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Abstract. Let G be a locally compact Abelian group divisible by 2 . We prove that every almost
convex function on G equals a convex function a.e.

The function f : R
n → R is said to be convex, if f

( x+y
2

)
� f (x)+f (y)

2 for every
x, y ∈ R

n . (Sometimes it is called midconvex or Jensen convex.) We shall say that
the function f : R

n → R is almost convex, if f
( x+y

2

)
� f (x)+f (y)

2 for a.e. pair
(x, y) ∈ R

n × R
n . M. Kuczma proved in [2] (see also [3, Chap. XVII, Sec. 8])

that every almost convex function equals a convex function a.e. In this paper we shall
generalize Kuczma’s theorem for some locally compact Abelian groups.

Let G be a locally compact Abelian group with Haar measure μ . We shall say
that the function f : G → R is convex, if 2f (x) � f (x + y) + f (x− y) holds for every
x, y ∈ G . The function f is almost convex, if 2f (x) � f (x + y) + f (x − y) holds for
μ2 -a.e. (x, y) ∈ G2 . Clearly, for G = R

n this is equivalent to Kuczma’s condition.
Our aim is to prove the following.

THEOREM 1. Let G be a locally compact Abelian group divisible by 2 . Then
for every almost convex function f : G → R there exists a unique convex function
g : G → R such that f = g μ -a.e.

Since every compact connectedAbelian group is divisible, it follows that Kuczma’s
theorem is valid in these groups. We do not know whether or not Kuczma’s theorem is
valid in every locally compact Abelian group. The condition of divisibility by 2 is by no
means necessary. Indeed, on a discrete group every almost convex function is convex,
and thus Kuczma’s theorem is valid on discrete groups. Also, it is easy to check that if
G is a torsion group, then every almost convex function on G must be constant a.e., and
thus Kuczma’s theorem is valid on torsion groups as well. Thus the best candidates of
groups on which Kuczma’s theorem might be false are those non-discrete torsion free
groups which are not divisible by 2 . Such groups are, for example, the powers of the
compact group of 2 -adic integers. We do not know whether or not Kuczma’s theorem
is true on these groups.
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Let 1
nE denote the set {x ∈ G : nx ∈ E} for every n = 1, 2, . . . and E ⊂ G .

The outer measure of the set E ⊂ G is defined by μ(E) = inf{μ(U) : E ⊂ U ⊂
G, U is open} . Then μ is an outer measure on G, and is an extension of μ . The
family of Borel subsets of G will be denoted by B(G) . As we shall check shortly,
Kuczma’s proof is based on the fact that the following properties are satisfied if G = R

n .

(P1) If A ⊂ G is a set of positive outer measure, then the set 1
2A is also of positive

outer measure.

(P2) If A, B ⊂ G are sets of positive outer measure and N, M ⊂ G2 are sets of full
measure, then

N ∩ φ−1(M) ∩
[(

1
2
A

)
×

(
1
2
B

)]
�= ∅, (1)

where φ is the transformation of G × G defined by φ(x, y) = (x + y, x − y) .

Our proof of Theorem 1 consists of two parts. First we show that Kuczma’s proof
works in any group satisfying the properties (P1) and (P2) . Then we prove that (P1)
and (P2) are satisfied in every group which is divisible by 2 .

Before turning to the proof of Theorem 1 we clarify the notions of null sets and
sets of full measure. We say that E ⊂ G is null, if μ(E) = 0; that is, if E can be
covered by a Borel set of measure zero. If G has an open subgroup G0, then a null set
cannot intersect uncountably many cosets of G0 . Indeed, the cosets of G0 are open,
and thus, if an open set U intersects uncountably many cosets of G0, then necessarily
μ(U) = ∞ . Thus any set that intersects uncountably many cosets of G0 must have
infinite outer measure.

We say that a set is of full measure, if its complement is null. Clearly, a set of full
measure contains all but a countably many of the cosets of G0 .

We remark that in [3] Kuczma actually proves his theorem in a more general setting,
in which the ideal of null sets is replaced by other ideals. The statement of Theorem
1 has similar generalizations as well. These generalizations will be presented by a
forthcoming paper of the first author.

Proof of Theorem 1. First we prove that the theorem is true under the assumption
that (P1) and (P2) are satisfied in G . Let f : G → R be an almost convex function.
For every x ∈ G we define g(x) as the infimum of those real numbers c for which the
set

{h ∈ G : f (x + h) + f (x − h) < 2c}
is of positive outer measure. It is clear that g(x) ∈ [−∞,∞) for every x ∈ G . Our
aim is to prove that g is a finite valued convex function and is equal to f a.e. Let M
denote the set of pairs (x, h) ∈ G2 for which 2f (x) � f (x + h) + f (x − h) . Then M
is of full μ2 -measure in G2 . For every integer n, the map (x, y) 	→ (x + ny, y) is a
topological isomorphism of G2 onto itself and, consequently, if a subset of G2 is null
then so is its preimage. Therefore, the sets Mn = {(x, y) : (x + ny, y) ∈ M} are of full
measure in G2 . Then so is the set P =

⋂∞
n=−∞ Mn . By Fubini’s theorem, there is a set

Q ⊂ G of full measure such that for every x ∈ Q we have (x, y) ∈ P for μ -a.e. y .
We shall prove that g(x) = f (x) for every x ∈ Q .
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Let x ∈ Q be arbitrary. Then (x, y) ∈ P ⊂ M for μ -a.e. y . Thus 2f (x) �
f (x + h) + f (x − h) for μ -a.e. h, and hence g(x) � f (x) . Let ε > 0 be given; we
prove that g(x) � f (x) + ε . For every positive integer k let

Ak = {y ∈ G : max(f (x + y), f (x − y)) � k}.

Since G =
⋃∞

k=1 Ak, there is a k such that μ(Ak) > 0 . Fix an integer n such that
2n > (k−f (x))/ε . By property (P1), each of the sets 1

2Ak,
1
2

(
1
2Ak

)
= 1

4Ak,
1
2

(
1
4Ak

)
=

1
8Ak, . . . is of positive outer measure. Therefore, so is the set S =

(
1
2n Ak

) ∩ {y ∈ G :
(x, y) ∈ P} . Let y ∈ S be arbitrary. Then for every i we have (x, y) ∈ Mi; that is,
(x + iy, y) ∈ M and

2f (x + iy) � f (x + (i + 1)y) + f (x + (i − 1)y).

Multiplying this inequality by 2n − i and adding for i = 1, . . . , 2n − 1 we obtain

2nf (x + y) � (2n − 1)f (x) + f (x + 2ny) � (2n − 1)f (x) + k,

as 2ny ∈ Ak . Thus f (x + y) � f (x) + (k − f (x))/2n < f (x) + ε . A similar argument
gives f (x − y) < f (x) + ε . We have proved that

f (x + y) + f (x − y) � 2 max(f (x + y), f (x − y)) < 2(f (x) + ε)

for every y ∈ S, where S is a set of positive outer measure. This implies g(x) � f (x)+ε
and, as ε was an arbitrary positive number, we have g(x) � f (x) for every x ∈ Q .
Since Q is of full measure, this proves that f = g a.e.

Now we prove, still assuming (P1) and (P2), that g is a finite valued convex
function. Let u, v ∈ G be arbitrary. It is enough to show that for every fixed ε > 0 we
have 2g(u) � g(u + v) + g(u − v) + ε . We shall prove this by showing that there are
elements h, k ∈ G such that the following relations hold:

4g(u) � 2g(u + h + k) + 2g(u − h − k)
� [g(u − v + 2k) + g(u + v + 2h)] + [g(u − v − 2k) + g(u + v − 2h)]
= [g(u + v + 2h) + g(u + v − 2h)] + [g(u − v + 2k) + g(u − v − 2k)]
< [2g(u + v) + ε] + [2g(u − v) + ε] . (2)

It follows from the definition of g that the set

{y ∈ G : 2g(u) � f (u + y) + f (u − y)}

is of full measure. Since f = g a.e., we obtain that the set H = {y ∈ G : 2g(u) �
g(u + y) + g(u − y)} is of full measure. Let K = {(h, k) : h + k ∈ H} . Then K is of
full measure in G2, and the first inequality of (2) holds for every (h, k) ∈ K .

Since f is almost convex and f = g a.e., the function g is also almost convex.
That is, the set L = {(x, y) ∈ G2 : 2g(x) � g(x + y) + g(x − y)} is of full measure.
The second inequality of (2) holds for every (h, k) such that (u+h+ k, v+h− k) ∈ L
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and (u − h − k, v − h + k) ∈ L; that is, when

(h + k, h − k) ∈ (L − (u, v)) ∩ (−L + (u, v)) def= N.

This condition can be formulated as (h, k) ∈ φ−1(N), where φ(x, y) = (x + y, x −
y) (x, y ∈ G) . Note that the set N is of full measure in G2 .

Finally, the definition of g implies that the sets {y ∈ G : f (u+v+y)+f (u+v−y) <
2g(u+v)+ε} and {y ∈ G : f (u−v+y)+ f (u−v−y) < 2g(u−v)+ε} are of positive
outer measure. Since f = g a.e., it follows that the sets A = {y ∈ G : g(u + v + y) +
g(u+v−y) < 2g(u+v)+ε} and B = {y ∈ G : g(u−v+y)+g(u−v−y) < 2g(u−v)+ε}
are of positive outer measure as well. Now the last inequality of (2) holds for every
(h, k) such that 2h ∈ A and 2k ∈ B . Summing up, (2) holds for every (h, k) such that

(h, k) ∈ K ∩ φ−1(N) ∩
[(

1
2
A

)
×

(
1
2
B

)]
.

By property (P2) this set is nonempty, and thus (2) holds for some h, k ∈ G . This
proves that g is convex. We show that g is finite everywhere. Indeed, let x ∈ G be
such that g(x) = f (x). Then we have

−∞ < 2f (x) = 2g(x) � g(x + y) + g(x − y)

for every y ∈ G . Thus g(x + y) is finite for every y; that is, g is finite everywhere.
Now we prove the uniqueness of g . First we note that if f is convex, then the

function g defined in the proof above equals f everywhere. We shall use the notation
introduced in the course of the proof. If f is convex, then we have M = Mn = G2 for
every n, and thus P = G2 and Q = G . As we have shown, g(x) = f (x) for every
x ∈ Q; that is, g = f .

Let f be an almost convex function on G . If g1 is a convex function such that
f = g1 μ -a.e. on G, then

g(x) = inf {c ∈ R : μ ({h ∈ G : f (x + h) + f (x − h) < 2c}) > 0}
= inf {c ∈ R : μ ({h ∈ G : g1(x + h) + g1(x − h) < 2c}) > 0}

for every x . Since g1 is convex, it follows from the previous argument that g1 = g
everywhere, which proves the uniqueness of g .

In order to complete the proof of Theorem 1 we have to show that the properties
(P1) and (P2) are satisfied in every group divisible by 2 . This will be proved by a
series of lemmas.

LEMMA 2. Let G be a locally compact Abelian group with Haar measure μ, and
suppose that G = R

d × H, where H is compact. Suppose further that μ(nG) > 0 for
a positive integer n . Then there exists a number c > 0 such that

μ
(

1
n
E

)
= c · μ(E) (3)

for every E ⊂ nG .
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Proof. First we shall consider the case when G is compact and E is Borel.
We may assume that μ(G) = 1 . As nG is a compact subgroup of G of positive
measure, it follows that nG is open and G/nG is finite. If |G/nG| = N, then we
have μ(nG) = 1/N . Let ν(E) = μ( 1

nE) for every E ∈ B(nG) . Then ν is a finite
and regular Borel measure on nG with ν(nG) = 1 . (Note that 1

nE is compact if
E is compact, and is open if E is open.) If a ∈ nG and a = nb, then we have
1
n (E + a) = ( 1

nE) + b, and thus ν(E + a) = ν(E) for every E ∈ B(nG) . Thus ν is
translation invariant and hence, by the uniqueness of Haar measure on nG we obtain
ν(E) = N · μ(E) for every E ∈ B(nG) . Therefore, (3) holds for Borel subsets of nG
with c = N .

Now let G = R
d × H with H compact, and suppose μ(nG) > 0 . Let ν denote

the Haar measure on H . Then μ = λd × ν, where λd is the Lebesgue measure on
R

d . Since nG = R
d × (nH), the condition μ(nG) > 0 gives ν(nH) > 0 . Then, as

we proved above, there exists a number N > 0 such that ν
(

1
nE

)
= N · ν(E) for every

Borel set E ⊂ nH . If A ⊂ R
d and B ⊂ nH are Borel sets, then we have

μ
(

1
n
(A × B)

)
= μ

((
1
n
A

)
×

(
1
n
B

))
= λd

(
1
n
A

)
· ν

(
1
n
B

)

=
1
nd

· λd(A) · N · ν(B) =
N
nd

· μ(A × B).

Then, by the definition of the product measure, we obtain that (3) holds for Borel
subsets of nG with c = N/nd .

In order to prove (3) for arbitrary subsets of nG first we show that if F ⊂ G is
closed, then so is nF . It is enough to show that if x0 ∈ R

d, y0 ∈ H and (x0, y0) /∈ nF,
then (x0, y0) is not in the closure of nF . Let r > |x0|/n be a positive number, and
put B = {x ∈ R

d : |x| � r} and C = {x ∈ R
d : |x| � r} . Then R

d = B ∪ C and
F ⊂ [C × H] ∪ [(B × H) ∩ F] . Now the set D1 = n[C × H] = (nC)× (nH) is closed,
and |x0| < n · r gives (x0, y0) /∈ D1 . Also, the set (B × H) ∩ F is compact, and thus
so is D2 = n · [(B × H) ∩ F] . Since D2 ⊂ nF, we have (x0, y0) /∈ D2 . Then, by
nF ⊂ D1 ∪ D2 and (x0, y0) /∈ D1 ∪ D2 it follows that (x0, y0) is not in the closure of
nF .

Let K = {x ∈ G : nx = 0} . Then K = {0} × {x ∈ H : nx = 0}, and thus K is
a compact subgroup of G . We show that for every open set V containing zero there is
an open set W also containing zero such that 1

nW ⊂ K + V . Indeed, K + V is open,
G \ (K + V) is closed, and thus D = n · [G \ (K + V)] is also closed. Now 0 /∈ D,
since nx = 0 implies x ∈ K, and then x /∈ G \ (K + V) . Therefore, we may take
W = G \ D .

Now let E be an arbitrary subset of nG . If B is a Borel set such that E ⊂ B ⊂ nG
and μ(B) = μ(E), then 1

nE ⊂ 1
nB, and thus

μ
(

1
n
E

)
� μ

(
1
n
B

)
= c · μ(B) = c · μ(E).
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To prove the inequality μ
(

1
nE

)
� c · μ(E), let ε > 0 be fixed, and let U be an open

set containing 1
nE such that μ(U) < μ

(
1
nE

)
+ ε . It is clear that if y ∈ 1

nE, then
K + y ⊂ 1

nE . Thus K + y ⊂ U and hence, as K + y is compact, we may find an open
set Vy containing zero such that K+y+Vy ⊂ U [1, (4.10) Theorem, p. 20]. Choose an
open set Wy containing zero such that 1

nWy ⊂ K+Vy . Then W =
⋃{Wy+ny : y ∈ 1

nE}
is an open set containing E . We prove that 1

nW ⊂ U . Indeed, nx ∈ W implies that
nx ∈ Wy + ny for some y ∈ 1

nE . Then n(x − y) ∈ Wy, x − y ∈ 1
nWy ⊂ K + Vy,

and x ∈ K + Vy + y ⊂ U . Thus D = W ∩ nG is a Borel set containing E such that
1
nD ⊂ U . Therefore,

μ
(

1
n
E

)
+ ε > μ(U) � μ

(
1
n
D

)
= c · μ(D) � c · μ(E),

which completes the proof. �

LEMMA 3. Let G be a locally compact Abelian group with Haar measure μ, and
let n be a positive integer. If E ⊂ nG is a set of positive outer measure, then 1

nE is
also of positive outer measure.

Proof. By the structure theorem [4, 2.4.1 Theorem, p. 40], G has an open subgroup
G0 such that G0 is topologically isomorphic to R

d × H, where H is a compact. If
1
nE intersects more than countable of the cosets of G0, then μ

(
1
nE

)
= ∞ , and in that

case the statement is true. Therefore, we may assume that there are group elements
gi (i = 1, 2, . . .) such that

1
n
E ⊂

∞⋃
i=1

(G0 + gi).

Then

E = n ·
(

1
n
E

)
=

∞⋃
i=1

n ·
[(

1
n
E

)
∩ (G0 + gi)

]
,

and thus there exists an i such that the set E′ = n · [( 1
nE

) ∩ (G0 + gi)
]

has positive
outer measure. Since the set E′′ = n · [(( 1

nE
) − gi

) ∩ G0
]

is a translate of E′, it has
positive outer measure as well. Note that E′′ ⊂ nG0, and thus μ(nG0) > 0 . Therefore,
1
nE′′ has positive outer measure by Lemma 2. If nx ∈ E′′, then nx = ny for some
y ∈ 1

nE − gi . Then n(x − y) = 0, and x ∈ (
1
nE − gi

)
+ (x − y) = 1

nE − gi, since
1
nE + (x − y) = 1

nE . Therefore, 1
nE′′ ⊂ 1

nE − gi, which proves that 1
nE has positive

outer measure. �

LEMMA 4. If a locally compact Abelian group is divisible by 2, then it satisfies
property (P1) .

Proof. If G is divisible by 2 , then 2G = G, and then we may apply Lemma 3
with n = 2 . �
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LEMMA 5. Let G be a locally compact Abelian group with Haar measure μ, and
suppose that G = R

d × H, where H is compact. If μ(2G) > 0, then there exists a
number c > 0 such that

μ2
(
φ−1(E)

)
� c · μ2(E) (4)

for every Borel set E ⊂ G2, where φ(x, y) = (x + y, x − y) (x, y ∈ G) .

Proof. By Lemma 2, there exists a number c > 0 such that (3) holds for every
E ⊂ 2G with n = 2 . Our first aim is to show that∫

G
f (2x) dx � c ·

∫
G

f (x) dx (5)

for every non-negative Borel measurable f : G → R . Clearly, it is enough to check (5)
in the case when f is the characteristic function χE of a Borel set E . Then we have∫

G f (x) dx = μ(E), and thus

∫
G

f (2x) dx =
∫

G
χ 1

2 E dx = μ
(

1
2
E

)
= μ

(
1
2
(E ∩ 2G)

)

= c · μ(E ∩ 2G) � c · μ(E) = c ·
∫

G
f (x) dx.

It is enough to prove (4) in the case when E = A×B, where A and B are Borel subsets
of G . Then we have (x, y) ∈ φ−1(A×B) if and only if x ∈ (A−y)∩(B+y), and thus the
measure of the y− section {x ∈ G: (x, y) ∈ φ−1(A×B)} equals μ((A−y)∩(B+y)) =
μ(A ∩ (B + 2y)) . Thus, by Fubini’s theorem, we obtain

μ2
(
φ−1(A × B)

)
=

∫
G
μ(A ∩ (B + 2y)) dy � c ·

∫
G
μ(A ∩ (B + y)) dy

by (5) with f (x) = μ(A ∩ (B + x)) . Since
∫

G
μ(A ∩ (B + y)) dy =

∫
G2

χA(t) · χB(t − y) dt dy = μ(A) · μ(B) = μ2(A × B),

the proof is complete. �

LEMMA 6. Let G be a locally compact Abelian group with Haar measure μ , and
suppose that G = R

d×H , where H is compact. If μ(2G) > 0 and E ⊂ G×G is a set
of full measure, then φ−1(E) is of full measure, where φ(x, y) = (x+y, x−y) (x, y ∈ G) .

Proof. Since F = (G × G) \ E is null, there exists a Borel set B such that
F ⊂ B ⊂ G × G and μ2(B) = 0 . Then φ−1(B) is null by Lemma 5. Since

(G × G) \ φ−1(E) ⊂ φ−1(F) ⊂ φ−1(B),

it follows that φ−1(E) is of full measure. �
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The next lemma will complete the proof of Theorem 1.

LEMMA 7. If a locally compact Abelian group is divisible by 2, then it satisfies
property (P2) .

Proof. Let A, B ⊂ G be sets of positive outer measure and N, M ⊂ G2 are sets
of full measure. We prove (1). By the structure theorem, G has an open subgroup G0

such that G0 is topologically isomorphic to R
d × H, where H is a compact. We shall

distinguish between two cases.
I. First we assume that 1

2A intersects uncountably many cosets of G0 . Since the
set Ny = {(x, y) : x ∈ N} is of full measure for μ -a.e. y and the set 1

2B is of positive
outer measure by Lemma 4, we can fix a y ∈ 1

2B such that Ny is of full measure.
Then Ny contains all but countably many cosets of G0 . Therefore, Ny ∩ 1

2A intersects
uncountably many cosets of G0 . If x ∈ Ny ∩ 1

2A, then

(x, y) ∈ N ∩
[(

1
2
A

)
×

(
1
2
B

)]
def= T.

Therefore, (x + y, x− y) ∈ φ(T) for every x ∈ Ny ∩ 1
2A . Since y is fixed and Ny ∩ 1

2A
intersects uncountably many cosets of G0, it follows that φ(T) intersects uncountably
many cosets of G0 × G0 . Therefore, φ(T) is not null, and M ∩ φ(T) �= ∅ , whence
φ−1(M) ∩ T �= ∅, which proves (1). A similar argument works if 1

2B intersects
uncountably many cosets of G0 .

II. Next we assume that 1
2A and 1

2B intersect only countably many cosets of G0 .
If 1

2A ⊂ ⋃
a∈I(G0 +a) , where I is a countable subset of G, then A ⊂ ⋃

a∈I(2G0 +2a) .
Thus μ(2G0) > 0, and there is an a such that A ∩ (2G0 + 2a) is of positive outer
measure. We may assume that A ⊂ 2G0 + 2a . Similarly, we may assume that
B ⊂ G0 + 2b for a suitable b ∈ G . Then the sets A′ = A − 2a, B′ = B − 2b are
of positive outer measure in G0, and

(
1
2A′) × (

1
2B′) is of positive outer measure in

G0 × G0 .
The sets N′ = N − (a, b) and M′ = M − (a + b, a − b) are of full measure in

G0 × G0 . By Lemma 6, φ−1(M′) is of full measure in G0 × G0, and thus the set

N′ ∩ φ−1(M′) ∩
[(

1
2
A′

)
×

(
1
2
B′

)]
def= X

is nonempty. If (h, k) ∈ X, then (h + a, k + b) is an element of the left hand side of
(1), proving that the set in question is nonempty. This completes the proof of Lemma
6 and of Theorem 1. �
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