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Abstract. Some extremalities for quadrature operators are proved for convex functions of higher
order. Such results are known in the numerical analysis, however they are often proved under
suitable differentiability assumptions. In our considerations we do not use any other assump-
tions apart from higher order convexity itself. The obtained inequalities refine the inequalities
of Hadamard type. They are applied to give error bounds of quadrature operators under the
assumptions weaker from the commonly used.

1. Introduction

In the theory of convex functions the Hermite–Hadamard inequality

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
, (1)

which holds for convex functions (and, in fact, characterizes them), plays a very im-
portant role. The first inequality follows by the existence of a support line for f at
the midpoint, while the second one can be obtained using the fundamental property of
convexity stating that a graph of a convex function f lies on [a, b] below the chord
joining the points

(
a, f (a)

)
,
(
b, f (b)

)
. We have also the following

OBSERVATION 1. If a real function f is convex on an interval [a, b] then

f

(
a + b

2

)
�

N∑
i=1

λif (ξi) � f (a) + f (b)
2

(2)

for any N ∈ N , ξ1, . . . , ξN ∈ [a, b] and λ1, . . . , λN � 0 with
∑N

i=1 λi = 1 such that∑N
i=1 λiξi = a+b

2 .

Proof. The first inequality is an immediate consequence of convexity, the second
one we prove similarly to the second inequality of (1). �

The term on the left hand side of (2) is connected with the midpoint rule of the
approximate integration, while the term on the right hand side is connected with the
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trapezoidal rule. Then the inequality (2) can be regarded as an example of an extremality
for quadrature operators. Many extremalities are known in the numerical analysis (cf.
[4], cf. also [3] and the references therein). The numerical analysts prove them using
the suitable differentiability assumptions. As we will show in this paper, for convex
functions of higher order some extremalities can be obtained without assumptions of
this kind, using only the higher order convexity itself. The support–type properties play
here the crucial role. A general theorem of this nature was recently proved by the author
in [19]. The obtained extremalities are useful in proving error bounds of quadrature
operators under regularity assumptions weaker from the commonly used. The results
of this sort are also known, however our method seems to be quite easy. But the price
we must pay is high: the obtained error bounds are far to be optimal (cf. [3]). Some
results concerning the inequalities between the quadrature operators and error bounds of
quadrature rules, which are partial cases of our results, can be found in author’s earlier
papers [16, 17, 18]. The paper [15] contains the extension of our results concerning
convex functions to the functions of several variables.

For n ∈ N denote by Πn the space of all polynomials of degree at most n . Recall
that a linear functional T defined on a linear space X of (not necessarily all) functions
mapping some nonempty set into R is called positive if

f � g =⇒ T (f ) � T (g)

for any f , g ∈ X . An important class of positive linear operators form the conical
combinations of the involved function at appropriately chosen points of a domain.
Obviously, if a domain is a real interval, then quadrature operators with nonnegative
coefficients are linear and positive.

Dealing with a problemof approximate computation of the integral over an interval
[a, b] it is enough to change the variable and to compute it over a fixed interval. The
interval [−1, 1] is frequently used. For a Riemann integrable function f : [−1, 1] → R

let

I (f ) :=
∫ 1

−1
f (x)dx.

DEFINITION 2. Let T be a linear functional defined on a linear space of (not
necessarily all) Riemann integrable functions mapping [−1, 1] into R containing Πn .
We say that T is exact on Πn if T (p) = I (p) for all p ∈ Πn .

2. Convex functions of higher order

Recall that the divided differences are defined as follows: [x1; f ] := f (x1) and for
k ∈ N

[x1, . . . , xk+1; f ] :=
[x2, . . . , xk+1; f ] − [x1, . . . , xk; f ]

xk+1 − x1
.

DEFINITION 3. Let I ⊂ R be an interval and n ∈ N . A function f : I → R is
n –convex if [x1, . . . , xn+2; f ] � 0 for any distinct x1, . . . , xn+2 ∈ I .
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There is an easy to imagine geometrical equivalent condition of n –convexity (for
the proof cf. e.g. [9, 11]).

PROPOSITION 4. A function f is n –convex if and only if for any n + 1 distinct
points x1, . . . , xn+1 ∈ I , the graph of the (unique) polynomial p ∈ Πn interpolating f
at these points, passing through each point

(
xi, f (xi)

)
, i = 1, . . . , n + 1 , changes the

side of the graph of f (always p � f on [xn, xn+1] ).

Then trivially 1–convexity reduces to the classical convexity.
Convex functions of higher order are very well known and investigated (see e.g.

[5, 9, 10, 11, 13]). But up to now there is no common terminology, which sometimes
may be confusing.

The first person who dealt with the topic in question was Hopf. He considered
in his dissertation [7] from 1926 the functions with nonnegative divided differences
without naming them at all. The notion of higher order convexity was introduced
by Popoviciu in his famous dissertation [11] from 1934 exactly in the sense of the
above Definition 3. The Kuczma’s monograph [9] devoted to functional equations and
inequalities in several variables as well as the classical Roberts and Varberg’s book on
convex functions [13] use the same terminology (according to which an ordinary convex
function is 1–convex). During the years another way of naming convex functions of
higher order became popular. Some authors (cf. e.g. [5, 10]) call a function f to be
n –convex if [x1, . . . , xn+1; f ] � 0 (then a convex function is 2–convex). Now these
two terminologies appear simultaneously in the literature. The first one is concentrated
on the maximal degree of the interpolating polynomial, while the accent of the second
one is put on the dimension of the space of polynomials of degree not exceeding some
natural number. Then the second terminology is more coherent with convexity with
respect to Chebyshev systems (cf. [8]). Both conventions have some advantages and
disadvantages and it is not the author’s intention to judge neither which one is better nor
which one is classical.

Having in mind the above remarks let us declare that in this paper we understand
the higher order convexity in the sense of Definition 3.

Convex functions of higher order have many regularity properties. For details see
[9, 11, 13]. The paper [10] contains a brief survey of the topic given in one place. Below
we list the properties which either we use in the paper or we discuss below.

THEOREM 5. If f : [a, b] → R is n –convex then f is continuous on (a, b) and
bounded on [a, b] .

COROLLARY 6. If f : [a, b] → R is n –convex then f is Riemann integrable.

THEOREM 7. The real function f defined on an open interval I is n –convex if
and only if f (n−1) is convex on I .

COROLLARY 8. If the real function f defined on an open interval I is n –convex
then f (n)

− , f (n)
+ exist on I and f (n) exists almost everywhere on I .

Notice that there are n –convex functions which are not n times differentiable (e.g.
f (x) = |x| for n = 1 ). Sometimes what is proved under differentiability assumptions,
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holds in fact for any n –convex function without further assumptions. We return to
this matter in Section 3. However, the following result requiring the differentiability
assumption seems to be important (cf. [9, 11, 13], for a quick reference cf. also [17,
Theorems A and B] and [19, Theorem D]).

THEOREM 9. Assume that f : [a, b] → R is ( n+1 )–times differentiable on (a, b)
and continuous on [a, b] . Then f is n –convex if and only if f (n+1)(x) � 0 , x ∈ (a, b) .

It is well known that a convex function defined on a real interval admits an affine
support at every interior point of a domain. In the paper [19] we have proved a general
support–type result for convex functions of higher order. Four special cases ([19,
Corollaries 8–11]) play the crucial role in the proofs presented in this paper.

THEOREM 10. If f : [a, b] → R is (2n − 1)–convex and x1, . . . , xn ∈ (a, b) ,
then there exists a polynomial p ∈ Π2n−1 such that p(xi) = f (xi) , i = 1, . . . , n , and
p � f on [a, b] .

THEOREM 11. If f : [a, b] → R is (2n − 1)–convex and x1 = a , x2, . . . , xn ∈
(a, b) , xn+1 = b , then there exists a polynomial p ∈ Π2n−1 such that p(xi) = f (xi) ,
i = 1, . . . , n + 1 , and p � f on [a, b] .

THEOREM 12. If f : [a, b] → R is 2n –convex, x1 = a , x2, . . . , xn+1 ∈ (a, b) ,
then there exists a polynomial p ∈ Π2n such that p(xi) = f (xi) , i = 1, . . . , n + 1 , and
p � f on [a, b] .

THEOREM 13. If f : [a, b] → R is 2n –convex, x1, . . . , xn ∈ (a, b) and xn+1 = b ,
then there exists a polynomial p ∈ Π2n such that p(xi) = f (xi) , i = 1, . . . , n + 1 , and
p � f on [a, b] .

3. Extremalities for quadrature operators

What we recall below is very well known from the numerical analysis (cf. e.g.
[1, 6, 12, 14, 20, 21, 22]). Let Pn be the n –th degree member of the sequence of
Legendre polynomials.

Gauss–Legendre quadratures

For f : [−1, 1] → R and n ∈ N let

Gn(f ) :=
n∑

i=1

wif (xi),

where x1, . . . , xn are the roots of Pn (which are real, distinct and belong to (−1, 1) )
and

wi =
2(1 − x2

i )
(n + 1)2P2

n+1(xi)
, i = 1, . . . , n.
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Then Gn is exact on Π2n−1 . If f ∈ C 2n([−1, 1]) then

I (f ) = Gn(f ) +
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ξ) (3)

for some ξ ∈ (−1, 1) .

Lobatto quadratures

For f : [−1, 1] → R let L2(f ) := f (−1) + f (1) . For n ∈ N , n � 3 , let

Ln(f ) := w1f (−1) + wnf (1) +
n−1∑
i=2

wif (xi),

where x2, . . . , xn−1 are the roots of P′
n−1 (which are also real, distinct and belong to

(−1, 1) ) and

w1 = wn =
2

n(n − 1)
, wi =

2
n(n − 1)P2

n−1(xi)
, i = 2, . . . , n − 1.

Then Ln is exact on Π2n−3 . If f ∈ C 2n−2([−1, 1]) then

I (f ) = Ln(f ) − n(n − 1)322n−1[(n − 2)!]4

(2n − 1)[(2n − 2)!]3
f (2n−2)(ξ) (4)

for some ξ ∈ (−1, 1) .

Radau quadratures

For f : [−1, 1] → R and n ∈ N , n � 2 , let

R l
n(f ) := w1f (−1) +

n∑
i=2

wif (xi),

where x2, . . . , xn are the roots of the polynomial

Qn−1(x) =
Pn−1(x) + Pn(x)

x + 1

(again real, distinct and belonging to (−1, 1) ) and

w1 =
2
n2

, wi =
1

(1 − xi)[P′
n−1(xi)]2

, i = 2, . . . , n.

Then R l
n is exact on Π2n−2 . If f ∈ C 2n−1([−1, 1]) then

I (f ) = R l
n(f ) +

22n−1n[(n − 1)!]4

[(2n − 1)!]3
f (2n−1)(ξ) (5)

for some ξ ∈ (−1, 1) .
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In [19] we also considered the operator

Rr
n(f ) := R l

n

(
f (− ·)).

It was, in fact, defined in terms of orthogonal polynomials. However, these two
definitions coincide. This is not difficult to check. We would not like to go into details
since this is not the goal of the paper. Let us only mention that (changing the way of
naming and numbering the abscissas and weights) we have

Rr
n(f ) =

n∑
i=1

wif (yi) + wnf (1)

and Rr
n is exact on Π2n−2 . The error term of Rr

n is similar to (5), precisely, if
f ∈ C 2n−1([−1, 1]) then

I (f ) = Rr
n(f ) − 22n−1n[(n − 1)!]4

[(2n − 1)!]3
f (2n−1)(η) (6)

for some η ∈ (−1, 1) .
As we can see, all the weights of the above quadratures are positive, so these

operators are positive. This is also the case for many other quadratures. However, there
are the quadratureswith negative coefficients (e.g. among the Newton–Cotes formulas).

Now we can prove the main results of this section.

THEOREM 14. Fix n ∈ N . Let T be the positive linear operator defined (at
least) on a linear subspace of R

[−1,1] generated by a cone of (2n−1)–convex functions.
Assume that T is exact on Π2n−1 . If a function f : [−1, 1] → R is (2n − 1)–convex
then

Gn(f ) � T (f ) � Ln+1(f ). (7)

Proof. By Theorems 10 and 11 there exist two polynomials p, q ∈ Π2n−1 interpo-
lating f at the abscissas of the operators Gn , Ln+1 , respectively, such that p � f � q
on [−1, 1] . Since Gn = Ln+1 = I on Π2n−1 , we get

Gn(f ) = Gn(p) = I (p) = T (p) � T (f ) � T (q) = I (q) = Ln+1(q) = Ln+1(f ).

�

THEOREM 15. Fix n ∈ N . Let T be the positive linear operator defined (at
least) on a linear subspace of R

[−1,1] generated by a cone of 2n –convex functions.
Assume that T is exact on Π2n . If a function f : [−1, 1] → R is 2n –convex then

R l
n+1(f ) � T (f ) � Rr

n+1(f ). (8)

Proof. Use Theorems 12 and 13 and the abscissas of the operators R l
n+1 , Rr

n+1 ,
respectively, and argue similarly as in the proof of Theorem 14. �

We would like to emphasize two particular cases of the above results. The first
one concerns the inequalities of Hadamard type. The assertions of the Corollary below
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were proved in [19, Propositions 12 and 13] (cf. also the earlier paper [1], where these
results were obtained by another method).

COROLLARY 16. Fix n ∈ N . If f : [−1, 1] → R is (2n − 1)–convex then
Gn(f ) � I (f ) � Ln+1(f ) . If f : [−1, 1] → R is 2n –convex then R l

n+1(f ) �
I (f ) � Rr

n+1(f ) .

Proof. Use Theorems 14 and 15 for T = I . �
The second important case is connected with quadrature operators.

COROLLARY 17. Fix n, N ∈ N , ξ1, . . . , ξN ∈ [−1, 1] and λ1, . . . , λN � 0 . Let

T (f ) :=
N∑

i=1

λif (ξi) for f : [−1, 1] → R.

(i) If T is exact on Π2n−1 , then Gn(f ) � T (f ) � Ln+1(f ) for any (2n− 1)–
convex function f : [−1, 1] → R .

(ii) If T is exact on Π2n , then R l
n+1(f ) � T (f ) � Rr

n+1(f ) for any 2n –convex
function f : [−1, 1] → R .

Proof. The operator T trivially fulfils the assumptions of Theorems 14 and 15,
respectively. �

In the numerical analysis the inequalities the above type are called extremalities.
The extremalities of Corollary 17 (i) were earlier proved in [4, Theorem 6] under the
assumption of 2n –times differentiability. The proof given there is based on taking
double nodes. The author independently used in [19] exactly the same idea to prove
support–type results of Corollaries 8–11 (quoted here in Theorems 10–13) with no use
of any differentiability assumptions. Thus, as we can see from the proof of Theorems 14
and 15, the extremalities in question are proved with no further assumptions, except
higher order convexity itself. So, our results are more general than these of [4].

We underline that the inequalities of Corollary 17 do not hold for any quadra-
ture operator T . The exactness assumption (i.e. T = I for polynomials of the
appropriate degree) is essential.

EXAMPLE 18. We have

G2(f ) = f

(
−
√

3
3

)
+ f

(√
3

3

)
,

G3(f ) =
8
9
f (0) +

5
9

[
f

(
−
√

15
5

)
+ f

(√
15
5

)]
,

R l
3(f ) =

2
9
f (−1) +

16 +
√

6
18

f

(
1 −√

6
5

)
+

16 −√
6

18
f

(
1 +

√
6

5

)

(cf. e.g. [20, 22]), whence G3(exp) > G2(exp) and R l
3(exp) > G2(exp) . The

exponential function is convex of any order (cf. Theorem 9). Let T = G2 . Then the
inequality of Corollary 17 (i) does not hold for n = 3 , and that of (ii) is not true for
n = 2 . Notice that for p(x) = x4 we have G2(p) �= I (p) , so G2 �= I both on Π5

and on Π4 .
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Now the question arises if there are other, i.e. non–quadrature, operators approxi-
mating the integral, for which Theorems 14 and 15 are applicable. The positive answer
given below shows that the extremalities for quadrature operators are special cases of
more general inequalities. Not the form of the operators considered (linear combina-
tion, integral and so on) is important but two things play the key role: positiveness and
exactness for polynomials of the appropriate degree.

EXAMPLE 19. For a Riemann–integrable function f : [−1, 1] → R let

T (f ) :=
3
11

[f (−1) + f (1)] +
16
11

∫ 1
2

− 1
2

f (t)dt.

Then T is a positive linear operator exact on Π3 . Using Theorem 14 for n = 2 we
obtain G2(f ) � T (f ) � L3(f ) for a 3–convex function f : [−1, 1] → R .

For the other non–quadrature operators approximating the integral cf. e.g. [2].

4. Error bounds of quadrature operators

In this section we show that the extremalities of Corollary 17 may be applied to
obtain the error bounds of the involved quadrature operator T using the regularity
assumptions weaker from the commonly used. The results of this type are known in the
numerical analysis. We would like to point that the inequalities of Hadamard type may
be used in the approximate integration. But the results obtained by our method deliver
error bounds which are far to be optimal. This is a price we have to pay for simplicity.
Error bounds obtained in the numerical analysis under assumptions used by us are much
better (see [3] and the references therein).

For f ∈ C ([−1, 1]) denote ‖f ‖∞ := sup
{∣∣f (x)

∣∣ : x ∈ [−1, 1]
}

.

LEMMA 20. Fix k ∈ N , k � 2 . Let K , T be linear operators defined
on a linear subspace of R

[−1,1] containing all the functions involved below with the
following properties:

(i) there exists an α > 0 such that I (f ) � K (f ) + α‖f (k)‖∞ for all f ∈
C k([−1, 1]) ;

(ii) If f : [−1, 1] → R is ( k − 1 )–convex then K (f ) � T (f ) ;
(iii) T (p) = I (p) for p(x) = xk .
Then

∣∣I (f ) − T (f )
∣∣ � 2α‖f (k)‖∞ for any f ∈ C k([−1, 1]) .

Proof. By (i) and (ii) we get

I (f ) − T (f ) � α‖f (k)‖∞ (9)

for any ( k − 1 )–convex function f ∈ C k([−1, 1]) .

For an arbitrary function f ∈ C k([−1, 1]) define now g(x) := ‖f (k)‖∞
k! xk . Then

g(k) = ‖f (k)‖∞ , whence |f (k)| � g(k) on [−1, 1] , which implies (g − f )(k) � 0 and
(g + f )(k) � 0 on [−1, 1] . Therefore by Theorem 9 the functions g − f , g + f are
( k − 1 )–convex on [−1, 1] . By the triangle inequality

‖(g − f )(k)‖∞ � 2‖f (k)‖∞ and ‖(g + f )(k)‖∞ � 2‖f (k)‖∞.
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Now we apply (9) to g− f and g+ f . Then the desired inequality follows by linearity,
the assumption (iii) and the above inequalities. �

For n ∈ N let

α2n :=
4n+1(n!)4

(2n + 1)[(2n)!]3
, α2n+1 :=

4n+1(n + 1)(n!)4

[(2n + 1)!]3

THEOREM 21. Fix k ∈ N , k � 2 . Let T be a positive linear operator defined
on a domain as in Lemma 20. If T is exact on Πk , then

∣∣I (f )−T (f )
∣∣ � αk‖f (k)‖∞

for any f ∈ C k([−1, 1]) .

Proof. If k is even, k = 2n , then use Lemma 20 for α = α2n
2 and K = Gn . The

condition (i) is fulfilled by (3), (ii) holds by Theorem 14 and (iii) by the assumption.
Similarly, if k is odd, k = 2n + 1 , then use Lemma 20 for α = α2n+1

2 and
K = R l

n+1 . The condition (i) is fulfilled by (5), (ii) holds by Theorem 15 and (iii) by
the assumption. �

In the assertion of Theorem 14 there is an operator Ln+1 on the right hand side of
the inequality (7) and in the statement of Theorem 15 there is an operator Rr

n+1 on the
right hand side of the inequality (8). We could prove the result similar to Theorem 21
involving (in the proof) these operators. However, the error bound obtained in this way
will not improve that of Theorem 21. Namely, the absolute value of the constant of (4)
(take n + 1 instead of n ) is greater from the similar constant of (3). For the operators
R l

n+1 and Rr
n+1 the absolute values of both constants of (5), (6) are the same.

For the quadrature operators we immediately derive fromTheorem21 the following

COROLLARY 22. Fix k, N ∈ N , k � 2 , ξ1, ..., ξN ∈ [−1, 1] and λ1, ..., λN � 0 .
Let

T (f ) :=
N∑

i=1

λif (ξi) for f : [−1, 1] → R.

If T is exact on Πk , then
∣∣I (f ) − T (f )

∣∣ � αk‖f (k)‖∞ for any f ∈ C k([−1, 1]) .

Using this result we will now give the error bounds of Gauss–Legendre, Lobatto
and Radau quadratures under regularity assumptions weaker from the commonly used.
Denote by 	·
 the floor function, i.e. 	x
 = max{k ∈ Z : k � x} , x ∈ R .

PROPOSITION 23. Let k, N ∈ N , k � 2 and N >
⌊

k
2

⌋
. If f ∈ C k([−1, 1]) then∣∣I (f ) − GN(f )

∣∣ � αk‖f (k)‖∞ .

Proof. If N >
⌊

k
2

⌋
then 2N − 1 � k , whence GN is exact on Πk (cf. (3)). Then

the result follows immediately by Corollary 22. �

PROPOSITION 24. Let k, N ∈ N , k � 2 and N >
⌊

k
2

⌋
+ 1 . If f ∈ C k([−1, 1])

then
∣∣I (f ) − LN(f )

∣∣ � αk‖f (k)‖∞ .

Proof. This is also an immediate consequence of Corollary 22 since N >
⌊

k
2

⌋
+ 1

implies 2N − 3 � k and then LN is exact on Πk (cf. (4)). �

PROPOSITION 25. Let k, N ∈ N , k � 2 and N >
⌊

k+1
2

⌋
. If f ∈ C k([−1, 1]) then∣∣I (f ) − R l

N(f )
∣∣ � αk‖f (k)‖∞ . The same assertion holds for the operator Rr

N .
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Proof. By N >
⌊

k+1
2

⌋
we get 2N − 2 � k and we can see (cf. (5), (6)) that

R l
N and Rr

N are exact on Πk , which, togetherwithCorollary 22, concludes the proof.�
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