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Abstract. We determine necessary and sufficient conditions satisfied by the real numbers a ,
b , c that the series ∑

n�2
napb(n)Pc(n) is convergent. Here p(n) and P(n) are the least and

respectively the greatest prime factor of an integer n � 2 .

1. Introduction

We introduce in the first part the notations used and recall some classical results
needed in the following sections. The reader is directed to references for proofs.

Let p(n) , P(n) and pn be, respectively, the least prime factor of n � 2, the great-
est prime factor of n � 2 and the n -th prime number.

The next three results involve p(n) and P(n) .
In [3] is shown that

∑
2�n�x

1
nP(n)

= eγ loglogx+O(1), (1)

where γ stands for Euler’s constant.
According to [4] (see also [1])

∑
2�n�x

p(n)
P(n)

=
x

logx
+

3x

log2 x
+

15x

log3 x
+o

(
x

log3 x

)
. (2)

Moreover, in [6] is proved that

∑
2�n�x

1
p(n)

= x
(
A+O

(
(logx)−1/14

))
, (3)

where A is a constant.
Similar results can be found in [5] at pages 121–126.
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c© � � , Zagreb
Paper MIA-13-15

197



198 G. MITITICA AND L. PANAITOPOL

We will use several times the following results about pn :
A. We have pn ∼ n logn .
B. The series ∑

n�1

1
pn

is divergent.

C. We have
n
∏
i=1

(
1− 1

pi

)
= e−γ

logn

(
1+O

(
1

logn

))
.

This result is due to Mertens and can be found e.g., in [5] at page 259.
Some other classical results needed in proofs are:
D. The series ∑n�1

1
nα is convergent if and only if α > 1.

E. We have 1
1−u > eu whenever 0 < u < 1.

OBSERVATION 1. The series ∑
n�2

pb(n)Pc(n) is divergent for all real numbers b

and c.

For n = 2i , i � 2, we have p(n) = P(n) = 2 and the term 2b+c occurs infinitely
many times in the series.

We consider the series ∑
n�2

napb(n)Pc(n) and denote it by S(a,b,c) . Our main

result states that:

THEOREM 1. The series S(a,b,c) is convergent if and only if we have simultane-
ously a � −1 , a+ c < −1 and a+b+ c < −1 .

OBSERVATION 2. For x � 2 we denote by S(x,a,b,c) = ∑
n�x

napb(n)Pc(n) . Since

the series S(a,b,c) has nonnegative terms, it is convergent if and only if S(x,a,b,c) is
bounded.

OBSERVATION 3. The nature of the series S(a,b,c) is preserved by permuting its
terms.

The study can be carried out by means of the sums Sn(a,b,c) , where Sn(a,b,c) =
∑

k�2
P(k)�pn

kapb(k)Pc(k) . Therefore the convergence of the series S(a,b,c) is still equiv-

alent to the convergence of the sequence (Sn(a,b,c))n�1 . According with the above
observations, from now on, the letter S will stand for one of S(a,b,c) , Sn(a,b,c) or
S(x,a,b,c) .

2. Sufficient conditions for the divergence of the series S

We give in this section sufficient conditions that a , b , c must satisfy in order that
series S diverges.

THEOREM 2. The series S is divergent in each of the cases
i) a+b+ c � −1 ;
ii) a+ c � −1 ;
iii) a > −1 .
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Proof. We have

S(x,a,b,c) = ∑
2�n�x

napb(n)Pc(n) � ∑
pn�x

pa
npb(n)Pc(pn) = ∑

2�pn�x

pa+b+c
n .

By C., it follows that the series S is divergent for a+b+ c � −1.
We have also

S(x) > ∑
2pn�x

(2pn)ap(2pn)bP(2pn)c = 2a+b ∑
pn�x/2

pa+c
n .

If a+ c � −1, then pa+c
n � 1/pn . As a consequence of B., the series S is divergent.

Foe iii), we distinguish two cases.
When 0 � a we have napb(n)Pc(n) � pb(n)Pc(n) . Now from Observation 1 the

series ∑
n�2

pb(n)Pc(n) is divergent. This implies that the series S(a,b,c) is divergent as

well.
When −1 < a < 0 we have

Sn(a,b,c) > ∑
h�1

P(2h)�pn

(2h)apb(2h)Pc(2h) = 2a+b ∑
2�h

P(h)�pn

haPc(h)

= 2a+b ∑
1�i�n

pa+c
i ∏

j�i
(1+ pa

j + p2a
j + . . .)

= 2a+b∑
i�n

pa+c
i

1

∏
j�i

(1− pa
j)

In view of E., the following inequality holds

Sn(a,b,c) � 2a+b∑
i�n

pa+c
i e

∑
j�i

pa
j

(4)

For a > −1, it easily follows that for i � 2

i

∑
j=1

( j log j)a ∼ 1
a+1

ia+1 loga i. (5)

From A. and (5) we get ∑
j�i

pa
j ∼ 1

a+1 ia+1 loga i . This implies the existence of a constant

C1 > 0 such that ∑
j�i

pa
j > C1ia+1 loga i . Thus

log

(
pa+c

i e
∑
j�i

pa
j
)

> (a+ c) log pi +C1i
a+1 loga i (6)

Define ui = (a+ c) log pi +C1ia+1 loga i = ia+1 loga i
(

(a+c) log pi
ia+1 loga i

+C1

)
, for i � 2. Us-

ing that a+ 1 > 0 and A. it follows that lim
i→∞

ui = ∞ . Now (4) and (6) imply that the

series S(a,b,c) diverges.
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3. The case a = −1

This section is studying the convergence of the series S when a = −1. We need
the following

LEMMA 1. If ε > 0 then the series ∑
n�2

1
nPε(n) is convergent.

Proof. We have

∑
n�2

1
nPε(n)

= ∑
i�1

1

p1+ε
i

∏
j�i

(1+ p−1
j + p−2

j + . . .) = ∑
i�1

1

p1+ε
i ∏

j�i

(
1− 1

p j

) .

The result stated in C. gives ∏
j�i

(
1− 1

p j

)
> C2

log i . This inequality, together with

A., imply the existence of C3 > 0 such that pi > C3i log i . Therefore,

1

p1+ε
i ∏

j�i

(
1− 1

p j

) <
log i

C2C
1+ε
3 i1+ε log1+ε i

<
1

C2C
1+ε
3 i1+ε

.

In view of D., we deduce that the series ∑
i�1

1

p1+ε
i ∏

j�i

(
1− 1

p j

) is convergent.

We are now ready to prove

THEOREM 3. The series ∑
n�2

pb(n)Pc(n)
n is convergent if and only if we have both

c < 0 and b+ c < 0 .

Proof. For c � 0 we have S(x) > ∑
2pi�x

pb(2pi)Pc(2pi)
2pi

= 2b−1 ∑
2pi�x

pc−1
i , hence the

series is divergent since pc−1
i � 1

pi
and the series ∑

i�1

1
pi

is divergent.

If b+ c � 0, then

S(x) > ∑
pi�x

pb(pi)Pc(pi)
pi

= ∑
pi�x

pb+c−1
i � ∑

pi�x

1
pi

hence the series is divergent.
It remains to study the case when both c and b+ c are negative numbers.
Denote b+ c = −ε with ε > 0.
If b � 0 then pb(n) � Pb(n) . By Lemma 1 we have

S(x) � ∑
n�x

Pb+c(n)
n

= ∑
n�x

1
nPε(n)

< ∞.

If b < 0 then pb(n) < 1 and by Lemma 1 we get S(x) < ∑
n�x

1
nP−c(n) < ∞ , since

−c > 0.
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4. Proof of Theorem 1

Using the results of the previous two sections we can complete now the proof of
the main result.

In view of Theorem 2 and Theorem 3, it remains only to show that, if a < −1,
a+ c < −1 and a+b+ c < −1, then the series S is convergent.

Denote a = −1− t , a+c = −1−y , a+b+c =−1− z with t,y,z > 0. It follows
that napb(n)Pc(n) = py−z(n)Pt−y(n)/n1+t .

If y � z , then

napb(n)Pc(n) =
(

P(n)
n

)t

· 1
nPy(n)

· py−z(n) � 1
nPy(n)

.

In the case y > z we have py−z(n) � Py−z(n) , which gives

napb(n)Pc(n) � Pt−z(n)
n1+t =

(
P(n)

n

)t

· 1
nPz(n)

� 1
nPz(n)

.

In both cases, the convergence of the series S follows now by Lemma 1. �
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