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FUNCTIONAL CALCULUS WITH OPERATOR-MONOTONE FUNCTIONS

TSUYOSHI ANDO

(Communicated by F. Hansen)

Abstract. Let f(t) be a non-negative operator-monotone function defined on [0,°), and A,B
positive definite operators on a Hilbert space. The inequalities (Bx,x) < f({Ax,x)) for every
unit vector x do not imply the operator inequality B < f(A). We prove, however, that when
combined with the inequalities (B~'x,x)™! > f((A~1x,x)~1), the relation B = f(A) follows.

1. Introduction and main result

Let .# be a Hilbert space with inner product (-,-) and norm || -||. For bounded
selfadjoint operators A,B on 7 the notation A > B (resp. A > B) means that A — B
is positive semi-definite (resp. positive definite). In particular, A > 0 (resp. A > 0)
means that A is positive semi-definite (resp. positive definite). In this paper capital
letters A, B, - -- will denote bounded selfadjoint operators.

We consider only non-negative strictly increasing continuous functions f(¢) on
[0,0). Therefore the functional calculus for A > 0 produces again an operator f(A) >
0. Furthermore A > 0 implies f(A) > 0.

A function f(r) is said to be operator-monotone if regardless of the dimension of
H
0<A<B = f(A)<f(B)

Let us recall some related classes of functions. A function f(r) is said to be
operator-convex if

f(A+B) < SA) +1(B) (A,B>0).

2 2

Correspondingly one may consider operator-concave functions.

It is shown in [4, Section 2] that a function f(¢) on [0,0) is operator-concave if
and only if it is operator-monotone and that it is operator-convex with f(0) < 0 if and
only if the function f(¢)/t is operator-monotone. In particular, an operator-monotone
function is concave.

Further if f(r) with f(0) = 0 and f(e0) = oo is operator-convex then its inverse
function is operator-monotone. In fact, in [1, Lemma 5] it is shown that the inverse
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function of a function of the form f(z) =tg(z) with operator-monotone g(#) is operator-
monotone. This fact on inverse functions is widely generalized in [6, Theorem 2.8]. Let
us mention that also in [3, Corollary 3.4] the same fact is proved by using characteri-
zation of operator-monotonicity in terms of the Loewner matrices associated with the
function.

A typical example of an operator-monotone function is f(¢) =¢? with 0 < p < 1.
The inverse function of a function f(r) =¢” with 1 < p < o is operator-monotone
while for 1 < p < 2 the function f(¢) =¢? is operator-convex.

We refer the reader to the nice exposition in [2, Chapter V] for those classes of
functions.

LEMMA 1. Ifafunction f(t) is operator-monotone, so is the function f(t=')~!,
Proof. In fact,
0<A<B = A'>pB"!
= fAhzfB") = faht<se )
showing the operator-monotonicity of the function f(r~!)~1. O

Now since an operator-monotone function f(¢) and by Lemma 1 its associate
f(t=1)~1 are concave, the next lemma is an easy consequence of the Jensen inequality
for the integral of a concave function with respect to a probability measure on an interval
(cf. [4, Corollary 2.2]).

LEMMA 2. Let f(t) be operator-monotone, and A,B > 0. Then
B<f(A) = (Box)<f({Axx)  (llxl=1),

while
fA<B = fAe) ) <B )t (xll=1).

For instance, let A = [;"AdE(A) be the spectral respresentation of the positive
definite operator A. Then any unit vector x produces a probabiltiy measure d{E (A )x, x)
on (0,0). Then the Jensen inequality shows

@) = [ aaE@n <s( [ 2dE@n) = rax).

Given an operator-monotone function f(r) and A, B > 0, the converse implication
in each of the statements in Lemma 2 does not hold. However if both the inequalities

(Bx,x) < f((Ax,x))  (llxll = 1), (#)

and
fA 0 ) <B )™ (k=1 ()

hold, a sandwich technique will show that B = f(A). This is our main result.
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THEOREM 3. Ler f(t) be operator-monotone, and A,B > 0. Then the relation
B = f(A) occurs if and only if the two groups of inequalities () and (b) hold.

Though a complete proof of Theorem 3 will be given in the next section, let us
present a simple proof for the case of finite dimensional .7, that is, the matrix case.
This is based on an idea of T. Hayashi [5].

By the finite dimensionality assumption, it suffices to prove that if x is a unit
vector and Ax = ax for some o« > 0 then Bx = f(ot)x. The assumption implies that
(Bx,x) < f(a) and (B~ 'x,x) < f(c)~!. Then since

1 = (x,x) = (B"%x,B~/%)
< ||Bl/2xH : ||B_l/2x|| = \/(Bx7x> ~(B~x,x) < \/f(oc)f(oc)—l =1,
we have (B'/2x,B~'%/x) = ||B"/2x| - |[B~'/x||, which is possible only when B'/2x =

BB~1/2x, hence Bx = Bx for some B > 0. Finally it follows from the assumption that
B < f(a) < B. This completes the proof.

The following is immediate from Theorem 3 by interchanging the places of A and
B.

COROLLARY 4. Suppose that the inverse function of a stricitly increasing function
f(t) on [0,00) with f(0) =0 and f(co) = oo is operator-monotone, and let A,B > 0.
Then the relation B = f(A) occurs if and only if the following two groups of inequalities
hold:

AT 0™ > (B and f((Axx)) < (Bxx)  (x] =1).

2. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. Since the only-if part is already
in Lemma 2, let us suppose that both () and (b) hold.

Notice first that both f(¢) and g(¢) := f(t~')~! are concave functins. Considering
the tangent line to the curve {(¢,f(¢));t > 0} in R? at the point (4,f(1)), we can
conclude from the concavity of f(r) that

f@) < fAp+{f(A)=Af(A)} (>0,

and further that
@ = inf {FON+{F ) =2f W)Y} (>0, (1)

Notice here that /(A1) >0 and f(A) —Af'(A) >0 (1 >0).
In a similar way, considering the tangent line to the curve {(t,g(¢)): t > 0} in R?
at the point (A~!,g(A~!)), we can conclude from the concavity of the function g(r)
that
g) <A N+ {2 ) -271¢ATh)Y (A>0,1>0),
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and further that
g0 = inf {0t s A g} @ 0)
Since
2 41 o
¢ =2 L0 wa g -anga LESEE o),

we can conclude

i AR A+ {f(A) —Af' (M)}
a7 = 8= jnf FA)?

(r>0). 2)

Now it follows from (1) that the first inequalities () are equivalent to the inequal-
ities:

(Bx,x) < f/(A)(Ax.x) +{f(A) = Af (A)} (A >0,]lx[[=1). ©)

Next let us rewrite these inequalities as operator-inequalities. For simplicity sake,
let us represent a scalar multiple of the identity operator I simply by the scalar itself.

Further let us write (aA + BI)(yA+381)~" as %‘—Ig.

Now the inequalities (3), hence (f), can be expressed as
B f(MA+{f(A)—-Af(A)} (A >0), (4)

or equivalently

1 1
B2 Pmar g —ara)

(A > 0). 5)

In a similar way it follows from (2) that the second inequalities (b) are equivalent
to the following inequalities

AR A x) +{f(A) - AL ()}

B 'x,x) < A>0,|x]| =1).
( ) o2 ( [l = 1)
As above, this can be converted to operator inequalities

AR R —AF(A)IA

1
<
B'< i (A >0), (©6)
or equivalently
2
B> flA)A (A >0). 7

T AL(A)H{f(A) = Af(A)}A
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Notice here that since obviously f(A) < f(A) < f(A), the operator inequalities
(4) — (7) are also valid with f(A) in place of B . Therefore it follows from (4) and (7)
that

£(B= /() <SR+ ) =27 (2}
. f(2)%A
PR A= A7 (A)}A

(A > 0).

This becomes

i(B_f(A)> o SR A1)} A2  (A>0). (@

A (A)H{f(A) = Af(A)}A

In a similar way it follows from (5) and (6) that
FONfA)—Af'(A)}

FOPA{fBIA+ {12 = Af(3)} }

i(B‘l—f(A)‘1> < A-212  (A>0).

9)

Let Apin (resp. Amay) be the minimum (resp. maximum) spectrum of A and
consider the interval A := [Amin, Amax] . Take positive constants y; and ¥, such that

"> S'ONfA) =4S (A)}
T AR +H{f(R) AL (A)}A

(A eA)
and

F ) —Af (M)}
FOPA{F I+ {10 = Af ()} }

For an orthoprojection P and a postive definite operator X, let us denote the in-
verse of the operator PX P restricted to the range space of P simply by (PXP)~!. Then
it is easy to see the formula

2

(A €A).

(Px~'P)~' = PXP— (PXP*) - (P*XP+)"' - PXP, (10)

where PL:=1—P.
Denote by 0% the set of orthoprojections and by & &4 the subset of those com-
muting with A. Then it follows from (8) and (9) that

|PBP—PFAP| <nl(A-APP (A€ PeOP), an

and
IPB='P—Pf(A)'P| <pll(A-2)PIP  (A€A PcO). (12)

Since
(PB~'P) = (Pf(A)'P)”!
— (PB~'P)"! <Pf(A)‘1P—PB‘1P> (PF(A)"'P)!,



232 TSUYOSHI ANDO

and
I(PB'P) M < [IB] and [[(Pr(A)"'P) I <IIFA)],

with y3 := 1,||BJ| - || f(A)|| it follows from (12) that
I(PB'P) = (PAA)'P)| <nllA-1)PIP (AeAPecop). (13

Now since (Pf(A)~!P)~! = Pf(A)P for P € OP,, we can conclude from (11)
and (13) that

IPBP—(PEIP) | < (n+plA— AP (AeAPEOZ).  (4)
Using the general formula (10) and the inequality (P+BP+)~! > ||B||~'P*+, we

can see
|P+BP|* < |B]| - |PBP— (PB~'P)~"||.

Then it follows from (14) that
IPYBPIP < (n +w)IBIl- (A= 2)P|> (A €A, PeOPy). (15)

Now divide the interval A = [Ayin, Amax] into n disjoint (half-open) subintervals
of equal length, and let P; the spectral projection of A corresponding to the j-th subin-
terval. Take A; in the j- th subinterval. Then we have, with [ := Aqx — Amin »

l
IA=A)PIP < (2 (F=12,...m). (16)

Then from (11), (15) and (16) we can conclude that there is a constant y > 0, not
depending on n, such that

Y .
1P;BP; — Pif (A)P;], |IPBE;|* < (;)2 (J=12,....n). (17

Since P f(A)P; =0 (i # j) and
A) = Y {P;BP,—Pif(A)P;} + Y, P BP;,
j=1 j=1

we have

1B—f(A ZHPBP Pif (AP + || X, P; BPj].
j= j=1
Since by (17) for any unit vector x

n
II(ZPLBP M < Z 1P} BP;|| - || P

j=1
n n ,}/
<\ [ IPsBR R 3 1P < L
\/jl ! j=1 v
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we have
2

Y Y Y

PBPj|| < -, LARI =1,2,...).

Letting n — o, we can conclude B = f(A). This completes the proof of Theorem 3.

n

hence ||B—f(A)| <

We have proved really the following.

THEOREM 5. Let f(t) be operator-monotone, and A,B > 0. Then the relation
B = f(A) occurs if and only if the following two groups of operator inequalities hold:

BSfMA+{fA)=Af ()M  (A>0),

and

—1
B> fAPADAS W+ 17G) A G3A) (2 >0).

3. Case of functions f(z) =t?

The following is immediate from Theorem 5.

THEOREM 6. Let 0 < p <1 and A,B > 0. Then the relation B = AP occurs if
and only if

APA{pAI+(1—p) A} ' <SB< AP YpA+(1—p)Al} (A >0).
COROLLARY 7. Let 1 < p <o and A,B > 0. Then the relation B = AP occurs
if and only if
PAPTIA—(p—1DAPIKB and A P{pAA~'—(p— I} < B! (A >0)

Proof. The relation B = A? is equivalent to A = f(B) with an operator-monotone
function f(r) = ¢'/7. Therefore by Theorem 6 this occurs if and only if

AMPB{(1/p)Al+(1=1/p)BY ' KA AP H(1/p)B+ (1—1/p)AI} (A >0).

By replacing A by AP, it is easy to see that these inequalities are written by the two
inequalities in the assertion. [l

COROLLARY 8. Let 1 < p <2 and A,B > 0. Then the relation B = AP occurs if
and only if

AMPTIAL(p— DA+ (2—pA} '<SB< AP 2{(p— DA+ (2—p)AA} (A >0).

In fact, B = A” is equivaent to A~'/2BA~1/2 = f(A) with an operator-monotone
function f(t) =t"~!. Now the assertion follows from Theorem 6.

The results of this section are found also in [5].
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