2 implies xσ( j),σ(k)− x ∈ (Vσ
2 )0 because for any σ -mean

ϕ2 ,
ϕ2(xσ( j),σ(k)− x) = ϕ2(xσ( j),σ(k))−ϕ2(x) = 0.

From (1.1), it is clear that
ϕ2(x) = lim

p,q
τpqst(x),

uniformly in s, t . Now we define V : �∞2 → R such that

V (x) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(x jk + p jk), (2.2)

V is well defined if and only if V (p) � 0 for all p = (p jk) ∈ (V σ
2 )0 .
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PROPOSITION 2.1. V is sublinear on �∞2 .

Proof. For x,y ∈ �∞2 ,

V (x+ y) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(x jk + y jk + p jk).

Hence

V (x+ y) � limsup
j,k

(x jk + y jk +2p jk),

� limsup
j,k

(x jk + p jk)+ limsup
jk

(y jk + p jk),

taking infimum over p = (p jk) ∈ (V σ
2 )0 , we have

V (x+ y) � V (x)+V (y).

For any α � 0,

V (αx) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(αx jk + p jk) = α inf

p
′
jk∈(Vσ

2 )0
limsup

j,k
(x jk + p

′
jk) = αV (x),

where p
′
jk = p jk/α .

Hence V is a sublinear on �∞2 . �

PROPOSITION 2.2. If p = (p jk) ∈ (V σ
2 )0 then V (p) = 0 .

Proof. We have

V (p) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(2p jk),

� 0, since {0} ∈ (Vσ
2 )0.

Since −p∈ Z2 , we have V (−p) � 0. But V being sublinear, V (p) �−V(−p) . Hence
V (p) = 0.

This completes the proof. �

THEOREM 2.3. V generates σ -means.

Proof. Let ϕ2 ∈ (�∞2 )
′
and ϕ2 < V . We have to show that ϕ2 is a σ -mean. From

(2.2), we get V (x) � limsupx jk . Hence for x = (x jk) � 0, V (x) � 0 as V is sublinear.
As ϕ2(x) � V (x) for all x = (x jk) ∈ �∞2 , we get

ϕ2(x) � 0 for all x = (x jk) � 0. (2.3.1)
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Now, ϕ2(E) � V (E) where E = (e jk) = 1 for all j , k ; and

V (E) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(1+ p jk),

� limsup
j,k

1 = 1.

Since V is sublinear, we get

ϕ2(E) = 1. (2.3.2)

Again,

V (xσ( j),σ(k)− x) = inf
p=(p jk)∈(Vσ

2 )0
limsup

j,k
(xσ( j),σ(k)− x jk + p jk),

= 0 ; by Proposition 2.2.

Hence ϕ2(xσ( j),σ(k)− x) = 0, so that

ϕ2(xσ( j),σ(k)) = ϕ2(x). (2.3.3)

Similarly, ϕ2(x) = ϕ2(xσ( j),k) = ϕ2(x j,σ(k)− x) . From (2.3.1), (2.3.2), and (2.3.3), we
see that ϕ2 is a σ -mean.

This completes the proof of the theorem. �

3. Sublinear Functionals that Dominate Invariant Means

A sublinear functional P on �∞2 dominates invariant means if every invariant mean
ϕ2 is less than P , that is, ϕ2 ∈ Mσ

2 implies ϕ2 < P , where Mσ
2 denotes the set of all

σ -means.
Now we show that sublinear functional V dominates invariant mean. First we

prove the following lemma which will be used in our next theorem.

LEMMA 3.1. Let σ have no finite orbits, i.e. σ p(k) �= k for all integer k � 0 and
p � 1 . Then any invariant mean ϕ2 is such that

ϕ2(x) � L2(x) for all x ∈ �∞2 ,

where

L2(x) = limsup
j,k

x jk.

Proof. From the definition of L2(x) , we have that for given ε > 0 there exists
N = N(ε) such that

x jk < L2(x)+ ε for all j,k � N.
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Hence
|x jk −L2(x)| < ε for all j,k � N,

and
|x jk −L2(x)| > ε, (3.1.1)

for some j,k � N . Since x = (x jk) ∈ �∞2 ,

|x jk −L2(x)| � M, (3.1.2)

for a positive real number M and for all j,k . Now

|τpqst −L2(x)| =
∣∣∣∣ 1
(p+1)(q+1)

p

∑
j=0

q

∑
k=0

xσ j(s),σ k(t) −L2(x)
∣∣∣∣,

=
1

(p+1)(q+1)

∣∣∣∣xst −L2(x)+ xs,σ(t)−L2(x)+ · · ·+ xs,σq(t) −L2(x)

+ xσ(s),t −L2(x)+ · · ·+ xσ p(s),t −L2(x)+ xσ(s),σ(t)−L2(x)

+ · · ·+ xσ p(s),σq(t) −L2(x)
∣∣∣∣,

� 1
(p+1)(q+1)

(|xst −L2(x)|+ |xs,σ(t)−L2(x)|+ · · ·+ |xs,σq(t) −L2(x)|

+ |xσ(s),t −L2(x)|+ · · ·+ |xσ p(s),t −L2(x)|+ |xσ(s),σ(t)−L2(x)|

+ · · ·+ |xσ p(s),σq(t) −L2(x)|. (3.1.3)

Taking p,q very large so that atmost N of the numbers differ from L2(x) by more
than ε by relation (3.1.1). The rest (p+1)(q+1)−N numbers differ from L2(x) by
less than ε . Hence from (3.1.3)

|τpqst −L2(x)| � 1
(p+1)(q+1)

(NM +((p+1)(q+1)−N)ε),

=
NM

(p+1)(q+1)
+

(p+1)(q+1)−N
(p+1)(q+1)

ε. (3.1.4)

If p,q are very large and independent of j,k then

|τpqst −L2(x)| � ε +
(
ε− N

(p+1)(q+1)

)
.

Hence
τpqst � L2(x)+2ε.

Since ε was arbitrary small,

τpqst � L2(x) for all x = (x jk) ∈ �∞2 .
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Letting p,q → ∞ , we get

lim
p,q→∞

τpqst � L2(x) for all s,t.

Since ϕ2 is an invariant mean, ϕ2(x) = lim
p,q→∞

τpqst uniformly in s,t ; we have

ϕ2(x) � L2(x).

This completes the proof of the lemma. �

THEOREM 3.2. V dominates σ -means.

Proof. Let ϕ2 be a σ -mean. For x,y ∈ �∞2

ϕ2(x) = ϕ2(x+ yσ( j),σ(k)− y).

Using Lemma 3.1, we have

� L2(x+ yσ( j),σ(k)− y),

= L2(x+α),

where α = yσ( j),σ(k)− y ∈ (Vσ
2 )0 . Taking infimum over α , we get

ϕ2(x) � V (x).

This completes the proof of the theorem. �
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