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TOPOLOGICAL AND GEOMETRICAL STRUCTURE

OF CALDERÓN–LOZANOVSKIĬ CONSTRUCTION

PAWEŁ KOLWICZ AND KAROL LEŚNIK

(Communicated by L. Maligranda)

Abstract. Westudy the structure of general Calderón-Lozanovskiı̆ construction. First the problem
of order continuity of these spaces is studied. Moreover, we find characterization of strict
monotonicity and we try to explain why the obtained criteria are not easy to verify in particular
cases.

1. Introduction

The theory of Orlicz spaces Lϕ is well known. The Banach lattices called Eϕ ,
generated by the Köthe space E and the Orlicz function ϕ, are generalizations of Orlicz
spaces and Orlicz-Lorentz spaces. The structure of spaces Eϕ has been intensively de-
veloped during the last 20 years (see for example [6], [7], [10], [12] and [13]) Although
Eϕ are often called Calderón-Lozanovskiı̆ spaces they are only a particular case of
Calderón-Lozanovskiı̆ construction ρ (X, Y) for X = L∞. We shall study the structure
of general Calderón-Lozanovskiı̆ construction ρ (X, Y) which plays the great role in
the interpolation theory. First the problem of order continuity of these spaces is studied.
The order continuity is a fundamental tool in the theory of Banach lattices (see [11],
[15], [19]). The criteria for this property in the spaces Eϕ can be found in [6] and
[7] (see also [14] for the local point of view). Some particular sufficient conditions
for order continuity of ρ (X, Y) have been presented in [22]. We shall discuss this
problem more precisely, finding several sufficient and necessary conditions for order
continuity of ρ (X, Y) . We also present an alternative proof for characterization of order
continuity of spaces Eϕ which might be useful in studying this property in the general
construction ρ (X, Y) , where the problem remains open. In the second part of the paper
we shall consider strict monotonicity of ρ (X, Y) . The monotonicity properties play a
great role in the theory of Banach lattices. They are of importance in the best dominated
approximation problems in Banach lattices (see [9], [16]). They are also strongly
applicable in the ergodic theory (see [1]). It is worth mentioning that monotonicity
property of E is a restriction of an appropriate rotundity property to pairs of compatible
elements on the positive cone E+ (see [8]). We shall find a full criterion for strict
monotonicity of ρ (X, Y) getting a generalization of a respective result for Eϕ from
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[12] . The paper is ended with a discussion concerning difficulties of these studies and
open problems.

2. Preliminaries

Let S(X) (resp. B(X)) be the unit sphere (resp. the closed unit ball) of a real
Banach space (X, ‖·‖X).

Let (T,Σ,μ) be a σ -finite and complete measure space. By L0 = L0(T) we
denote the set of all μ -equivalence classes of real valued measurable functions defined
on T.

A Banach space E = (E, ‖·‖E) is said to be a Köthe space if E is a linear subspace
of L0 and:

(i) if x ∈ E, y ∈ L0 and |y| � |x| μ -a.e., then y ∈ E and ‖y‖E � ‖x‖E ;
(ii) for all A ∈ Σ with μ (A) < ∞ we have χA ∈ E (see [11] and [19]).
Every Köthe space is a Banach lattice under the natural partial order ( x � 0 if

x (t) � 0 for μ -a.e. t ∈ T ). In particular, if we consider the space E over a non-atomic
measure, then we shall say that E is a Köthe function space. If we specify the measure
space (T,Σ,μ) to be the counting measure space

(
N, 2N, m

)
, then we will say that E

is a Köthe sequence space. In the last case the symbol ei = (0, ..., 0, 1, 0, ...) stands
for the i -th unit vector. If we consider the symmetric Köthe spaces (rearrangement
invariant) we refer to [15] or [19] for the respective definitions.

The set E+ = {x ∈ E : x � 0} is called the positive cone of E. For any subset
A ⊂ E define A+ = A ∩ E+. For any A, B ∈ Σ we set A ÷ B = (A \ B) ∪ (B \ A) .

A point x ∈ E is said to have order continuous norm if for any sequence (xm)
in E such that 0 � xm � |x| and xm → 0 μ -a.e. we have ‖xm‖E → 0. A Köthe
space E is called order continuous (E ∈ (OC) ) if every element of E has order
continuous norm (see [11], [19] and [23]). As usual, Ea stands for the subspace of
order continuous elements of E. It is known that x ∈ Ea iff ‖xχAn‖E ↓ 0 for any

sequence {An} satisfying An ↘ ∅ (that is An ⊃ An+1 and μ
(∞⋂

n=1
An

)
= 0 ).

Clearly, μ
(∞⋂

n=1
An

)
= 0 iff χAn → 0 μ -a.e..

E is said to be strictly monotone (E ∈ (SM) ) if ‖y‖E < ‖x‖E for each 0 � y � x
with y �= x (see [2], [8]).

We will say that E has the Fatou property if conditions 0 � xn ↑ x ∈ L0 with
(xn)

∞
n=1 in E and supn ‖xn‖E < ∞ imply that x ∈ E and ‖x‖E = limn ‖xn‖E .

We say that ϕ is an Orlicz function whenever ϕ : R+ ∪ {0} → [0,∞] , ϕ is
convex, vanishing and continuous at zero, left continuous on (0,∞) and not identically
equal to zero. Additionally, if ϕ vanishes only at zero, takes only finite values and

lim
u→∞

ϕ (u)
u

= ∞ and lim
u→0

ϕ (u)
u

= 0,

then ϕ is called an N -function. Denote the class of N functions by O . In the whole
paper we shall assume that ϕ ∈ O.
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It is known that the growth condition Δ2 for the Orlicz function ϕ is a funda-
mental tool in the theory of Orlicz spaces Lϕ and Calderón-Lozanovskiı̆ spaces Eϕ .
In particular it is necessary and sufficient for order continuity of Eϕ (Lϕ ). Recall
that an Orlicz function ϕ satisfies conditionΔ2(0) (ϕ ∈ Δ2(0) ) if there exist K > 0
and u0 > 0 such that ϕ(u0) > 0 and the inequality ϕ(2u) � Kϕ(u) holds for all
u ∈ [0, u0] . We say an Orlicz function ϕ satisfies condition Δ2(∞) (ϕ ∈ Δ2(∞) ) if
there exist K > 0 , u0 > 0 such that ϕ(u0) < ∞ and the inequality ϕ(2u) � Kϕ(u)
holds for all u � u0 . If there exists K > 0 such that ϕ(2u) � Kϕ(u) for all u � 0 ,
then we say that ϕ satisfies condition Δ2(R+) (ϕ ∈ Δ2(R+) ).

DEFINITION 1. We will say that a function ρ : R+ ∪{0}×R+ ∪{0} → R+ ∪{0}
belongs to the class U provided:

(i) ρ is positively homogenous, that is, ρ (au, av) = aρ (u, v) for each a, u, v �
0.

(ii) ρ (0, v) = ρ (u, 0) = 0 for each u, v � 0.
(iii) ρ (·, v) and ρ (u, ·) are continuous, concave functions of one variable for

any u, v � 0.
(iv) limu→∞ ρ (u, v) = limu→∞ ρ (v, u) = ∞ for each v > 0.

It is easy to see that each function ρ ∈ U is concave on R
2
+.

REMARK 2. For each ϕ ∈ O one can associate a function ρϕ,R ∈ U by

ρϕ,R (u, v) =
{

uϕ−1
(

v
u

)
if u > 0,

0 for u = 0.

Conversely, given any ρ ∈ U, if we set ϕR(v) = ρ−1 (1, v) , then ϕR ∈ O (ϕR -from
the right hand) . Analogously, given ϕ ∈ O we define

ρϕ,L (u, v) =
{

vϕ−1
(

u
v

)
if v > 0,

0 for v = 0

with ρϕ,L ∈ U. Finally, for ρ ∈ U setting ϕL (u) = ρ−1 (u, 1) , we get ϕL ∈ O
(ϕL -from the left hand).

DEFINITION 3. We will say that ρ satisfies the Δ2 condition from the left side for
all values u ∈ R+ (ρ ∈ Δ2 (L, R+) shortly) if there is K > 0 such that

ρ (u, v) � ρ
(

K
2

u,
1
2
v

)

for all (u, v) ∈ R
2
+. Analogously, ρ satisfies the Δ2 condition from the right side for

all values (ρ ∈ Δ2 (R, R+) shortly) if there is K > 0 such that

ρ (u, v) � ρ
(

1
2
u,

K
2

v

)

for all (u, v) ∈ R
2
+.
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It is easy to see that

ρϕ,L ∈ Δ2 (L, R+) if and only if ϕ ∈ Δ2 (R+) .

NOTATION 4. We shall write ρ ∈ Δ2 (L, R, R+) if ρ ∈ Δ2 (L, R+) and ρ ∈
Δ2 (R, R+) .

We can define, by the analogy to Orlicz functions, the appropriate Δ2 conditions
for ρ at zero and at infinity.

DEFINITION 5. We will say that ρ satisfies the Δ2 condition from the left side at
infinity [at zero] (ρ ∈ Δ2 (L,∞) [ρ ∈ Δ2 (L, 0)] shortly) if there are numbers K > 0
and u0 > 0 such that

ρ (u, v) � ρ
(

K
2

u,
1
2
v

)

for all (u, v) ∈ R
2
+ with u

v > u0 [ u
v < u0].

Like above it is easy to see, that ρϕ,L ∈ Δ2 (L,∞) [ρϕ,L ∈ Δ2 (L, 0) ] if and only
if ϕ ∈ Δ2 (∞) [ϕ ∈ Δ2 (0) ], respectively. The case ρ ∈ Δ2 (R,∞) [ρ ∈ Δ2 (R, 0) ] is
understood analogously but with the quotient v

u in place of u
v .

Moreover, the appropriate lemmas from the theory of Orlicz functions remain true
(see [4] for the respective proofs for Orlicz N functions).

LEMMA 6. Let ρ ∈ U. The following conditions are equivalent:

(i) ρ ∈ Δ2 (L,∞) .

(ii) for each u0 > 0 there is K > 0 such that ρ (u, v) � ρ
(

K
2 u, 1

2v
)

for all
(u, v) ∈ R

2
+ with u

v > u0.

(iii) for each K > 1 and any u0 > 0 there is 1 < σ < K such that ρ (u, v) �
ρ
(

K
σ u, 1

σ v
)

for all (u, v) ∈ R
2
+ with u

v > u0.

NOTATION 7. Let X, Y be Köthe spaces and 1 � p � ∞. We denote by X ⊕p Y
the p -product of X and Y with the norm

‖(x, y)‖p = ‖(x, y)‖X⊕pY =
(‖x‖p

X + ‖y‖p
Y

) 1
p if 1 � p < ∞,

‖(x, y)‖∞ = ‖(x, y)‖X⊕∞Y = max {‖x‖X , ‖y‖Y} if p = ∞.

DEFINITION 8. Suppose that ρ ∈ U and X, Y are Köthe spaces over the same
measure space (we will also say in this situation that a couple (X, Y) is compatible).
Let 1 � p � ∞. By the Calderón-Lozanovskiı̆ construction ρ (X, Y) we mean the
space

ρ (X, Y) =
{
z ∈ L0 : |z| � ρ (x, y) for some x ∈ X+, y ∈ Y+

}
equipped with the norm

p ‖z‖ρ(X,Y) = inf
{
‖(x, y)‖p : x ∈ X+, y ∈ Y+ with |z| � ρ (x, y)

}
.
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REMARK 9. (i) The case p = ∞. It is easy to see that

ρ (X, Y) =
{
z ∈ L0 : |z| � λρ (x, y) for some x ∈ B (X)+ , y ∈ B (Y)+ , λ > 0

}
and ∞ ‖z‖ρ(X,Y) = inf λ , where the infimum is extended over all possible λ > 0 for
which one can find x ∈ B (X)+ and y ∈ B (Y)+ satisfying the inequality |z| � λρ (x, y)
(the space ρ (X, Y) with the norm considered in this way has been considered by
Lozanovskiı̆, see [20]). This construction plays an important role in the theory of
interpolation spaces and for the special functions φ (s, t) = s1−θ tθ (0 < θ < 1) it is
related to the complex interpolation method of Calderón (see [3]). If E0 and E1 have
the Fatou property (or both E0 and E1 are separable), Ovchinnikov proved in [21] that
φ (E0, E1) is an interpolation space between E0 and E1.

(ii) The case of spaces Eϕ . If p = ∞, X = L∞ , Y = E and ρ ∈ U, then
ρ (L∞, E) = Eϕ and ‖w‖ρ = ‖w‖ϕ , where ϕ(v) = ρ−1 (1, v) (note that ϕ = ϕR

according to Remark 2),

Iϕ(x) =
{ ‖ϕ ◦ x‖E if ϕ ◦ x ∈ E

∞ otherwise
,

Eϕ = {x ∈ L0 : Iϕ(cx) < ∞ for some c > 0}
and

‖x‖ϕ = inf
{
λ > 0 : Iϕ (x/λ ) � 1

}
.

If E = L1 (E = l1) , then Eϕ is the Orlicz function (sequence) space equippedwith the
Luxemburg norm. If E is a Lorentz function (sequence) space Λω (λω ), then Eϕ is
the corresponding Orlicz-Lorentz function (sequence) space (Λω)ϕ ( (λω )ϕ ) equipped
with the Luxemburg norm (see [6], [7], [8], [10], [12]).

THEOREM 10. ([22, Proposition 1]) Let (X, Y) be couple of Köthe spaces with
Fatou property and 1 � p � ∞ . Then for any z ∈ ρ (X, Y) we have

p ‖z‖ρ(X,Y) = inf
{
‖(u, v)‖X⊕pY : |z| = ρ (u, v) , (u, v) ∈ (X ⊕ Y)+

}
= min

{
‖(u, v)‖X⊕pY : |z| = ρ (u, v) , (u, v) ∈ (X ⊕ Y)+

}
.

In the following, considering a couple of Köthe spaces (X, Y) we will understand
that both X and Y have Fatou property and are compatible.

3. Results

3.1. Order continuity

Since order continuity is topologically invariant and all norms p ‖·‖ρ(X,Y) are

mutually equivalent we may consider only the space
(
ρ (X, Y) ,∞ ‖·‖ρ(X,Y)

)
. We shall

write shortly
(
ρ (X, Y) , ‖·‖ρ

)
and ‖(x, y)‖ = ‖(x, y)‖X⊕∞Y = max {‖x‖X , ‖y‖Y} .

The proof of the following lemma is immediate.
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LEMMA 11. Let (X, Y) be a couple of order continuous Köthe spaces. Then
ρ (X, Y) ∈ (OC) .

It is possible that the space ρ (X, Y) can be order continuous even when neither
X nor Y is order continuous. In order to discuss the case we introduce the following
notion.

DEFINITION 12. We shall say that a couple of Köthe spaces (X, Y) is jointly order
discontinuous ((X, Y) ∈ (JOD) shortly) if there exist elements x ∈ X \Xa , y ∈ Y \ Ya

and a sequence of measurable sets An ↘ ∅ such that for any sequence (Bn) in Σ with
Bn ⊂ An (n ∈ N) there are a number a > 0 and a subsequence (nk) in N such that
either ∥∥∥xχBnk

∥∥∥
X

� a and
∥∥∥yχBnk

∥∥∥
Y

� a for all k

or ∥∥∥xχB′
nk

∥∥∥
X

� a and
∥∥∥yχB′

nk

∥∥∥
Y

� a for all k,

where B′
n := An \ Bn.

THEOREM 13. If ρ ∈ U, then:
(i) (X, Y) /∈ (JOD) whenever ρ (X, Y) ∈ (OC) .
(ii) ρ (X, Y) ∈ (OC) provided (X, Y) /∈ (JOD) and ρ ∈ Δ2 (R, L, R+) .

Proof. (i) Suppose that (X, Y) ∈ (JOD). Take elements x ∈ (X \ Xa)+ , y ∈
(Y \ Ya)+ and sequence (An) from Definition 12. Define z = ρ (x, y) and the sequence

zn = ρ (x, y) χAn = ρ (xχAn , yχAn) .

By Theorem 10 we conclude that for any n there exists (un, vn) ∈ (X ⊕ Y)+ such that

‖zn‖ρ = ‖(un, vn)‖ and zn = ρ (un, vn) .

Put
Bn = {t ∈ An : un (t) > x (t)} and B′

n = An \ Bn.

We have therefore vnχB′
n
� yχB′

n
. From assumed condition (JOD) we know that there

exist subsequence (nk) of N and constant a > 0 satisfying(∥∥∥xχBnk

∥∥∥
X

� a and
∥∥∥yχBnk

∥∥∥
Y

� a
)

or
(∥∥∥xχB′

nk

∥∥∥
X

� a and
∥∥∥yχB′

nk

∥∥∥
Y

� a
)

. (1)

Because of symmetry we are allowed to consider just one case, say
∥∥∥xχBnk

∥∥∥
X

� a and∥∥∥yχBnk

∥∥∥
Y

� a for all k. Then

∥∥znk

∥∥
ρ =

∥∥(unk , vnk

)∥∥ �
∥∥∥(unk , vnk

)
χBnk

∥∥∥ �
∥∥∥unkχBnk

∥∥∥
X

�
∥∥∥xχBnk

∥∥∥
X

� a

for all k and therefore z �∈ ρ (X, Y)a .
(ii) Take any z ∈ ρ (X, Y) . By Theorem 10 there is (x, y) ∈ (X ⊕ Y)+ with

|z| = ρ (x, y) (see [22]). We can consider only the case where x ∈ X \ Xa , y ∈ Y \ Ya

(since the other case can be found in [22]). Take any sequence (An) with An ↘ ∅ .
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Without loss of generality we can assume that μ (supp x ÷ supp y) = 0 and An ⊂ supp x
for any n . Since (X, Y) �∈ (JOD) there exists a sequence (Bn) such that Bn ⊂ An for
any n and(‖xχBn‖X → 0 or ‖yχBn‖Y → 0

)
and

(∥∥∥xχB′
n

∥∥∥
X
→ 0 or

∥∥∥yχB′
n

∥∥∥
Y
→ 0

)
,

where B′
n = An \ Bn. If (‖xχBn‖X → 0 and

∥∥∥xχB′
n

∥∥∥
X
→ 0 ) or (‖yχBn‖Y → 0 and∥∥∥yχB′

n

∥∥∥
Y
→ 0 ) the proof would follow as that of Proposition 4 in [22]. Therefore,

assume that
‖xχBn‖X → 0 and

∥∥∥yχB′
n

∥∥∥
Y
→ 0. (2)

If instead of (2) we would have
∥∥∥xχB′

n

∥∥∥
X
→ 0 and ‖yχBn‖Y → 0, the proof is similar.

From ρ ∈ Δ2 (R, L, R+) there exist constants K, L > 0 such that for any u, v > 0 and
any m ∈ N

ρ (u, v) � ρ
((

K
2

)m

u,

(
1
2

)m

v

)
,

ρ (u, v) � ρ
((

1
2

)m

u,

(
L
2

)m

v

)
.

Moreover, there exist sequences m (n) → ∞ and k (n) → ∞ satisfying(
K
2

)m(n)√
‖xχBn‖X � M,

(
L
2

)k(n)√∥∥∥yχB′
n

∥∥∥
Y

� N,

for some constants M, N > 0 . Put i (n) = min (m (n) , k (n)) → ∞ . Setting zn = zχAn ,
we get

zn = ρ (x, y) χAn = ρ (x, y) χBn + ρ (x, y) χB′
n

� ρ

((
K
2

)i(n)

x,

(
1
2

)i(n)

y

)
χBn + ρ

((
1
2

)i(n)

x,

(
L
2

)i(n)

y

)
χB′

n
.

Finally

‖zn‖ρ �
(

K
2

)i(n)

‖xχBn‖X +
(

1
2

)i(n)

‖yχBn‖Y +
(

L
2

)i(n) ∥∥∥yχB′
n

∥∥∥
Y
+
(

1
2

)i(n) ∥∥∥xχB′
n

∥∥∥
X

� M
√
‖xχBn‖X +

(
1
2

)i(n)

‖yχBn‖Y + N

√∥∥∥yχB′
n

∥∥∥
Y

+
(

1
2

)i(n) ∥∥∥xχB′
n

∥∥∥
X
→ 0.

Since z ∈ ρ (X, Y) is arbitrary, we conclude that ρ (X, Y) ∈ (OC) . �

REMARK 14. Obviously, when X is isomorphic to Y and they are not order
continuous, then (X, Y) ∈ (JOD) . However, there may exist spaces X, Y both of them
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not being order continuous such that the couple (X, Y) �∈ (JOD) , and in view of the
above theorem, the space ρ (X, Y) can be order continuous. The following example
presents such a case.

EXAMPLE 15. Let T = 〈 0,∞) and ϕ,ψ be Orlicz N functions such that

ϕ ∈ Δ2(0) and ϕ �∈ Δ2(∞) as well as ψ �∈ Δ2(0) and ψ ∈ Δ2(∞).

We will show that
(
Lϕ , Lψ

) �∈ (JOD) . Of course Lϕ , Lψ �∈ (OC) (see for example
[17]). Take any 0 � x ∈ Lϕ \ (Lϕ)a , 0 � y ∈ Lψ \ (Lψ)a and arbitrary sequence
(An) in Σ such that An ↘ ∅ (i.e. χAn ↘ 0 μ -a.e.). Notice that for a set A =
{t ∈ T : x (t) � 1} we have μ (A) < ∞ . We claim that

xχT\A ∈ Lϕa .

We have Iϕ (λx) = ‖ϕ ◦ (λx)‖L1 < ∞ for some λ > 0 because x ∈ Lϕ . Suppose that
0 � zn � xχT\A and zn → 0 μ -a.e.. Then Iϕ (λ zn) → 0 since ϕ ◦(λx) ∈ L1 ∈ (OC) .
Fix k ∈ N. By ϕ ∈ Δ2(0) and ϕ ∈ O we conclude that there is a number K0 > 0

such that ϕ
(

2k

λ u
)

� K0ϕ (u) for any u ∈ [0, λ ] . Thus

Iϕ
(
2kzn

)
= Iϕ

(
2k

λ
λ zn

)
� K0Iϕ (λ zn) → 0,

as n → ∞ . This means that ‖zn‖ϕ → 0 which proves the claim. On the other hand

yχA ∈ Lψa ,

since Lψ (A,Σ ∩ A,μ |A) ∈ (OC) . For

Bn = An ∩ A,

B′
n = An \ Bn,

we have
∥∥∥xχB′

n

∥∥∥
E
→ 0 and ‖yχBn‖F → 0. Finally (Lϕ , Lψ ) �∈ (JOD) and taking any

δ ∈ (0, 1) , ρ (u, v) = uδv1−δ we have by Theorem 13 (ii) that

ρ (Lϕ , Lψ ) = (Lϕ)δ (Lψ )1−δ ∈ (OC) .

REMARK 16. This should be pointed out that if one of X or Y is isomorphically
equal to L∞ and the second is not order continuous, then the couple (X, Y) ∈ (JOD) .
Clearly, (L∞)a = {0} but there are Köthe spaces X with Xa = {0} and X is not
isomorphically equal to L∞. It is enough to take X = L1 ∩ L∞ ([0,∞]) with the norm
‖x‖ = ‖x‖L1 + ‖x‖L∞ . This leads to the following

REMARK 17. Does (X, Y) ∈ (JOD) when Xa = {0} and Y /∈ (OC) ? The
answer is “no” in general. Indeed, let X = L1 (R,Σ,μ) ∩ L∞ (R,Σ,μ) with the norm
‖x‖X = ‖x‖1 + ‖x‖∞ and Y = Lϕ (R,Σ,μ) be the Orlicz space with the Luxemburg
norm such that ϕ ∈ Δ2 (∞) , ϕ �∈ Δ2 (0) and ϕ is an N -function. We have Xa = {0}
and Y /∈ (OC) . We shall show that for any couple (x, y) ∈ (X \ Xa)+ ⊕ (Y \ Ya)+
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and any sequence (An) ⊂ Σ satisfying An ↘ ∅ and An ⊂ Am for n > m , there exists
sequence (Bn) with Bn ⊂ An and∥∥∥xχB′

n

∥∥∥
X
→ 0 and ‖yχBn‖Y → 0,

where B′
n = An \ Bn . Let 0 � x ∈ X \ Xa , 0 � y ∈ Y \ Ya and (An) be like

above. There are two possibilities: μ (An) → 0 or μ (An) = ∞ for any n. Since
Lϕ (A,Σ ∩ A,μ |A) ∈ (OC) while μ (A) < ∞ , only the second case need to be
considered. Define

Ck =
{

t ∈ R : x (t) � 1
k

}
,

Bn
k =

{
t ∈ An : x (t) � 1

k

}
and (Bn

k)
′ = An \ Bn

k .

Then μ (Bn
k) < ∞ and μ (Ck) < ∞ for any k, n ∈ N. Moreover, μ (Bn

k)
n→∞→ 0

for any k since Bn
k ⊂ Ck and χBn

k
� χAn ↘ 0 μ -a.e.. Therefore,

∥∥∥yχBn
k

∥∥∥
Y

n→∞→ 0

(since Lϕ
(
Ck,Σ ∩ Ck,μ |Ck

) ∈ (OC) ) for any k and consequently we can find a

nondecreasing sequence of natural numbers i (n) such that
∥∥∥yχBn

i(n)

∥∥∥
Y

n→∞→ 0 and

i (n) → ∞ . Finally, we get∥∥∥∥xχ(Bn
i(n)

)′∥∥∥∥
X

=
∥∥∥∥xχ(Bn

i(n)

)′∥∥∥∥
1

+
∥∥∥∥xχ(Bn

i(n)

)′∥∥∥∥
∞

� ‖xχAn‖1 +
1

i (n)
→ 0

as n → ∞ . So we conclude that (X, Y) �∈ (JOD) .

It is proved in [22] that the appropriate (left or right) Δ2 condition for all values
is enough for Calderón-Lozanovskiı̆ space ρ (X, Y) to be order continuous even if one
of X or Y is not. However, the theory of Orlicz spaces and generalized Orlicz spaces
Eϕ shows that Δ2 condition on the whole R+ is not necessarily in some cases. It
is sometimes enough to assume Δ2 condition at zero or at infinity as the following
theorem shows.

THEOREM 18. (i) ρ (X, Y) ∈ (OC) if X ⊂ Y , X ∈ (OC) and ρ ∈ Δ2 (L, 0) .
(ii) ρ (X, Y) ∈ (OC) if Y ⊂ X , X ∈ (OC) and ρ ∈ Δ2 (L,∞) .

(iii) ρ (X, Y) ∈ (OC) if X ⊂ Y , Y ∈ (OC) and ρ ∈ Δ2 (R,∞) .
(iv) ρ (X, Y) ∈ (OC) if Y ⊂ X , Y ∈ (OC) and ρ ∈ Δ2 (R, 0) .

Proof. (i) Take any z ∈ ρ (X, Y) . By Theorem 10 there is (x, y) ∈ (X ⊕ Y)+
with |z| = ρ (x, y) (see [22]). We have |z| � ρ (x, x ∨ y) ∈ ρ (X, Y) because x∨ y ∈ Y.
Thus, by Lemma 6, there exist K1 > 0 such that for any t ∈ supp x ∨ y

ρ (x (t) , (x ∨ y) (t)) � ρ
(

K1

2
x (t) ,

1
2

(x ∨ y) (t)
)

, (3)
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since x(t)
(x∨y)(t) � 1 . By the induction, applying Lemma 6, we can define a sequence Ki

satisfying for any n

ρ (x (t) , (x ∨ y) (t)) � ρ

⎛
⎜⎜⎜⎜⎝

n∏
i=1

Ki

2n
x (t) ,

1
2n

(x ∨ y) (t)

⎞
⎟⎟⎟⎟⎠ .

Take any sequence (An) in Σ with An ↘ ∅ and define zn = ρ (xχAn , y ∨ xχAn) . It is
enough to check that ‖zn‖ρ → 0 because ρ (xχAn , yχAn) � zn . Since X ∈ (OC) so
‖xχAn‖X ↘ 0. Moreover, there are a nondecreasing sequence (in) with in → ∞ and a
number M > 0 such that

in∏
i=1

Ki

2in

√
‖xχAn‖X � M

for each n . We can continue our proof like in Theorem 13 .
(ii) Let z ∈ ρ (X, Y) . Then |z| = ρ (x, y) for some x ∈ X+, y ∈ Y+. If y ∈ Ya

then the proof is obvious. Suppose that y ∈ (Y \ Ya)+ . We have

z � ρ (x ∨ y, y)

and x ∨ y ∈ X. By Lemma 6 (ii) for u0 = 1 there is K > 1 such that ρ (u, v) �
ρ
(

K
2 u, 1

2v
)

for all (u, v) ∈ R
2
+ with u

v � 1. Since the inequality Kn x∨y
y χsupp y � χsupp y

is true for any n , so ρ (x ∨ y, y) � ρ
((

K
2

)n
x ∨ y, 1

2n y
)

. We follow as in proof of (i) .

The proofs of (iii) and (iv) are similar. �
Recall that given Köthe spaces X and Z the generalized dual XZ is defined by

XZ =
{
x ∈ L0 (T,Σ,μ) : xy ∈ Z for each y ∈ X

}
(see [18]). For Z = L1 the space XL1

= X′ is the Köthe dual of X . We shall need the
following generalization.

DEFINITION 19. Let X and Z be a real Köthe function spaces over measure space
(T,Σ,μ) and take an unbounded set K ⊂ R+ . Set

XK = {x ∈ X : x[T] ⊂ K ∪ {0}}
and

(XK)Z =
{
x ∈ L0 (T,Σ,μ) : xy ∈ Z for each y ∈ XK

}
.

If K = R, then clearly XK = X .

LEMMA 20. (see [18]) If X is a Köthe space, then XX = L∞.

We will need a generalization of the above lemma.

LEMMA 21. Let X be an order continuous Köthe function space such that
X �⊂ L∞. Suppose that the set K ⊂ R+ is unbounded. Then we have the equality of
sets

(XK)X = L∞.
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Proof. The inclusion ⊃ is evident. Suppose that there is x ∈ (XK)X \L∞ . Define

An =
{

t ∈ T : n3 � |x (t)| < (n + 1)3
}

.

Since x �∈ L∞, wehave μ (An) >0 for infinitelymany n. Set M= {n ∈ N : μ (An)>0} .
If X ∈ (OC) , then the function γ : Σ → R+ defined γ (A) = ‖χA‖X has Darboux
property (see [5]). Consequently there exist sets Bn ⊂ An with 1

n2‖χBn‖X

∈ K for each

n ∈ N . Put

y =
∑
n∈M

1
n2 ‖χBn‖X

χBn .

We have of course y ∈ X by completeness and y ∈ XK . On the other hand

‖xy‖ �
∥∥∥∥ n3

n2 ‖χBn‖
χBn

∥∥∥∥ = n,

for any n ∈ M . The contradiction proves the lemma. �

REMARK 22. The above Lemma is also true if we assume, in place of X ∈ (OC) ,
that X is a symmetric Köthe function space and μ (T) < ∞ . In order to go analogously
in the proof it is enough to show that χA ∈ Xa for any A ∈ Σ . First, notice that, since
X �⊂ L∞ , there exist x ∈ (X \ Xa)+ with x �∈ L∞ . Furthermore, we shall show
that

√
x ∈ Xa . Defining An = {t ∈ T : x (t) � n} we get M � ‖xχAn‖ � a for some

M, a > 0 and any n (such a choice of (An) is optimal because of symmetry). However,∥∥√xχAn

∥∥ → 0 because
√

xχAn � 1√
n
xχAn . But

√
xχA1 � χA1 and consequently

χA1 ∈ Xa . Since X is symmetric we conclude that χA ∈ Xa for any set A ∈ Σ. Lemma
21 can be proved as before.

It is known that, under certain assumptions, the Δ2 condition is necessary for order
continuity of Eϕ (see [7]). We shall present an independent proof of this fact applying
the above Lemma.

THEOREM 23. ([7]) Let ϕ ∈ O and L∞ ⊂ E with E being a Köthe function
space . Suppose that E ∈ (OC) or E is a symmetric space over the finitemeasure space.

If ϕ �∈ Δ2 (∞) (equivalently ρ def
= ρϕ,R �∈ Δ2 (R,∞) ), then ρ (L∞, E) ∼= Eϕ �∈ (OC) .

Proof. Since ρ �∈ Δ2 (R,∞) so

lim sup
t→∞

K (t) = ∞,

where K is the function defined by the equality

ρ (1, t) = ρ
(

1
2
,
K (t)

2
t

)
. (4)

Since K is continuous, there exists a nonempty set H ⊂ R+ such that K (s) � K (t)
whenever s � t for any s, t ∈ H . Moreover, H may be chosen to be unbounded,
0 ∈ H and such that K [H] is unbounded too. Define

EH = {x ∈ E : x [T \ A] ⊂ H for some A ∈ Σ with μ (A) = 0} .
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Suppose for the contrary that ρ (L∞, E) ∈ (OC) . Notice that E �⊂ L∞. Indeed,
otherwise L∞ ⊂ E ⊂ L∞ and E is isomorphic to L∞, whence, by Theorem 13 and
Remark 16, ρ (L∞, E) �∈ (OC) . Let x ∈ EH be such that the sets

An = {t : x (t) > n}
have positive measure for all n ∈ N . Of course μ (An) → 0 . Setting

zn = ρ (χT , x) χAn

we get ‖zn‖ρ ↘ 0 . Moreover, in view of Theorem 10, for any n there exists a couple
(un, vn) with

‖zn‖ρ = ‖(un, vn)‖ and zn = ρ (un, vn) .

Therefore, there exists n0 satisfying un0 � 1
2χAn0

. Applying equality (4) we have

ρ(1, x (t)) = ρ
(

1
2
,
K (x (t))

2
x (t)

)

for μ -a.e. t ∈ An0 , and consequently

K ◦ x
2

xχAn0
� vn0 ∈ E.

Define the function

M =
K ◦ x

2
χAn0

.

Of course M is unbounded. We would like to show that M ∈ (EH)E to get the
contradiction with Lemma 21. It is enough to show that for any y ∈ EH with x � y ,
yM ∈ E . Let y be arbitrary, x � y and put

f = ρ (χT , y) ,

f n = ρ (χAn , yχAn) .

Take couples (rn, sn) satisfying

‖f n‖ρ = ‖(rn, sn)‖ and f n = ρ (rn, sn) .

Consequently ‖f n‖ρ → 0 and therefore, ‖rn‖∞ → 0 . We conclude as before that there

exists n1 > n0 such that rn1 � 1
2χAn1

. But

ρ(1, y (t)) = ρ
(

1
2
,
K (y (t))

2
y (t)

)

for μ -a.e. t ∈ An1 and finally

K ◦ y
2

yχAn1
� sn1 ∈ E.

Furthermore, by the monotonicity of K in H, we get

1
2
K ◦ xχAn1

� 1
2
K ◦ yχAn1

.
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Therefore

MχAn1
y � K ◦ y

2
yχAn1

∈ E.

Moreover, xχT\An1
� n1χT\An1

and

MχT\An1
=

K ◦ x
2

χT\An1
� K (n1)

2
χT\An1

∈ L∞.

Thus we get My = MyχT\An1
+ MyχAn1

∈ E and because y was arbitrary, M ∈ (EH)E

which contradicts Lemma 21. �

3.2. Strict monotonicity

Whenwe consider the space pρ (X, Y) with p = ∞ we shall write ρ (X, Y) instead
of ∞ρ (X, Y) and ‖z‖ρ instead of ∞ ‖z‖ρ for short.

Given an N function ϕ we set

WR
ϕ =

{
w∈L0 : zϕ ◦

(
λ |w|

z

)
∈ Y for some λ > 0, z∈B (X)+ with suppw ⊂ supp z

}
,

IR
ϕ (w) = inf

{∥∥∥∥zϕ ◦
( |w|

z

)∥∥∥∥
Y

: z ∈ B (X)+ , suppw ⊂ supp z

}
and

‖w‖R
ϕ = inf

{
λ > 0 : IR

ϕ (w/λ ) � 1
}

for each w ∈ WR
ϕ . We define the function zϕ ◦

(
|w|
z

)
∈ Y by

zϕ ◦
( |w|

z

)
(t) =

{
z (t)ϕ

(
|w|(t)
z(t)

)
if t ∈ supp z,

0 if t /∈ supp z.

Analogously one can set

WL
ϕ =

{
w∈L0 : zϕ ◦

(
λ |w|

z

)
∈X for some λ > 0, z∈B (Y)+ with suppw ⊂ supp z

}
,

IL
ϕ (w) = inf

{∥∥∥∥zϕ ◦
( |w|

z

)∥∥∥∥
X

: z ∈ B (Y)+ , suppw ⊂ supp z

}
and

‖w‖L
ϕ = inf

{
λ > 0 : IL

ϕ (w/λ ) � 1
}

for each w ∈ WL
ϕ .

REMARK 24. If ϕ ∈ O , then:

(i)
(
WR

ϕ , ‖·‖R
ϕ

)
=
(
ρϕ,R (X, Y) , ‖·‖ρϕ,R

)
and ‖w‖R

ϕ = ‖w‖ρϕ,R
for each w ∈

ρϕ,R (X, Y) , where

ρϕ,R (u, v) =
{

uϕ−1
(

v
u

)
if u > 0,

0 for u = 0.
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(ii)
(
WL

ϕ , ‖·‖L
ϕ

)
=
(
ρϕ,L (X, Y) , ‖·‖ρϕ,L

)
and ‖w‖L

ϕ = ‖w‖ρϕ,L
for each w ∈

ρϕ,L (X, Y) , where

ρϕ,L (u, v) =
{

vϕ−1
(

u
v

)
if v > 0,

0 for v = 0.

Proof. (i) Let w ∈ WR
ϕ and ‖w‖R

ϕ < λ . Then IR
ϕ (w/λ ) � 1, so we find

a sequence (zn) ⊂ B (X)+ with
∥∥∥znϕ ◦

(
|w|
λ zn

)∥∥∥
Y
→ IR

ϕ (w/λ ) � 1 and suppw ⊂
supp zn. Denoting an = max

{
1,
∥∥∥znϕ ◦

(
|w|
λ zn

)∥∥∥
Y

}
, we get

|w| = λ znϕ−1 ◦ ϕ ◦
( |w|
λ zn

)
= λ znρϕ,R

(
χsupp w,ϕ ◦

( |w|
λ zn

))

= λρϕ,R

(
znχsupp w, znϕ ◦

( |w|
λ zn

))
= anλρϕ,R

⎛
⎝ znχsupp w

an
,
znϕ ◦

(
|w|
λ zn

)
an

⎞
⎠

for each n. Thus w ∈ ρϕ,R (X, Y) and ‖w‖ρϕ,R
� anλ for each n. Consequently

‖w‖ρϕ,R
� lim anλ = λ . Since λ can be taken arbitrarily close to ‖w‖R

ϕ , so ‖w‖ρϕ,R
�

‖w‖R
ϕ . Suppose that w ∈ ρϕ,R (X, Y) and ‖w‖ρϕ,R

< λ . Then |w| � λρϕ,R (x, y) for

some x ∈ B (X)+ and y ∈ B (Y)+ . Without loss of generality we may assume that
supp x = supp y = suppw. Then

|w| � λρϕ,R (x, y) = λxρϕ,R

(
χsupp x,

y
x

)
= λxϕ−1 ◦

(y
x

)
.

Consequently xϕ ◦
(

|w|
λx

)
� y ∈ B (Y)+ . Then w ∈ WR

ϕ and ‖w‖R
ϕ � λ . Thus

‖w‖R
ϕ � ‖w‖ρϕ,R

.

The proof of (ii) is analogous. �

DEFINITION 25. Let p = ∞. We shall say that the space ρ (X, Y) satisfies the
nmR (nmL respectively) condition provided the implication ‖w‖ρ = 1 ⇒ IR

ϕR
(w) = 1

(‖w‖ρ = 1 ⇒ IL
ϕL

(w) = 1, respectively) holds for each w ∈ ρ (X, Y) (w ∈ ρ (X, Y)) .

We shall write ρ (X, Y) ∈ (nmR) and ρ (X, Y) ∈ (nmL) , respectively.

Notice that in the above definition we may equivalently use notations ρϕ,R,ϕ for
nmR and ρϕ,L,ϕ for nmL.

REMARK 26. Recall that if p = ∞, X = L∞ , Y = E and ρ ∈ U, then
ρ (L∞, E) = Eϕ and ‖w‖ρ = ‖w‖ϕ , where ϕ(v) = ϕR(v) = ρ−1 (1, v) (see Remark
9 (ii) in Section 2). Moreover, ρ (L∞, E) ∈ (nmR) iff ‖x‖ϕ = 1 ⇒ Iϕ (x) = 1 for
each x ∈ Eϕ (the last condition has been considered in [12] as necessary and sufficient
for strict monotonicity of Eϕ).
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Proof. Suppose that ρ (L∞, E) ∈ (nmR) and let ‖x‖ϕ = 1. By the assumption

1 = IR
ϕ (x) = inf

z∈B(L∞)+

∥∥∥∥zϕ ◦
( |x|

z

)∥∥∥∥
Y

�
∥∥∥∥z0ϕ ◦

( |x|
z0

)∥∥∥∥
Y

= Iϕ (x) ,

where z0 = χT is the strong unit in L∞. On the other hand, given any element
z ∈ B (L∞)+ we have z � χT , by the convexity of ϕ, we get∥∥∥∥zϕ ◦

( |x|
z

)∥∥∥∥
Y

�
∥∥∥∥z1

z
ϕ ◦ (|x|)

∥∥∥∥
Y

= ‖ϕ ◦ (|x|)‖Y ,

whence 1 = infz∈B(L∞)+

∥∥∥zϕ ◦
(

|x|
z

)∥∥∥
Y

� Iϕ (x) . Thus Iϕ (x) = 1 as required. The

proof of the second implication is obvious sincewe have seen above that Iϕ (x) = IR
ϕ (x) .

�

LEMMA 27. Suppose that X and Y have the Fatou property and p = ∞. Then:
(i) ρ (X, Y) ∈ (nmR) if and only if

‖z‖ρ = ‖y‖Y (+)

whenever z ∈ ρ (X, Y) , |z| = ρ (x, y) and ‖z‖ρ = ‖(x, y)‖∞ .

(ii) ρ (X, Y) ∈ (nmL) if and only if ‖z‖ρ = ‖x‖X whenever z ∈ ρ (X, Y) ,

|z| = ρ (x, y) and ‖z‖ρ = ‖(x, y)‖∞ .

Proof. (i) Clearly, condition (+) can be considered equivalently for z ∈
S (ρ (X, Y)) . Indeed, suppose that (+) holds on the sphere S (ρ (X, Y)) and take
z1 ∈ ρ (X, Y) \ {0} . We find x1 ∈ X+, y1 ∈ Y+ with |z1| = ρ (x1, y1) and ‖z1‖ρ =
‖(x1, y1)‖∞ (see Theorem 10) . Setting z = z1

‖z1‖ρ ∈ S (ρ (X, Y)) we get |z| =

ρ
(

x1
‖z1‖ρ , y1

‖z1‖ρ

)
and ‖z‖ρ =

∥∥∥( x1
‖z1‖ρ , y1

‖z1‖ρ

)∥∥∥
∞

. By the assumption we get 1 =

‖z‖ρ =
∥∥∥ y1

‖z1‖ρ

∥∥∥
Y
, whence ‖z1‖ρ = ‖y1‖Y .

Necessity. Assume that condition (+) does not hold. Then there is z ∈ S (ρ (X, Y))
with |z| = ρ (x, y) , 1 = ‖z‖ρ = ‖(x, y)‖∞ and ‖y‖Y < ‖x‖X = 1. We have

|z| = ρ (x, y) = xρ
(
χsupp x, y/x

)
. Hence |z|

x = ρ
(
χsupp x, y/x

)
and consequently

y = xρ−1
(
1, |z|

x

)
with ‖y‖Y < 1. Thus

IR
ϕR

(z) = inf
w∈B(X)+

∥∥∥∥wϕR ◦
( |z|

w

)∥∥∥∥
Y

< 1,

whence ρ (X, Y) /∈ (nmR) .
Sufficiency. If ρ (X, Y) /∈ (nmR) , then we find an element w ∈ ρ (X, Y) with

‖w‖ρ = 1 and IR
ϕR

(w) < 1. Thus there is an x ∈ B (X)+ such that
∥∥∥xϕR ◦

(
|w|
x

)∥∥∥
Y

<

1. Setting y = xϕR ◦
(

|w|
x

)
= xρ−1

(
1, |w|

x

)
we get |w| = ρ (x, y) . Then ‖x‖X = 1,

because 1 = ‖w‖ρ � ‖(x, y)‖∞ and ‖y‖Y < 1. Thus condition (+) is not satisfied.
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The proof of (ii) is the same. �

COROLLARY 28. ρ (X, Y) ∈ (nmR) and ρ (X, Y) ∈ (nmL) if and only if ‖x‖X =
‖y‖Y whenever z ∈ ρ (X, Y) , |z| = ρ (x, y) and ‖z‖ρ = ‖(x, y)‖∞ .

DEFINITION 29. Let p = ∞. We shall say that the space ρ (X, Y) satisfies the ′nm′

condition (ρ (X, Y) ∈ (nm) shortly) provided ‖x‖X = ‖y‖Y whenever ‖ρ (x, y)‖ρ =
‖(x, y)‖∞ .

REMARK 30. It may happen that X, Y ∈ (SM) , ρ (X, Y) ∈ (nmR) , ρ (X, Y) ∈
(nmL) , |z| = ρ (x, y) , ‖y‖Y = ‖x‖X and ‖z‖ρ < ‖x‖X . To see this take X =
Y = L1 [0, 1] , ρ (u, v) =

√
uv, x = 2χ[0, 1

2 ] + 1
2χ[ 1

2 ,1], x = 1
2χ[0, 1

2 ] + 2χ[ 1
2 ,1] and

z = ρ (x, y) .Then ‖y‖Y = ‖x‖X = 5/4 . However, z = χ[0,1] = ρ
(
χ[0,1], χ[0,1]

)
, so

‖z‖ρ � 1. Obviously, ρ (X, Y) ∈ (nmR) , ρ (X, Y) ∈ (nmL) , because ρ ∈ Δ2 (R, R+)
and ρ ∈ Δ2 (L, R+) (see Lemma 31 below). The same is possible when X = Y =
L2 [0, 1] .

LEMMA 31. If p = ∞, then:
(i) If ρ ∈ Δ2 (L, R+) , then ρ (X, Y) ∈ (nmL) .
(ii) If ρ ∈ Δ2 (R, R+) , then ρ (X, Y) ∈ (nmR) .
(iii) If X ∈ (SM) , then ρ (X, Y) ∈ (nmR) .
(iv) If Y ∈ (SM) , then ρ (X, Y) ∈ (nmL) .
Moreover, the converse of any above implication is not true in general.

Proof. (i) Suppose that ρ ∈ Δ2 (L, R+) . This means that

∀K>1∃1<C<K ∀u,v>0 ρ (u, v) � ρ
(

K
C

u,
1
C

v

)
. (5)

If ρ (X, Y) /∈ (nmL) , then we find z ∈ ρ (X, Y)+ such that

z = ρ (x, y) , ‖z‖ρ = ‖(x, y)‖∞ and ‖x‖X < ‖y‖Y .

Let σ = ‖y‖Y − ‖x‖X . Take K > 1 small enough to satisfy

(K − 1) ‖x‖X � σ
2

.

Then

‖z‖ρ �
∥∥∥∥
(

K
C

x,
1
C

y

)∥∥∥∥
∞

< ‖(x, y)‖∞ ,

where C > 1 is from (5), a contradiction.
(iii) Let X ∈ (SM) . If ρ (X, Y) /∈ (nmR) , then there is z ∈ ρ (X, Y)+ with

z = ρ (x, y) , ‖z‖ρ = ‖(x, y)‖∞ and ‖x‖X > ‖y‖Y .

Let σ = ‖x‖X − ‖y‖Y . One can find a set A ∈ Σ, A ⊂ supp z, of finite measure such
that

a � xχA � b and c � yχA � d
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for some a, b, c, d > 0 . Then ρ (a, c) � zχA � ρ (b, d) . Consequently, for each
0 < ε < a

2 there is δ (ε) > 0 such that the function h (ε, ·) ∈ L0 given by the equality

zχA = ρ (x, y) χA = ρ (x − ε, h (ε, ·) + y) χA

satisfies the inequality
0 � h (ε, ·) � δ (ε) .

Clearly h (ε, ·) χA ∈ Y . Moreover, δ (ε) → 0 if ε → 0 . We find ε > 0 sufficiently
small to satisfy

‖h (ε, ·) χA‖Y � δ (ε) ‖χA‖Y � σ
2

.

Then
‖z‖ρ � ‖(x − εχA, y + h (ε, ·) χA)‖ < ‖(x, y)‖∞ .

This contradiction finishes the proof. The proof of (ii) and (iv) goes analogously.
Furthermore, collecting all implications (i)– (iv) we see that none of them can be
reversed in general. �

As an immediate consequence of Lemma 31 we conclude

COROLLARY 32. Let p = ∞. If X, Y ∈ (SM) , then ρ (X, Y) ∈ (nm) .

REMARK 33. For p = ∞ the implication

ρ (X, Y) ∈ (nmR) ⇒ [ρ ∈ Δ2 (R, R+) or X ∈ (SM)]

does not hold in general. Really, take X = L∞, Y - a symmetric Köthe function space
over a finite measure space such that Ya = {0} and ρ ∈ U with ρ /∈ Δ2 (R,∞) .
Then ρ (X, Y) ∈ (nmR) by Remark 26 and Lemma 2.3 from [12]. An easy example
of such space Y is Y0 = L1 [0, 1] ∩ L∞ [0, 1] with the norm ‖y‖Y0

= ‖y‖L1 + ‖y‖L∞ .

Moreover, ρ (L∞, Y0) ∈ (SM) . Indeed, ρ (L∞, Y0) ∈ (nmL) because Y0 ∈ (SM)
(see Lemma 31 (iv) ). Since (Y0)a = {0} then ρ (L∞, Y0) ∈ (nmR) (see [12]).
Hence it is enough to apply Lemma 36 and Theorem 38 below since the condition
(L∞, Y0) /∈ (non − SM)jointly is fulfilled by the assumption that Y0 ∈ (SM) .

NOTATION 34. Recall that a point x ∈ X+ is said to be a point of uppermonotonicity
provided ‖x + y‖X > ‖x‖X for each 0 � y �= 0. For any Banach lattice X by XUM we
denote the set of points of upper monotonicity of X (see [10]).

Clearly, the space ρ (X, Y) can be order continuous even when neither X nor Y
is order continuous (this is the case when (X, Y) /∈ (JOD) ). Recall that this can not
happen when X = L∞, because in this case if Y /∈ (OC) we have ρ (X, Y) /∈ (OC)
(see Theorem 13 and Remark 16 above) . Similarly it turns out that ρ (X, Y) can be
strictly monotone even when neither X nor Y is strictly monotone (see Example 40
below). In order to discuss this case we shall introduce the following notion.

DEFINITION 35. (i) We shall say that the pair (X, Y) is jointly non strictly
monotone provided there is a set T0 such that

X (T0,Σ ∩ T0,μ |T0) /∈ (SM) and Y (T0,Σ ∩ T0,μ |T0) /∈ (SM) .
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We shall write (X, Y) ∈ (non − SM)jointly .
(ii) Let 1 � p � ∞. We say that ρ (X, Y) satisfies the condition A (ρ (X, Y) ∈

(A) shortly) provided one of the following conditions is satisfied:
(a) there exist elements x ∈ X \ XUM, y ∈ Y, and 0 � uX �= 0 with

μ (supp x ÷ supp y) = 0, supp uX ⊂ supp x,

p ‖ρ (x, y)‖ρ = ‖(x, y)‖p and ‖x + uX‖X = ‖x‖X .

(b) there exist elements x ∈ X, y ∈ Y \ YUM and 0 � uY �= 0 with
μ (supp x ÷ supp y) = 0, supp uY ⊂ supp y,

p ‖ρ (x, y)‖ρ = ‖(x, y)‖p and ‖y + uY‖Y = ‖y‖Y .

(c) there exist elements x ∈ X \ XUM, y ∈ Y \ YUM and 0 � uX, uY �= 0 with
μ (supp uX ÷ supp uY) = 0,

p ‖ρ (x, y)‖ρ = ‖(x, y)‖p , ‖x + uX‖X = ‖x‖X and ‖y + uY‖Y = ‖y‖Y .

LEMMA 36. (i) Let p = ∞, ρ ∈ U and ρ (X, Y) ∈ (nm) . If ρ (X, Y) ∈ (A)
then (X, Y) ∈ (non− SM)jointly .

(ii) Let 1 � p < ∞ and ρ ∈ U. If ρ (X, Y) ∈ (A) , then (X, Y) ∈ (non − SM)jointly .

Proof. (i) Assume that (X, Y) /∈ (non − SM)jointly . The proof of the case X ∈
(SM) or Y ∈ (SM) goes analogously as below. So assume that X /∈ (SM) , Y /∈ (SM)
and there is no set T0 satisfying Definition 35 (i). Then there are sets

T1, T2 ∈ Σ, T1 ∩ T2 = ∅ , T1 ∪ T2 = T (6)

such that

X (T1,Σ ∩ T1,μ |T1) ∈ (SM) , Y (T1,Σ ∩ T1,μ |T1) /∈ (SM) , (7)
X (T2,Σ ∩ T2,μ |T2) /∈ (SM) and Y (T2,Σ ∩ T2,μ |T2) ∈ (SM) .

We show that if x ∈ X \ XUM, y ∈ Y, 0 � uX �= 0 with μ (supp x ÷ supp y) = 0,
supp uX ⊂ supp x and ‖x + uX‖X = ‖x‖X then ‖z‖ρ < ‖(x, y)‖∞ , where z = ρ (x, y) .

Suppose that the previous assumption holds. Then z = ρ (x + uX, y − uY) for some
0 � uY ⊂ supp x, uY �= 0. Then

‖z‖ρ � ‖(x + uX, y − uY)‖∞ � ‖(x, y)‖∞ .

If ‖z‖ρ = ‖(x, y)‖∞ , then ‖z‖ρ = ‖(x + uX, y − uY)‖∞ . But this is a contradiction
with ρ (X, Y) ∈ (nm) because ‖y − uY‖Y < ‖y‖Y . To prove that case (b) of Definition
35 (ii) is not satisfied we go similarly. Obviously, the case (c) can’t be fulfilled.

(ii) The proof is the same as above because having the same notation we would
have ‖(x + uX, y − uY)‖p < ‖(x, y)‖p . �

EXAMPLE 37. (i) Let X1=
(
L1 [0, 1]⊕ L∞ [1, 2]

)
1

and Y1=
(
L∞ [0, 1] ⊕ L1 [1, 2]

)
1
.

Clearly (X1, Y1) /∈ (non − SM)jointly . If additionally p = ∞ and ρ (X1, Y1) ∈ (nm)
then ρ (X1, Y1) /∈ (A) .
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(ii) Set X2 =
(
L1 [0, 1] ⊕ L∞ [1, 2]

)
1

and Y2 =
(
L1 [0, 3/2]⊕ L∞ [3/2, 2]

)
1
.

Hence (X2, Y2) ∈ (non − SM)jointly . Furthermore, taking p = ∞, x = χ[ 3
2 , 7

4 ]+
1
2χ[ 7

4 ,2],

y = χ[ 3
2 ,2] and ρ (u, v) =

√
uv we see that ρ (X2, Y2) ∈ (A) , because ‖ρ (x, y)‖ρ =

‖(x, y)‖∞ = 1 and ‖x + uX‖X2
= 1 with uX = 1

2χ[ 7
4 ,2].

QUESTION. Is the converse implication of Lemma 36 true? If yes, the following char-
acterization would become more clear, specified and easier to verify in particular
cases of X and Y.

THEOREM 38. (i) Assume that p = ∞. The space ρ (X, Y) is strictly monotone
if and only if ρ (X, Y) ∈ (nmR) , ρ (X, Y) ∈ (nmL) and ρ (X, Y) /∈ (A) .

(ii) Suppose that 1 � p < ∞. The space ρ (X, Y) is strictly monotone if and
only if ρ (X, Y) /∈ (A) .

Proof. (i) Necessity. Assume that ρ (X, Y) /∈ (nmR) . Then, by Lemma 27,
there are w ∈ ρ (X, Y) , x ∈ X+ and y ∈ Y+ with |w| = ρ (x, y) and 1 = ‖w‖ρ =
‖(x, y)‖∞ = ‖x‖X > ‖y‖Y .

Take 0 � y0 �= 0 , y0 ∈ Y with supp y0 ⊂ supp y such that ‖y0‖Y < 1 − ‖y‖Y
and define w0 = ρ (x, y + y0) . Hence 0 � |w| � w0, |w| �= w0. Furthermore

1 = ‖w‖ρ � ‖w0‖ρ � ‖(x, y + y0)‖∞ = ‖x‖X = 1.

Then ρ (X, Y) /∈ (SM) . The necessity of the condition ρ (X, Y) ∈ (nmL) can be
proved similarly. Suppose that ρ (X, Y) ∈ (A) . Let x, y, uX be as in the Definition
(35) (ii) (a) . Define z = ρ (x, y) and z1 = ρ (x + uX, y) . Then 0 � z � z1, z �= z1.
Moreover,

‖z‖ρ � ‖z1‖ρ � ‖(x + ux, y)‖∞ = ‖(x, y)‖∞ = ‖z‖ρ .

Hence ρ (X, Y) /∈ (SM) . If the case (b) or (c) of Definition (35) (ii) holds we
proceed analogously.

Sufficiency. Let 0 � z � w ∈ ρ (X, Y) and z �= w. Take (x, y) ∈ (X ⊕ Y)+ with
w = ρ (x, y) and ‖w‖ρ = ‖(x, y)‖∞ . We find u ∈ L0 such that z = ρ (u, y) . Clearly
u � x, so u ∈ X. Furthermore

u � u + x
2

� x and u �= u + x
2

�= x.

Similarly, one can find v ∈ L0 with z = ρ
(

u+x
2 , v

)
. Hence v � y, v �= y, so v ∈ Y. If

‖z‖ρ <
∥∥( u+x

2 , v
)∥∥

∞ , then

‖z‖ρ <

∥∥∥∥
(

u + x
2

, v

)∥∥∥∥
∞

� ‖(x, y)‖∞ = ‖w‖ρ ,

whence ρ (X, Y) ∈ (SM) . Assume now that ‖z‖ρ =
∥∥( u+x

2 , v
)∥∥

∞ . Consequently∥∥ u+x
2

∥∥
X

= ‖v‖Y , by ρ (X, Y) ∈ (nm) and Corollary 28. If u+x
2 ∈ XUM or v ∈ YUM ,

then

‖z‖ρ =
∥∥∥∥
(

u + x
2

, v

)∥∥∥∥
∞

< ‖(x, y)‖∞ = ‖w‖ρ
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as desired. Finally, suppose that u+x
2 ∈ X\XUM and v ∈ Y\YUM. Since ρ (X, Y) /∈ (A)

we conclude that
∥∥ u+x

2

∥∥
X

< ‖x‖X or ‖v‖Y < ‖y‖Y . Really, if μ (suppw \ supp z) = 0
we apply the condition (a) or (b) from Definition (35) (ii) . If μ (suppw \ supp z) > 0
then case (c) of Definition (35) (ii) is applied.

(ii) We follow as in the case (i). �

REMARK 39. If p = ∞, the space ρ (X, Y) cannot be strictly monotone when
X = L∞ and Y /∈ (SM) (see Corollary 42 below).

EXAMPLE 40. Let p = ∞, X =
(
L1 [0, 1] ⊕ L∞ [1, 2]

)
1

and Y = (L∞ [0, 1]⊕
L1 [1, 2]

)
1
. Clearly X, Y /∈ (SM) but (X, Y) /∈ (non − SM)jointly . If ρ (u, v) =

√
uv,

then ρ ∈ Δ2 (L, R, R+) . Consequently, ρ (X, Y) ∈ (SM) by Lemma 31, Lemma 36
and Theorem 38.

From Lemma 31, Lemma 36 and Theorem 38 we get the following sufficient
conditions more clear, specified and easier to verify.

COROLLARY 41. Suppose that p = ∞.
(i) If X, Y ∈ (SM) , then ρ (X, Y) is strictly monotone.
(ii) If X ∈ (SM) and ρ (X, Y) ∈ (nmL) , then ρ (X, Y) is strictly monotone.
(iii) If Y ∈ (SM) and ρ (X, Y) ∈ (nmR) , then ρ (X, Y) is strictly monotone.
(iv) If X ∈ (SM) and ρ ∈ Δ2 (L, R+) , then ρ (X, Y) is strictly monotone.
(v) If Y ∈ (SM) and ρ ∈ Δ2 (R, R+) , then ρ (X, Y) is strictly monotone.
(vi) If (X, Y) /∈ (non − SM)jointly and ρ ∈ Δ2 (L, R, R+) then ρ (X, Y) is strictly

monotone.
Suppose that p ∈ [1,∞).
(vii) If X ∈ (SM) or Y ∈ (SM) , then ρ (X, Y) is strictly monotone.

COROLLARY42. (Lemma2.5 in [12]) If X = L∞ and p = ∞, then ρ (L∞, Y) ∈
(SM) iff Y ∈ (SM) and ρ (L∞, Y) ∈ (nmR) .

Proof. Necessity. We claim that if X = L∞ and Y /∈ (SM) , then ρ (X, Y) ∈ (A) .
Really, taking 0 � y, y0 ∈ Y with supp y0 ⊂ supp y, 1 = ‖y‖Y = ‖y + y0‖Y and
z = ρ

(
χsupp y, y

)
, we get ‖z‖ρ � 1 . If ‖z‖ρ < 1, then ‖(x1, y1)‖∞ < 1 , where

z = ρ (x1, y1) . Then ‖x1‖L∞ < 1, so y1 � y and ‖y1‖Y � 1 , a contradiction. Thus
‖z‖ρ = 1 , which proves the claim. Then Y ∈ (SM) by Theorem 38.

Sufficiency. If Y ∈ (SM) , then ρ (L∞, Y) ∈ (nmL) , by Lemma 31 (iv) . The
thesis is obvious by Theorem 38. �

LEMMA 43. Let p = ∞, X /∈ (SM) , Y /∈ (SM) , (X, Y) /∈ (non − SM)jointly ,
z = ρ (x, y) ∈ ρ (X, Y) and ‖z‖ρ = ‖(x, y)‖∞ . Let T1, T2 be as in (6) and (7). Then:

(i) if supp z ⊂ T1, then ‖z‖ρ = ‖y‖ .

(ii) if supp z ⊂ T2, then ‖z‖ρ = ‖x‖ .

(iii) if μ (supp z ∩ T1) > 0 and μ (supp z ∩ T2) > 0, then ‖z‖ρ = ‖x‖ = ‖y‖ .

Proof. It can be done similarly as the proof of Lemma 31 (iii) . �
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4. Discussion

We have seen that the problem of a full characterization of order continuous
spaces ρ (X, Y) remains open. The crucial point here is to prove the necessity of Δ2

condition. Clearly, such criteria for X = L∞ are known, but L∞ is the worst space in
the class Z of spaces lacking OC. Moreover, Z is quite rich and we have a lot of
possibilities in general case of ρ (X, Y) . Considering the property SM, the respective
criterion is not easy to verify even in the case X = L∞, because of the nmR condition
(some clear characterization of nmR condition by properties of ϕ and E is given in
Lemma 2.3 from [12] only in one particular case). Of course, the case X = L∞ is
much simpler than the general one because of the fact that L∞ has the strong unit.
Moreover, the main difficulty in looking for a clear characterization of the condition
nmR, nmL or ρ (X, Y) ∈ A consists in the fact that we know almost nothing about the

set
{

(x, y) : ‖(x, y)‖p =p ‖z‖ρ and z = ρ (x, y)
}

.
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[20] G. YA. LOZANOWSKIĬ, On some Banach lattices, Sibirsk. Math. J. 12 (1971), 562–567.
[21] V. I. OVCHINNIKOV, Interpolation theorem resulting from an inequality of Grothendieck’s, Functional

Anal. i Prilozen 10 (1976), 45–54 (in Russian).



196 PAWEŁ KOLWICZ AND KAROL LEŚNIK
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