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(Communicated by K. Bandle)

Abstract. We obtain relative geometric inequalities for compact, convex surfaces. In particular,
we present several inequalities comparing the relative area and the relative perimeter with the
maximal and minimal relative diameter. Besides considering the general problem we also con-
sider particular cases where we can obtain sharper results: 1) the so called fencing problems in
which only subdivisions into two regions of the same area are considered, 2) the subdivisions
obtained by planar cuts.

1. Introduction

Relative geometric inequalities regard the division of a given set G into two parts
in a way that some geometric measure is maximized or minimized. Historically the first
relative geometric inequalities considered were for convex subsets G of the Euclidean
space. References about these inequalities are [4], [5], [6], [7], [13].

The problem also makes sense for subdivisions of compact surfaces. As Osser-
man [12] pointed out the classical isoperimetric inequality on the sphere obtained by
Bernstein [1] is a relative geometric inequality, because any Jordan curve on the sphere,
divides it into two regions.

The aim of this paper is to obtain relative geometric inequalities for compact,
convex surfaces. In particular, we shall present several relative geometric inequalities
comparing the relative area, the relative perimeter and the maximal and minimal relative
diameter. Besides considering the general case, we shall also consider particular cases
where we can obtain sharper results.

It is sometimes interesting to consider particular versions of the relative geometric
problems:

1) the so called fencing problems in which only subdivisions into two regions with
the same area are considered,

2) the subdivisions obtained by planar cuts.

Though most of the results hold for any dimension we state them only for three–
dimensional surfaces.
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DEFINITION 1. Let S be a compact surface. The intrinsic distance between two
points of S , p and q is:

di(p,q) = min
α

{L(α),α(a) = p and α(b) = q},

where α is a absolutely continuous curve α : [a,b] −→ S and L denotes the length of
a curve.

DEFINITION 2. Let S be a compact surface. A region in S is a compact connected
subset of S .

DEFINITION 3. Let R be a region contained in a compact surface S . The diameter
of R is:

D(R) = max{di(p,q), p,q ∈ R}.

REMARK 1. Usually both notions of intrinsic distance and diameter are defined
by means of “inf” and “sup” instead of “min” and “max”. By standard compactness
arguments there is a curve and a pair of points, respectively, for which the extremal
value is attained.

DEFINITION 4. Let S be a compact convex surface and let α be a Jordan curve on
S ; by the Jordan curve theorem we know that α divides S into two connected regions
R and S \R . We define:

– The maximum relative diameter of R as:

dM(R,S) = max{D(R),D(S \R)},
– The minimum relative diameter of R as:

dm(R,S) = min{D(R),D(S \R)},
– The relative surface area of S as:

A(R,S) = min{A(R),A(S \R)} and

– The relative perimeter of R , P(R,S) , as the length of the curve α .

Obviously,
dm(R,S) � dM(R,S) � D(S).

DEFINITION 5. Let S be a centrally symmetric, compact surface. The minimal
antipodal distance is:

δm(S) = min{di(p, p′) where p and p′ are antipodal points in S}.
The following lemma extends a remark that Bernstein [1] made for the sphere to

all centrally symmetric compact convex surfaces.
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LEMMA 1. Let S be a centrally symmetric compact convex surface; if α is a
Jordan curve (i.e. a simple closed continuous curve) on S dividing S into two comple-
mentary regions S1 and S2 of equal area, then α contains two antipodal points.

Proof. From the assumptions of the lemma, we have:

S = S1∪S2 ,
int(S1)∩ int(S2) = /0 ,
A(S1) = A(S2) = 1

2A(S) ,
∂S1 = ∂S2 = α .

To each point p of α we can associate its antipodal point p′ with respect to the
center of symmetry of S and so we obtain another simple, closed, continuous curve
α ′ (the antipodal curve of α ) determined by all the points p′ . The curves α and α ′
intersect: as S is convex it is homeomorphic to the sphere, and so if α ∩α ′ = /0 the
Jordan Curve Theorem would imply that S would be divided into three disjoint regions:
the first one S1 bounded by α with A(S1) = A(S)/2, the second one S2 = S′1 bounded
by α ′ with also A(S′1) = A(S)/2, and the third one S3 between α and α ′ with strictly
positive area: so we obtain a contradiction, and α and α ′ intersect in at least two
antipodal points q and q′ .

Figure 1

We shall often use the properties of geodesics ([10]), which are the curves that
minimize the intrinsic distance:

THEOREM 1. ([2], [9]) (Hopf-Rinow’sTheorem) If a length-metric space (M,d)
is complete and locally compact, then any two points in M can be connected by a min-
imizing geodesic and any bounded closed set in M is compact.

LEMMA 2. Let S be a centrally symmetric compact convex surface. Then there
are antipodal points p and p′ such that di(p, p′) = D(S) .

Proof. There are two points p , q with di(p,q) = D(S) . Let κp and κq be the
shortest path from p to p′ and from q to q′ , respectively. The endpoint p′ of κp is the
starting point of its antipodal path κ ′

p . So we can define the sum κ = κp +κ ′
p which

is just their concatenation. Then κ is a closed curve and divides S into at least two
parts. If q is contained in κ then di(p,q) � di(p, p′) and we are finished. Hence, q
and q′ are contained in different components and so λ = κq + κ ′

q and κ intersect in
two antipodal points x and x′ .
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Now we define:

α = path from p to x along κp ,
β = path from p to x′ along κ ′

p ,
γ = path from x to q along κq ,
δ = path from x′ to q along κ ′

q .

By the triangle inequality it follows di(p,q) � L(α + γ) and di(p,q) � L(β +δ ) .
Hence, by symmetry,

D(S) = di(p,q) � L(α + γ)+L(β + δ )
2

=
L(α +β )+L(γ+ δ )

2

=
L(κp)+L(κq)

2
=

di(p, p′)+di(q,q′)
2

� max{di(p, p′),di(q,q′)}.

Without loss of generality let di(p, p′) � di(q,q′) . Then D(S) � di(p, p′) and
from di(p, p′) � D(S) it follows that D(S) = di(p, p′) .

Figure 2

In the particular case of surfaces of revolution, D(S) = di(p, p′) where p and p′
are the points determined by the intersection of S with the axis of revolution.

LEMMA 3. Let S be a compact convex surface of revolution around the axis pp′
where p, p′ ∈ S . Then D(S) = di(p, p′) .

Proof. Obviously, di(p, p) � D(S) .
Now let a,b be arbitrary points on S . Take a minimizing geodesic joining p and

p′ and rotate it twice to get two minimizing geodesics α and β containing a and b
respectively.

We define:

α1 = path from p to a along α ,
α2 = path from p′ to a along α ,
β1 = path from p to b along β ,
β2 = path from p′ to b along β ,

By the triangle inequality it follows di(a,b) � L(α1 +β1) and di(a,b) � L(α2 +β2) .
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Then,

di(a,b) � L(α1 +β1)+L(α2 +β2)
2

=
L(α1 +α2)+L(β1 +β2)

2

=
L(α)+L(β )

2
= di(p, p′).

REMARK 2. D(S) is the length of the “generating curve” (meridian).

Figure 3

2. Maximum Relative Diameter

PROPOSITION 1. Let S be a compact convex surface. Further let R and S \R be
complementary regions in S . Then

A(R,S)
dM(R,S)2 � 0

and the bound is the best possible.

Proof. There is an extreme point p ∈ S and a supporting plane Π0 with Π0∩S =
{p} . (See [15]).

We can choose a sequence Πi of planes parallel to Π0 with Πi → Π0 whose
intersections with S determine a sequence of regions, Ri , such that limi→∞A(Ri,S)= 0.
Moreover, dM(Ri,S) → D(S) when i → ∞ . Then,

lim
i→∞

A(Ri,S)
dM(Ri,S)2 = 0.

Figure 4
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If we consider the fencing problem case, we obtain the following result:

PROPOSITION 2. Let S be a compact convex surface. Further let R and S \R be
complementary regions in S with equal area. Then,

A(R,S)
dM(R,S)2 � A(S)

2D(S)2 ,

and the inequality is tight.

Proof. We have A(R,S) = A(S)/2 and dM(R,S) � D(S) . So,

A(R,S)
dM(R,S)2 � A(S)

2D(S)2 .

There are points p and q such that di(p,q) = D(S) . Take any plane Π containing
p and q . It divides the surface into two parts with measure A1 and A2 . If A1 = A2

then we are finished. Else we can assume that A1 < A2 . Now we rotate Π around the
axes defined by p and q . The areas A1(ϕ),A2(ϕ) are changing continuously. Further
A1(180) = A2(0) and A2(180) = A1(0) and so A2(180) > A1(180) . By continuity,
there is an angle ϕ such that A1(ϕ) = A2(ϕ) . Since p and q are contained in A1(ϕ)
as well as A2(ϕ) we have dM(R,S) = dm(R,S) = D(S) .

PROPOSITION 3. Let S be a centrally symmetric compact convex surface. Fur-
ther let R and S \R be complementary regions in S . Then,

A(R,S)
dM(R,S)2 � A(S)

2δm(S)2
,

where δm(S) is the minimal antipodal distance of S .

Proof. Without loss of generality we can assume that S \R is the region with
greater area; then S \R contains another region R′ with exactly half of the area. As a
consequence of Lemma 1, there are two antipodal points in the boundary of R′ , x and
x′ . On the other hand, clearly, A(R,S) � A(S)/2 and the assertion follows.

This bound is attained by some surfaces like, for instance, the sphere. (Fig. 5).

Figure 5

However, there are many surfaces for which this bound is not attained:
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EXAMPLE 1. Let C = {(x,y,z) ∈ R3 : x2 +y2 � 1/100, |z|� 10} and let S = ∂C .

Figure 6

Computing the minimal antipodal distance we obtain that δm(S) = π
10 .

We divide S into two subsets R and S \R . We can assume without loss of gener-
ality that p ∈ R .

We distinguish two cases:

(1) p′ ∈ R . In this case dM(R,S) = D(S) = 1/5+20 > 1/10+10.

(2) p′ /∈ R . If there is a point q ∈ α such that its z-coordinate is 0, then dM(R,S) �
di(p,q) = 1/10+10; if there is not such a point q , then dM(R,S) is even greater.

In both cases, (1) and (2), dM(R,S) > π/10, and so the bound is never attained.
Under the special assumption that the distance between any pair of antipodal points

is constant, we can rewrite the bound in Proposition 3 in terms of D(S) , and in this case
we can also guarantee that the bound is always attained:

COROLLARY 1. Let S be a centrally symmetric compact convex surface such that
the distance between any pair of antipodal points is constant. Further let R and S \R
be complementary regions in S . Then,

A(R,S)
dM(R,S)2 � A(S)

2D(S)2

and the bound is the best possible.

Proof. The proof is an immediate consequence of Proposition 3, and the fact that
now δm(S) = D(S) .

The bound is attained: There are points p,q on S , such that di(p,q′) = D(S) . As
in the proof of Proposition 2 there is a plane Π passing through p and q which divides
S into two parts R and R′ with area A(S)/2 and diameter d(R) = d(R′) = D(S) and so
we have equality.

There are several interesting examples of compact, convex, centrally symmetric
surfaces such that the distance between any pair of antipodal points is constant: the
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sphere, the double disc. Now we are going to present another example that includes
both the sphere and the double disc as particular cases: the symmetric lens and the
symmetric segment.

DEFINITION 6. Let S2 be the unit sphere and let Π be a plane intersecting S2 ;
let C = S2∩Π , and let M2 be the smallest region of S2 bounded by C ; let M′2 be the
region obtained from M2 by a symmetry with respect to Π . L2 := M2 ∪M′2 is called
a symmetric lens. Obviously L2 is a convex, compact, centrally symmetric surface of
revolution around the axis pp′ , where p ∈ M2 , p′ ∈ M′2 and the segment pp′ is or-
thogonal to Π . We denote by θ the angle between the axis of the sphere S2 orthogonal
to Π and the straight line segment joining the center of the sphere O with an arbitrary
point of C .

Figure 7

PROPOSITION 4. Let L2 ⊂ R3 be the symmetric lens. Then all antipodal points
are at the same distance.

Proof. Let x and x′ be two antipodal points of L2 . If they belong to C , then both
points are in S2 , so, obviously, the curve that minimizes the distance between x and x′
is the arc of meridian with length 2θ .

So, let us suppose that x and x′ do not belong to C . The intersection of the plane
through x,x′, p, p′ gives a path from x to x′ with length 2θ . Hence di(x,x′) � 2θ . Let
γ be the shortest curve joining x and x′ ; then di(x,x′) = L(γ) . γ intersects C in at least
one point b . Let γ ′ be the antipodal curve of γ , and let b′ be the antipodal point of b ,
which, certainly, belongs to C . So di(b,b′) = 2θ .

Let us denote by

– γ1 the arc of γ from x to b
– γ2 the arc of γ from b to x′
– γ ′1 the arc of γ ′ from b′ to x′
– γ ′2 the arc of γ ′ from x to b′ .
So,

L(γ) = L(γ1)+L(γ2) = L(γ1)+L(γ ′2) � di(b,b′) = 2θ .

As an immediate consequence from Proposition 4 and Lemma 2 we have:

COROLLARY 2. The diameter of the symmetric lens is the intrinsic distance be-
tween any pair of antipodal points.

DEFINITION 7. Let B3 := {(x,y,z) ∈ R3 : x2 + y2 + z2 � 1} be the unit ball. Let
K(s0) := {(x,y,z) ∈ B3 : |z|� s0 where s0 is a constant such that 0 � s0 � 1} ; S(s0) :=
∂K(s0) is called a symmetric segment of the sphere (Fig. 8).
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Figure 8

PROPOSITION 5. Let S(s0) be a symmetric segment of the sphere. Then all an-
tipodal points are at the same distance.

Proof. The proof is similar to that of Proposition 4, although the argument has to
be accommodated.

Now, we are going to compare the maximum relative diameter with the relative
perimeter:

PROPOSITION 6. Let S be a compact convex surface and let R and S \R be com-
plementary regions in S . Then,

dM(R,S)
P(R,S)

� 0

and the bound is tight.

Proof. It is sufficient to consider simple closed curves with arbitrary big length.

PROPOSITION 7. Let S be a compact convex surface and let R and S \R be com-
plementary regions in S . Then there is not an upper bound for the ratio

dM(R,S)
P(R,S)

.

Proof. It is analogous to the proof of the Proposition 1.
If we look for the lower bound of the ratio dM(R,S)

P(R,S) in the case of planar cuts, the
first observation is that the plane providing the optimal case should pass through the
center of symmetry, because any other plane would preserve the maximal diameter and
decrease the relative perimeter.

A compactness argument would guarantee that this lower bound exists, and its
value depends on the particular surface that we are considering. If the surface were a
surface of revolution its determination would be a 1-parameter problem.

We can even provide a global lower estimate of this ratio:

PROPOSITION 8. Let S be a compact convex surface and let R and S \R be com-
plementary regions obtained dividing S by a plane Π . Then,

dM(R,S)
P(R,S)

� 1
π

.

The equality is attained if S is a double disc and Π is the plane containing it.
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Proof. Let C be the n–dimensional convex body bounded by S . Then, dM(R,S)�
D(Π∩C) , and P(R,S) = P(Π∩C) . The bound follows from the well-known inequality
D(K)
P(K) � 1

π for planar convex bodies (see, for instance [14], [16]).

PROPOSITION 9. Let S be a centrally symmetric compact convex surface and let
α be a Jordan curve on S dividing S into two complementary regions, R and S \R
such that A(R) = A(S)/2 . Then,

dM(R,S)
P(R,S)

� D(S)
2δm(S)

.

This bound is not always attained. It is attained in the case that the distance
between any pair of antipodal points is constant.

Proof. As α divides S into two regions of equal area; Lemma 1 guarantees that α
contains two antipodal points p and p′ . Then we have P(R,S) � 2di(p, p′) � 2δm(S)
and the inequality follows from dM(R,S) � D(S) .

3. Minimum Relative Diameter

PROPOSITION 10. Let S be a compact convex surface and let R and S \R be
complementary regions in S . Then

A(R,S)
dm(R,S)2 � 0

and the bound is the best possible.

Proof. There are two points p,q such that di(p,q) = D(S) . Let γ be the cor-
responding path on S of length D(S) (a half–meridian). Define Rε := {x ∈ S : ∃y ∈
γ such that di(x,y) < ε} as the geodesic tube with radius ε rounding a half-meridian.

Figure 9

If ε goes to 0, we have that the surface area of Rε goes to 0 and the minimum
relative diameter to D(S) . Then the ratio goes to 0.

If we want to find the lower bound of the ratio A(R,S)
dm(R,S)2 in the case of planar cuts,

a compactness argument would guarantee that this lower bound exists, and its value
depends on the particular surface that we are considering.

As an example we compute this lower bound for the sphere:
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PROPOSITION 11. Let S2 be the unit sphere; if α is the intersection of S2 with a
plane, α divides S2 into two complementary regions, R and S2 \R. Then,

A(R,S2)
dm(R,S2)2 � 2

π
.

The equality is attained only if R is a half-sphere.

Proof. Let R the region of S2 obtained subdividing S2 with a plane Π . Comput-
ing the relative area and the minimum relative diameter we obtain:

A(R,S2) = 2π(1− cosϕ) and dm(R,S2) = 2ϕ ,

where ϕ ∈ (0,π/2] is the angle between the axis of the sphere perpendicular to Π and
the straight line segment determined by the center of the sphere and any point of ∂R .
(Fig. 10)

Then,
A(R,S2)

dm(R,S2)2 =
π(1− cosϕ)

2ϕ2 .

This is a decreasing function with respect to ϕ , so the minimum is attained when
ϕ = π/2:

A(R,S2)
dm(R,S2)2 � 2

π
.

Figure 10

We have obtained a global lower estimate of this ratio:

PROPOSITION 12. Let S be a compact convex surface and let R and S \R be
complementary regions obtained dividing S by a plane Π . Then,

A(R,S)
dm(R,S)2 � 0,

and equality is attained, for instance, for the cylinder and for other non strictly convex
surfaces.
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Proof. Let C be a cylinder generated by a straight line segment l . Let {Πi} be a
sequence of planes intersecting C and parallel to l such that the distance of Πi to the
axis of revolution is 1−1/i . These planes determine a sequence of subsets of C , {Ri}
such that A(Ri,C) goes to 0 and dm(Ri,C) goes to c (length of l ) when i → ∞ (Fig.
11). Then,

lim
i→∞

A(Ri,C)
dm(Ri,C)2 = 0.

Figure 11

If we consider the fencing problem case, we obtain the following result:

PROPOSITION 13. Let S be a compact convex surface. Let α be a Jordan curve
on S dividing S into two complementary regions of equal area, R and S \R. Then,

A(R,S)
dm(R,S)2 � A(S)

2D(S)2
.

The proof is analogous to the proof of Proposition 2.
Now, we are going to study the ratio between the minimum relative diameter and

the relative perimeter.

PROPOSITION 14. Let S be a compact convex surface and let α be a Jordan
curve on S dividing S into two complementary regions, R and S \R. Then

dm(R,S)
P(R,S)

� 0

and the bound is the best possible.

Proof. It is sufficient to consider simple closed curves with arbitrary big length.

REMARK 3. If we want to compute the lower bound of this ratio in the case of
planar cuts, using a similar argument as in Proposition 8, we obtain:

dm(R,S)
P(R,S)

� 1
π

,
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where the equality is attained if S is a double disc and Π is a plane containing it.

PROPOSITION 15. Let S be a compact convex surface and let α be a Jordan
curve on S dividing S into two complementary regions, R and S \R. Then there is no
general upper bound for the ratio

dm(R,S)
P(R,S)

.

Proof. There are surfaces for which this ratio is arbitrarily large; consider for in-

stance the ellipsoid of revolution E2[(a,a,b)] := {(x,y,z) : x2

a2 + y2

a2 + z2

b2 = 1,0 < a < b} .
If b tends to infinity,

dm(R,E2[(a,a,b)])
P(R,E2[(a,a,b)])

attains an arbitrary large value if R is bounded by the circle E2[(a,a,b)]∩{z = 0} .
In the particular case of the sphere, we can prove the following result:

PROPOSITION 16. Let S2 ⊂ R3 be the unit sphere. Let R and S2 \R be two
regions from S2 obtained subdividing S2 by a simple closed curve. Then,

dm(R,S2)
P(R,S2)

� 1
2
,

and the equality is attained when R is bounded by two half-meridians.

Proof. There are points a,a′ ∈ R and b,b′ ∈ S2 \R such that di(a,a′) = D(R) and
di(b,b′) = D(S2 \R) . We distinguish two cases:

(1) If a,a′ ∈ ∂R (or b,b′ ∈ ∂R), then P(R,S2) � 2di(a,a′) � 2dm(R,S2) .
(2) If this is not the case for both pairs then at least one of each pair is contained

in the interior. Let us assume that a ∈ int(R) , b ∈ int(S2 \R) . Because of their defi-
nition, a′ and b′ are necessarily antipodal to a and b , respectively (else the distance
could be increased along the great circle containing a,a′ and b,b′ , respectively). In
particular, dm(R,S2) = π = dM(R,S2) . By appropriate translations on the sphere we
can further assume that a′ ∈ ∂R and b′ ∈ ∂R . Now we consider the curve C antipodal
to ∂R . It connects a with b , which are contained in different components of S2 \ ∂R .
By continuity C intersects ∂R and hence ∂R contains two antipodal points and so
P(R,S2) � 2π = dm(R,S2) .
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