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ALMOST CONVEX FUNCTIONS ON
LOCALLY COMPACT ABELIAN GROUPS

WITOLD JARCZYK AND MIKLOS LACZKOVICH

(Communicated by Zs. Pdles)

Abstract. Let G be alocally compact Abelian group divisible by 2. We prove that every almost
convex function on G equals a convex function a.e.

The function f : R" — R is said to be convex, if f (52) < ’M for every
x,y € R". (Sometimes it is called midconvex or Jensen convex.) We shall say that
the function f : R" — R is almost convex, if f (**) < ’M for a.e. pair
(x,y) € R" x R". M. Kuczma proved in [2] (see also [3, Chap. XVII, Sec. 8])
that every almost convex function equals a convex function a.e. In this paper we shall
generalize Kuczma’s theorem for some locally compact Abelian groups.

Let G be a locally compact Abelian group with Haar measure u. We shall say
that the function f : G — R is convex, if 2f (x) < f(x+y) +f (x —y) holds for every
x,y € G. The function f is almost convex, if 2f (x) < f(x +y) +f(x —y) holds for
u’-ae. (x,y) € G*>. Clearly, for G = R" this is equivalent to Kuczma’s condition.
Our aim is to prove the following.

THEOREM 1. Let G be a locally compact Abelian group divisible by 2. Then
for every almost convex function f : G — R there exists a unique convex function
g:G — R suchthat f =g u-a.e.

Since every compact connected Abelian group is divisible, it follows that Kuczma’s
theorem is valid in these groups. We do not know whether or not Kuczma’s theorem is
valid in every locally compact Abelian group. The condition of divisibility by 2 is by no
means necessary. Indeed, on a discrete group every almost convex function is convex,
and thus Kuczma’s theorem is valid on discrete groups. Also, it is easy to check that if
G is atorsion group, then every almost convex function on G must be constant a.e., and
thus Kuczma’s theorem is valid on torsion groups as well. Thus the best candidates of
groups on which Kuczma’s theorem might be false are those non-discrete torsion free
groups which are not divisible by 2. Such groups are, for example, the powers of the
compact group of 2 -adic integers. We do not know whether or not Kuczma’s theorem
is true on these groups.
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Let 1E denote the set {x € G : nx € E} forevery n =1,2,... and E C G.
The outer measure of the set E C G is defined by p(E) = inf{u(U) : E C U C
G, Uis open}. Then U is an outer measure on G, and is an extension of u. The
family of Borel subsets of G will be denoted by %(G). As we shall check shortly,
Kuczma’s proof'is based on the fact that the following properties are satisfied if G = R”.

(P1) If A C G is a set of positive outer measure, then the set %A is also of positive
outer measure.

(P,) If A,B C G are sets of positive outer measure and N,M C G? are sets of full

measure, then
NNn¢~'(M)N K%A) X (%Bﬂ £ 0, (1)

where ¢ is the transformation of G x G defined by ¢(x,y) = (x +y,x —y).

Our proof of Theorem 1 consists of two parts. First we show that Kuczma’s proof
works in any group satisfying the properties (P;) and (P,). Then we prove that (P;)
and (P;) are satisfied in every group which is divisible by 2.

Before turning to the proof of Theorem 1 we clarify the notions of null sets and
sets of full measure. We say that £ C G is null, if i(E) = 0; that is, if E can be
covered by a Borel set of measure zero. If G has an open subgroup Gy, then a null set
cannot intersect uncountably many cosets of Gy. Indeed, the cosets of Gy are open,
and thus, if an open set U intersects uncountably many cosets of Gy, then necessarily
w(U) = oco. Thus any set that intersects uncountably many cosets of Gy must have
infinite outer measure.

We say that a set is of full measure, if its complement is null. Clearly, a set of full
measure contains all but a countably many of the cosets of Gy .

We remark that in [3] Kuczma actually proves his theorem in a more general setting,
in which the ideal of null sets is replaced by other ideals. The statement of Theorem
1 has similar generalizations as well. These generalizations will be presented by a
forthcoming paper of the first author.

Proof of Theorem 1. First we prove that the theorem is true under the assumption
that (P;) and (P;) are satisfiedin G. Let f : G — R be an almost convex function.
For every x € G we define g(x) as the infimum of those real numbers ¢ for which the
set

{heG:f(x+h)+f(x—h) <2}

is of positive outer measure. It is clear that g(x) € [—o00,00) for every x € G. Our
aim is to prove that g is a finite valued convex function and is equal to f a.e. Let M
denote the set of pairs (x,h) € G* for which 2f (x) < f(x+h) +f(x — h). Then M
is of full u?-measure in G>. For every integer n, the map (x,y) — (x +ny,y) is a
topological isomorphism of G? onto itself and, consequently, if a subset of G? is null
then so is its preimage. Therefore, the sets M,, = {(x,y) : (x + ny,y) € M} are of full
measure in G2 . Then so is the set P = ﬂ;’i _ oo M, . By Fubini’s theorem, there is a set
Q C G of full measure such that for every x € Q we have (x,y) € P for u-ae. y.
We shall prove that g(x) = f (x) forevery x € Q.
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Let x € Q be arbitrary. Then (x,y) € P C M for pu-ae. y. Thus 2f (x) <
f(x+h)+f(x—h) for u-ae. h, and hence g(x) > f(x). Let € > 0 be given; we
prove that g(x) < f(x) + €. For every positive integer & let

Ay ={y € G:max(f (x +y),f (x —y)) <k}.

Since G = [J°, Ak, there is a k such that fi(Ax) > 0. Fix an integer n such that
2" > (k—f (x))/€. By property (P), eachof the sets 1Ay, 5 (3Ax) = Ak, 5 (Ax) =
LAy, ... is of positive outer measure. Therefore, so is the set S = (A:) N {y € G :
(x,y) € P}. Let y € S be arbitrary. Then for every i we have (x,y) € M;; that is,
(x+iy,y) € M and

2f(x+iy) <fx+ G+ Dy)+f(x+ (G —1)y).
Multiplying this inequality by 2" — i and adding for i = 1,...,2" — 1 we obtain
2fx+y) <@ = Df () +£(x+2") < 2" = Df (x) + £

as 2"y € Ay. Thus f(x+y) <f(x) + (k—f(x))/2" < f(x) + €. A similar argument
gives f (x —y) < f(x) 4+ €. We have proved that

Flx+y)+f(x—y) <2max(f (x +y).f(x —y)) <2(f(x) +¢)

forevery y € S, where S is a set of positive outer measure. This implies g(x) < f(x)+¢€
and, as € was an arbitrary positive number, we have g(x) < f(x) for every x € Q.
Since Q is of full measure, this proves that f = g a.e.

Now we prove, still assuming (P;) and (P,), that g is a finite valued convex
function. Let u,v € G be arbitrary. It is enough to show that for every fixed € > 0 we
have 2g(u) < g(u +v) + g(u — v) + €. We shall prove this by showing that there are
elements /i, k € G such that the following relations hold:

4g(u) < 28(u+h+k)+2gw—h—k)
< [g(u—v+2k) + gu+v+2h)] + [gu—v—2k) + g(u+v—2h)]
= [g(u+v+2h)+gu+v—2h)]+ [g(u—v+2k) + g(u—v—2k)
Rgu+v)+el+2gu—v)+¢€]. (2)

A

It follows from the definition of g that the set

{reG:2gu) <flut+y)+f(u—y)}

is of full measure. Since f = g a.e., we obtain that the set H = {y € G : 2g(u) <
glu+y) +g(u—y)} is of full measure. Let K = {(h,k) : h+ k € H}. Then K is of
full measure in G2, and the first inequality of (2) holds for every (h,k) € K.

Since f is almost convex and f = g a.e., the function g is also almost convex.
That is, the set L = {(x,y) € G* : 2g(x) < g(x+y) + g(x —y)} is of full measure.
The second inequality of (2) holds for every (h, k) suchthat (u+h+k,v+h—k) €L
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and (u —h —k,v —h + k) € L; thatis, when

(h+kh—k) € (L— (u,v)) N (=L+ (u,v)) L N.
This condition can be formulated as (h,k) € ¢~'(N), where ¢(x,y) = (x + y,x —
y) (x,y € G). Note that the set N is of full measure in G?.

Finally, the definition of g implies thatthe sets {y € G : f (u+v+y)+f (u+v—y) <
2g(u+v)+efand {y e G:f(u—v+y)+f(u—v—y) <2g(u—v)+e€} are of positive
outer measure. Since f = g a.e., it follows thatthe sets A= {y € G: glu+v+y) +
glutv—y) < 2g(u+v)+e}tand B={y € G : g(u—v+y)+glu—v—y) < 2g(u—v)+€}
are of positive outer measure as well. Now the last inequality of (2) holds for every
(h,k) such that 21 € A and 2k € B. Summing up, (2) holds for every (%, k) such that

(h,k) e KN~ (N)N K%A) X (%Bﬂ .

By property (P2) this set is nonempty, and thus (2) holds for some h,k € G. This
proves that g is convex. We show that g is finite everywhere. Indeed, let x € G be
such that g(x) = f (x). Then we have

—00 < 2f (x) = 2g(x) < g(x+y) + glx— )

forevery y € G. Thus g(x + y) is finite for every y; thatis, g is finite everywhere.

Now we prove the uniqueness of g. First we note that if f is convex, then the
function g defined in the proof above equals f everywhere. We shall use the notation
introduced in the course of the proof. If f is convex, then we have M = M,, = G2 for
every n, and thus P = G* and Q = G. As we have shown, g(x) = f(x) for every
x € Q; thatis, g=f.

Let f be an almost convex function on G. If g; is a convex function such that
f =g m-ae.on G, then

glx) = inf{ceR:p({heG:f(x+h)+f(x—h)<2}) >0}
= inff{ceR:u({heG:gi(x+h)+g(x—h)<2}) >0}

for every x. Since g; is convex, it follows from the previous argument that g, = g
everywhere, which proves the uniqueness of g.

In order to complete the proof of Theorem 1 we have to show that the properties
(P1) and (P;) are satisfied in every group divisible by 2. This will be proved by a
series of lemmas.

LEMMA 2. Let G be alocally compact Abelian group with Haar measure [, and
suppose that G = R? x H, where H is compact. Suppose further that u(nG) > 0 for
a positive integer n. Then there exists a number ¢ > 0 such that

0 (1E) — . E(E) ()

forevery E C nG.
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Proof. First we shall consider the case when G is compact and E is Borel.
We may assume that 4(G) = 1. As nG is a compact subgroup of G of positive
measure, it follows that nG is open and G/nG is finite. If |G/nG| = N, then we
have (nG) = 1/N. Let V(E) = u(iE) for every E € %(nG). Then v is a finite
and regular Borel measure on nG with v(nG) = 1. (Note that 1E is compact if
E is compact, and is open if E is open.) If « € nG and a = nb, then we have
LE+a) = (LE) + b, and thus V(E + a) = V(E) for every E € #(nG). Thus v is
translation invariant and hence, by the uniqueness of Haar measure on nG we obtain
V(E) = N - u(E) for every E € %(nG). Therefore, (3) holds for Borel subsets of nG
with c =N.

Now let G = RY x H with H compact, and suppose u(nG) > 0. Let v denote
the Haar measure on H. Then u = A; x v, where A, is the Lebesgue measure on
R?. Since nG = R? x (nH), the condition u(nG) > 0 gives v(nH) > 0. Then, as
we proved above, there exists a number N > 0 such that v (%E) =N - Vv(E) forevery
Borelset E C nH. If A C R? and B C nH are Borel sets, then we have

(o) <n () () -5 (24 (2

1 N
=d - Ad(A) -N-v(B) = g - u(A x B).
Then, by the definition of the product measure, we obtain that (3) holds for Borel
subsets of nG with ¢ = N/n‘.

In order to prove (3) for arbitrary subsets of nG first we show that if F C G is
closed, then so is nF. Itis enough to show thatif xo € R?, yo € H and (xo,y0) ¢ nF,
then (xo,yo) is not in the closure of nF. Let r > |xo|/n be a positive number, and
put B={xeR?:|x| <r}and C={x € R?:|x| > r}. Then R = BUC and
F C [Cx H|U[(Bx H)NF]. Now the set D; = n[C x H] = (nC) x (nH) is closed,
and |xo| < n-r gives (xo,y0) ¢ Di. Also, the set (B x H) N F is compact, and thus
sois D, = n-[(Bx H)NF]. Since D, C nF, we have (x9,y0) ¢ D,. Then, by
nF C Dy UD, and (xo,y0) ¢ D; U D, it follows that (xo, o) is not in the closure of
nkF.

Let K ={x € G:nx=0}. Then K = {0} x {x € H : nx = 0}, and thus K is
a compact subgroup of G. We show that for every open set V containing zero there is
an open set W also containing zero such that %W C K+ V. Indeed, K + V is open,
G\ (K + V) isclosed, and thus D = n-[G\ (K + V)] is also closed. Now 0 ¢ D,
since nx = 0 implies x € K, and then x ¢ G\ (K + V). Therefore, we may take
W=G\D.

Now let E be an arbitrary subset of nG. If B is a Borel set such that £ C B C nG
and u(B) = fi(E), then 1E C 1B, and thus

7 (ae) <u(in) —couw) —c o)
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To prove the inequality @ (1E) > ¢ - [i(E), let € > 0 be fixed, and let U be an open
set containing 1E such that u(U) < i (1E) + €. Itis clear that if y € 1E, then
K+ycC %E . Thus K +y C U and hence, as K + y is compact, we may find an open
set V, containing zero such that K+y+V, C U [1, (4.10) Theorem, p. 20]. Choose an
open set W, containing zero such that LW, C K+V,. Then W = | J{W,+ny : y € 1E}
is an open set containing £. We prove that %W C U. Indeed, nx € W implies that
nx € Wy + ny for some y € 1E. Then n(x —y) € W, x—y € 1w, c K +V,,
and x € K+ V,+y C U. Thus D = W NnG is a Borel set containing E such that
1D c U. Therefore,

_ (1 1 _
R\ E)+e>uU)zp( D) =c-uD)=c uE),
which completes the proof. (|

LEMMA 3. Let G be alocally compact Abelian group with Haar measure W, and
let n be a positive integer. If E C nG is a set of positive outer measure, then %E is
also of positive outer measure.

Proof. By the structure theorem [4, 2.4.1 Theorem, p. 40], G has an open subgroup
Gy such that Gy is topologically isomorphic to R? x H, where H is a compact. If
%E intersects more than countable of the cosets of Gy, then w (%E) = 00, and in that
case the statement is true. Therefore, we may assume that there are group elements
gi (i=1,2,...) such that

1 o0
-F G i)
p CIL:Jl(o-f—g)

1 > 1
E=n-(“E)=||n-|(-E) N (Go+g)|,
v (58) =Un |(8) noo o]
and thus there exists an i such that the set E' = n - [(1E) N (G + g;)] has positive
outer measure. Since the set E” = n- [((LE) — g;) N Go| is a translate of E’, it has

n
positive outer measure as well. Note that E” C nGy, and thus u(nGy) > 0. Therefore,

LE" has positive outer measure by Lemma 2. If nx € E”, then nx = ny for some

y € LE—g;. Then n(x—y) =0, and x € (AE—g) + (x—y) = 1E — g, since
1E+ (x—y) = 1E. Therefore, 1E"” C 1E — g;, which proves that 1E has positive

outer measure. |

Then

LEMMA 4. If a locally compact Abelian group is divisible by 2, then it satisfies
property (Py).

Proof. If G is divisible by 2, then 2G = G, and then we may apply Lemma 3
with n =2. ]
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LEMMA 5. Let G be alocally compact Abelian group with Haar measure [, and
suppose that G = R? x H, where H is compact. If w(2G) > 0, then there exists a
number ¢ > 0 such that

W (97(E) < c-u(E) (4)
for every Borel set E C G*, where ¢(x,y) = (x +y,x—y) (x,y € G).

Proof. By Lemma 2, there exists a number ¢ > 0 such that (3) holds for every
E C 2G with n = 2. Our first aim is to show that

/Gf(2x)dx<c-/cf(x)dx (5)

for every non-negative Borel measurable f : G — R. Clearly, it is enough to check (5)
in the case when f is the characteristic function yp of a Borel set E. Then we have
Jof (x)dx = u(E), and thus

/(;f(Zx)dx:/(;xéde:[JL(%E) :u<%(Eﬁ2G))

— ¢ u(EN2G) <c~u(E):c-/Gf(x)dx

Itis enough to prove (4) in the case when E = A x B, where A and B are Borel subsets
of G. Thenwehave (x,y) € ¢~ !(AxB) ifand only if x € (A—y)N(B+y), and thus the
measure of the y— section {x € G: (x,y) € ¢ "' (Ax B)} equals u((A—y)N(B+y)) =
W(A N (B+2y)). Thus, by Fubini’s theorem, we obtain

W o axB) = [uAan@+2)ay<e: [ uAan @+
G G

by (5) with f(x) = u(AN (B +x)). Since

Juan@as= [ -z diay = ua)- u) = w4 x ),
G G
the proof is complete. ]

LEMMA 6. Let G be alocally compact Abelian group with Haar measure W, and
suppose that G = R x H, where H is compact. If u(2G) > 0 and E C G x G is a set
of full measure, then ¢~ (E) is of full measure, where ¢(x,y) = (x+y,x—y) (x,y € G).

Proof. Since F = (G x G) \ E is null, there exists a Borel set B such that
FCBCGxG and u*>(B) =0. Then ¢~ !(B) is null by Lemma 5. Since

(GxG)\ ¢ (E)yc o' (F) Cc ¢ '(B),

it follows that ¢~!(E) is of full measure. O
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The next lemma will complete the proof of Theorem 1.

LEMMA 7. If a locally compact Abelian group is divisible by 2, then it satisfies
property (P).

Proof. Let A,B C G be sets of positive outer measure and N, M C G? are sets
of full measure. We prove (1). By the structure theorem, G has an open subgroup Gy
such that Gy is topologically isomorphic to R? x H, where H is a compact. We shall
distinguish between two cases.

I. First we assume that %A intersects uncountably many cosets of Gy. Since the
set NV = {(x,y) : x € N} is of full measure for y-a.e. y and the set %B is of positive
outer measure by Lemma 4, we can fix a y € %B such that N” is of full measure.
Then N” contains all but countably many cosets of Gy . Therefore, N N %A intersects
uncountably many cosets of Gp. If x € NV N %A, then

(x,y) ENN K%A) x GB)] =

Therefore, (x+y,x—y) € ¢(T) forevery x € NN 1A. Since y is fixed and N’ N 3A
intersects uncountably many cosets of Gy, it follows that ¢(7) intersects uncountably
many cosets of Gy x Gy. Therefore, ¢(T) is not null, and M N ¢(T) # 0, whence
¢~ '(M) N'T # 0, which proves (1). A similar argument works if 1B intersects
uncountably many cosets of Gy .

II. Next we assume that %A and %B intersect only countably many cosets of Gy .
If JA C U,c;(Go+a), where I is acountable subset of G, then A C |J,,(2Go+2a).
Thus u(2Gp) > 0, and there is an a such that A N (2Gy + 2a) is of positive outer
measure. We may assume that A C 2Gyp + 2a. Similarly, we may assume that
B C Gy + 2b for a suitable b € G. Then the sets A’ = A — 2a, B' = B — 2b are
of positive outer measure in Go, and ($A’) x (4B’) is of positive outer measure in
G() X G() .

The sets N' = N — (a,b) and M’ = M — (a + b,a — b) are of full measure in
Go x Go. By Lemma 6, ¢! (M) is of full measure in Gy x Gy, and thus the set

N o '(M)n [(%A’) x (%B’)] 'e

is nonempty. If (h,k) € X, then (h+ a,k + b) is an element of the left hand side of
(1), proving that the set in question is nonempty. This completes the proof of Lemma
6 and of Theorem 1. O
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