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(Communicated by F. Hansen)

Abstract. Let f (t) be a non-negative operator-monotone function defined on [0,∞) , and A,B
positive definite operators on a Hilbert space. The inequalities 〈Bx,x〉 � f (〈Ax,x〉) for every
unit vector x do not imply the operator inequality B � f (A) . We prove, however, that when
combined with the inequalities 〈B−1x,x〉−1 � f (〈A−1x,x〉−1) , the relation B = f (A) follows.

1. Introduction and main result

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For bounded
selfadjoint operators A,B on H the notation A � B (resp. A > B) means that A−B
is positive semi-definite (resp. positive definite). In particular, A � 0 (resp. A > 0)
means that A is positive semi-definite (resp. positive definite). In this paper capital
letters A,B, · · · will denote bounded selfadjoint operators.

We consider only non-negative strictly increasing continuous functions f (t) on
[0,∞) . Therefore the functional calculus for A � 0 produces again an operator f (A) �
0. Furthermore A > 0 implies f (A) > 0.

A function f (t) is said to be operator-monotone if regardless of the dimension of
H

0 < A � B =⇒ f (A) � f (B).

Let us recall some related classes of functions. A function f (t) is said to be
operator-convex if

f
(A+B

2

)
� f (A)+ f (B)

2
(A,B > 0).

Correspondingly one may consider operator-concave functions.
It is shown in [4, Section 2] that a function f (t) on [0,∞) is operator-concave if

and only if it is operator-monotone and that it is operator-convex with f (0) � 0 if and
only if the function f (t)/t is operator-monotone. In particular, an operator-monotone
function is concave.

Further if f (t) with f (0) = 0 and f (∞) = ∞ is operator-convex then its inverse
function is operator-monotone. In fact, in [1, Lemma 5] it is shown that the inverse
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function of a function of the form f (t)= tg(t) with operator-monotone g(t) is operator-
monotone. This fact on inverse functions is widely generalized in [6, Theorem 2.8]. Let
us mention that also in [3, Corollary 3.4] the same fact is proved by using characteri-
zation of operator-monotonicity in terms of the Loewner matrices associated with the
function.

A typical example of an operator-monotone function is f (t) = t p with 0 < p � 1.
The inverse function of a function f (t) = t p with 1 � p < ∞ is operator-monotone
while for 1 � p � 2 the function f (t) = t p is operator-convex.

We refer the reader to the nice exposition in [2, Chapter V] for those classes of
functions.

LEMMA 1. If a function f (t) is operator-monotone, so is the function f (t−1)−1 .

Proof. In fact,

0 < A � B =⇒ A−1 � B−1

=⇒ f (A−1) � f (B−1) =⇒ f (A−1)−1 � f (B−1)−1,

showing the operator-monotonicity of the function f (t−1)−1 . �

Now since an operator-monotone function f (t) and by Lemma 1 its associate
f (t−1)−1 are concave, the next lemma is an easy consequence of the Jensen inequality
for the integral of a concave functionwith respect to a probabilitymeasure on an interval
(cf. [4, Corollary 2.2]).

LEMMA 2. Let f (t) be operator-monotone, and A,B > 0. Then

B � f (A) =⇒ 〈Bx,x〉 � f (〈Ax,x〉) (‖x‖ = 1),

while
f (A) � B =⇒ f (〈A−1x,x〉−1) � 〈B−1x,x〉−1 (‖x‖ = 1).

For instance, let A =
∫ ∞
0 λdE(λ ) be the spectral respresentation of the positive

definite operator A . Then any unit vector x produces a probabiltiy measure d〈E(λ )x,x〉
on (0,∞) . Then the Jensen inequality shows

〈 f (A)x,x〉 =
∫ ∞

0
f (λ )d〈E(λ )x,x〉 � f

(∫ ∞

0
λd〈E(λ )x,x〉

)
= f (〈Ax,x〉).

Given an operator-monotone function f (t) and A,B > 0, the converse implication
in each of the statements in Lemma 2 does not hold. However if both the inequalities

〈Bx,x〉 � f (〈Ax,x〉) (‖x‖ = 1), (�)

and
f (〈A−1x,x〉−1) � 〈B−1x,x〉−1 (‖x‖ = 1) (�)

hold, a sandwich technique will show that B = f (A) . This is our main result.
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THEOREM 3. Let f (t) be operator-monotone, and A,B > 0 . Then the relation
B = f (A) occurs if and only if the two groups of inequalities (�) and (�) hold.

Though a complete proof of Theorem 3 will be given in the next section, let us
present a simple proof for the case of finite dimensional H , that is, the matrix case.
This is based on an idea of T. Hayashi [5].

By the finite dimensionality assumption, it suffices to prove that if x is a unit
vector and Ax = αx for some α > 0 then Bx = f (α)x. The assumption implies that
〈Bx,x〉 � f (α) and 〈B−1x,x〉 � f (α)−1. Then since

1 = 〈x,x〉 = 〈B1/2x,B−1/2x〉
� ‖B1/2x‖ · ‖B−1/2x‖ =

√
〈Bx,x〉 · 〈B−1x,x〉 �

√
f (α) f (α)−1 = 1,

we have 〈B1/2x,B−12/x〉 = ‖B1/2x‖ · ‖B−1/2x‖, which is possible only when B1/2x =
βB−1/2x , hence Bx = βx for some β > 0. Finally it follows from the assumption that
β � f (α) � β . This completes the proof.

The following is immediate from Theorem 3 by interchanging the places of A and
B .

COROLLARY 4. Suppose that the inverse function of a stricitly increasing function
f (t) on [0,∞) with f (0) = 0 and f (∞) = ∞ is operator-monotone, and let A,B > 0 .
Then the relation B = f (A) occurs if and only if the following two groups of inequalities
hold:

f (〈A−1x,x〉−1) � 〈B−1x,x〉−1 and f (〈Ax,x〉) � 〈Bx,x〉 (‖x‖ = 1).

2. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. Since the only-if part is already
in Lemma 2, let us suppose that both (�) and (�) hold.

Notice first that both f (t) and g(t) := f (t−1)−1 are concave functins. Considering
the tangent line to the curve {(t, f (t));t > 0} in R

2 at the point (λ , f (λ )) , we can
conclude from the concavity of f (t) that

f (t) � f ′(λ )t +{ f (λ )−λ f ′(λ )} (t > 0),

and further that

f (t) = inf
λ>0

{
f ′(λ )t +{ f (λ )−λ f ′(λ )}

}
(t > 0). (1)

Notice here that f ′(λ ) > 0 and f (λ )−λ f ′(λ ) > 0 (λ > 0).
In a similar way, considering the tangent line to the curve {(t,g(t)) : t > 0} in R

2

at the point (λ−1,g(λ−1)) , we can conclude from the concavity of the function g(t)
that

g(t) � g′(λ−1)t +{g(λ−1)−λ−1g′(λ−1)} (λ > 0, t > 0),
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and further that

g(t) = inf
λ>0

{
g′(λ−1)t +{g(λ−1)−λ−1g′(λ−1)}

}
(t > 0).

Since

g′(λ−1) =
λ 2 f ′(λ )
f (λ )2 and g(λ−1)−λ−1g′(λ−1) =

f (λ )−λ f ′(λ )
f (λ )2 (λ > 0),

we can conclude

f (t−1)−1 = g(t) = inf
λ>0

λ 2 f ′(λ )t +{ f (λ )−λ f ′(λ )}
f (λ )2 (t > 0). (2)

Now it follows from (1) that the first inequalities (�) are equivalent to the inequal-
ities:

〈Bx,x〉 � f ′(λ )〈Ax,x〉+{ f (λ )−λ f ′(λ )} (λ > 0,‖x‖ = 1). (3)

Next let us rewrite these inequalities as operator-inequalities. For simplicity sake,
let us represent a scalar multiple of the identity operator I simply by the scalar itself.
Further let us write (αA+β I)(γA+ δ I)−1 as αA+β

γA+δ .

Now the inequalities (3), hence (�), can be expressed as

B � f ′(λ )A+{ f (λ )−λ f ′(λ )} (λ > 0), (4)

or equivalently

B−1 � 1
f ′(λ )A+{ f (λ )−λ f ′(λ )} (λ > 0). (5)

In a similar way it follows from (2) that the second inequalities (�) are equivalent
to the following inequalities

〈B−1x,x〉 � λ 2 f ′(λ )〈A−1x,x〉+{ f (λ )−λ f ′(λ )}
f (λ )2 (λ > 0,‖x‖ = 1).

As above, this can be converted to operator inequalities

B−1 � λ 2 f ′(λ )+{ f (λ )−λ f ′(λ )}A
f (λ )2A

(λ > 0), (6)

or equivalently

B � f (λ )2A
λ 2 f ′(λ )+{ f (λ )−λ f ′(λ )}A (λ > 0). (7)



FUNCTIONAL CALCULUS WITH OPERATOR-MONOTONE FUNCTIONS 231

Notice here that since obviously f (A) � f (A) � f (A) , the operator inequalities
(4) – (7) are also valid with f (A) in place of B . Therefore it follows from (4) and (7)
that

±
(
B− f (A)

)
� f ′(λ )A+{ f (λ )−λ f ′(λ )}

− f (λ )2A
λ 2 f ′(λ )+{ f (λ )− λ f ′(λ )}A (λ > 0).

This becomes

±
(
B− f (A)

)
� f ′(λ ){ f (λ )−λ f ′(λ )}

λ 2 f ′(λ )+{ f (λ )−λ f ′(λ )}A (A−λ )2 (λ > 0). (8)

In a similar way it follows from (5) and (6) that

±
(
B−1− f (A)−1

)
� f ′(λ ){ f (λ )−λ f ′(λ )}

f (λ )2A
{

f ′(λ )A+{ f (λ )−λ f ′(λ )}
}(A−λ )2 (λ > 0).

(9)

Let λmin (resp. λmax ) be the minimum (resp. maximum) spectrum of A and
consider the interval Δ := [λmin,λmax] . Take positive constants γ1 and γ2 such that

γ1 � f ′(λ ){ f (λ )−λ f ′(λ )}
λ 2 f ′(λ )+{ f (λ )−λ f ′(λ )}A (λ ∈ Δ)

and

γ2 � f ′(λ ){ f (λ )−λ f ′(λ )}
f (λ )2A

{
f ′(λ )A+{ f (λ )−λ f ′(λ )}

} (λ ∈ Δ).

For an orthoprojection P and a postive definite operator X , let us denote the in-
verse of the operator PXP restricted to the range space of P simply by (PXP)−1 . Then
it is easy to see the formula

(PX−1P)−1 = PXP− (PXP⊥) · (P⊥XP⊥)−1 ·P⊥XP, (10)

where P⊥ := I−P.
Denote by OP the set of orthoprojections and by OPA the subset of those com-

muting with A . Then it follows from (8) and (9) that

‖PBP−P f (A)P‖ � γ1‖(A−λ )P‖2 (λ ∈ Δ, P ∈ OP), (11)

and
‖PB−1P−P f (A)−1P‖ � γ2‖(A−λ )P‖2 (λ ∈ Δ, P ∈ OP). (12)

Since

(PB−1P)−1− (P f (A)−1P)−1

= (PB−1P)−1
(
P f (A)−1P−PB−1P

)
(P f (A)−1P)−1,
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and
‖(PB−1P)−1‖ � ‖B‖ and ‖(P f (A)−1P)−1‖ � ‖ f (A)‖,

with γ3 := γ2‖B‖ · ‖ f (A)‖ it follows from (12) that

‖(PB−1P)−1− (P f (A)−1P)−1‖ � γ3‖(A−λ )P‖2 (λ ∈ Δ,P ∈ OP). (13)

Now since (P f (A)−1P)−1 = P f (A)P for P ∈ OPA , we can conclude from (11)
and (13) that

‖PBP− (PB−1P)−1‖ � (γ1 + γ3)‖(A−λ )P‖2 (λ ∈ Δ,P ∈ OPA). (14)

Using the general formula (10) and the inequality (P⊥BP⊥)−1 � ‖B‖−1P⊥ , we
can see

‖P⊥BP‖2 � ‖B‖ · ‖PBP− (PB−1P)−1‖.
Then it follows from (14) that

‖P⊥BP‖2 � (γ1 + γ3)‖B‖ · ‖(A−λ )P‖2 (λ ∈ Δ, P ∈ OPA). (15)

Now divide the interval Δ = [λmin,λmax] into n disjoint (half-open) subintervals
of equal length, and let Pj the spectral projection of A corresponding to the j -th subin-
terval. Take λ j in the j -th subinterval. Then we have, with l := λmax −λmin ,

‖(A−λ j)Pj‖2 � (
l
n
)2 ( j = 1,2, . . . ,n). (16)

Then from (11), (15) and (16) we can conclude that there is a constant γ > 0, not
depending on n , such that

‖PjBPj −Pj f (A)Pj‖, ‖P⊥
j BPj‖2 � (

γ
n
)2 ( j = 1,2, . . . ,n). (17)

Since P⊥
i f (A)Pj = 0 (i 	= j) and

B− f (A) =
n

∑
j=1

{PjBPj −Pj f (A)Pj}+
n

∑
j=1

P⊥
j BPj,

we have

‖B− f (A)‖�
n

∑
j=1

‖PjBPj −Pj f (A)Pj‖ + ‖
n

∑
j=1

P⊥
j BPj‖.

Since by (17) for any unit vector x

‖(
n

∑
j=1

P⊥
j BPj)x‖ �

n

∑
j=1

‖P⊥
j BPj‖ · ‖Pjx‖

�
√

n

∑
j=1

‖P⊥
j BPj‖2

√
n

∑
j=1

‖Pjx‖2 � γ√
n
,
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we have

‖
n

∑
j=1

P⊥
j BPj‖ � γ√

n
, hence ‖B− f (A)‖ � γ2

n
+

γ√
n

(n = 1,2, . . .).

Letting n → ∞ , we can conclude B = f (A). This completes the proof of Theorem 3.

We have proved really the following.

THEOREM 5. Let f (t) be operator-monotone, and A,B > 0 . Then the relation
B = f (A) occurs if and only if the following two groups of operator inequalities hold:

B � f ′(λ )A+{ f (λ )−λ f ′(λ )}I (λ > 0),

and

B � f (λ )2A
{
λ 2 f ′(λ )I +{ f (λ )−λ f ′(λ )}A

}−1
(λ > 0).

3. Case of functions f (t) = t p

The following is immediate from Theorem 5.

THEOREM 6. Let 0 < p � 1 and A,B > 0 . Then the relation B = Ap occurs if
and only if

λ pA{pλ I +(1− p)A}−1 � B � λ p−1{pA+(1− p)λ I} (λ > 0).

COROLLARY 7. Let 1 < p < ∞ and A,B > 0 . Then the relation B = Ap occurs
if and only if

pλ p−1A− (p−1)λ pI � B and λ−p{pλA−1− (p−1)I}� B−1 (λ > 0)

Proof. The relation B = Ap is equivalent to A = f (B) with an operator-monotone
function f (t) = t1/p . Therefore by Theorem 6 this occurs if and only if

λ 1/pB{(1/p)λ I+(1−1/p)B}−1 � A � λ 1/p−1{(1/p)B+(1−1/p)λ I} (λ > 0).

By replacing λ by λ p , it is easy to see that these inequalities are written by the two
inequalities in the assertion. �

COROLLARY 8. Let 1 < p � 2 and A,B > 0 . Then the relation B = Ap occurs if
and only if

λ p−1A2{(p−1)λ I+(2− p)A}−1 � B � λ p−2{(p−1)A2 +(2− p)λA} (λ > 0).

In fact, B = Ap is equivaent to A−1/2BA−1/2 = f (A) with an operator-monotone
function f (t) = t p−1 . Now the assertion follows from Theorem 6.

The results of this section are found also in [5].
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