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Abstract. In this paper we consider the following abstract Volterra equations:

x(t) = G(t,g(x)(t),x(t),x(0)) +
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R

and

x(t) = G(t,g(x) (t) ,x(t) ,x(0))+

|t|∫
−|t|

K (t,s,x(s) ,x(h(s)))ds, t ∈ R.

Using the weakly Picard operator technique we establish existence, data dependence and com-
parison results for the solution. The derivability of the solutions with respect to a parameter is
also studied.

1. Introduction

The purpose of this paper is to study the following abstract Volterra equation:

x(t) = G(t,g(x)(t),x(t),x(0))+
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R. (1.1)

This equation has, as particular cases, the following well-known equations:

EXAMPLE 1.1. ([1], [15]) Volterra’s equation:

x(t) = G(t)+
t∫

−t

K (t,s,x(s)) , t ∈ R.
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EXAMPLE 1.2. ([14]) The functional Volterra equation:

x(t) = G(t)+
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R.

EXAMPLE 1.3. ([3], [9]) Tonelli’s equation:

x(t) = G(t)+
t∫

−t

K (t,s,x(s))+
t∫

−t

t∫
−t

H (t,s,x(s)x(u))dsdu, t ∈ R.

EXAMPLE 1.4. ([3]–[8]) The abstract Volterra equation:

x(t) = V (x) (t) , t ∈ R.

In order to study the equation (1.1) we shall use the weakly Picard operators tech-
nique.

2. Basic notions and results of the weakly Picard operators theory

In this paper we shall use the terminologies and notations from [10] and [11]. For
the convenience of the reader we shall recall some of them.

Let (X ,→) be an L-space and A : X →X an operator. We also denote by A0 := 1X ,
A1 := A , An+1 := An ◦A , n ∈ N the iterate operators of the operator A . We also have:

P(X) := {Y ⊆ X | Y �= /0}
FA := {x ∈ X | A(x) = x}

I (A) := {Y ∈ P(X) | A(Y ) ⊆ Y}

DEFINITION 2.1. A : X → X is called a Picard operator (briefly PO) if:
(i) FA = {x∗} ;
(ii) An(x) → x∗ as n → ∞ , for all x ∈ X .

The operator A is Picard if and only if the discrete dynamical system generated by
A has an equilibrium state which is globally asymptotically stable.

DEFINITION 2.2. A : X →X is said to be a weakly Picard operator (briefly WPO)
if the sequence (An(x))n∈N converges for all x ∈ X and the limit (which may depend
on x ) is a fixed point of A .

If A : X → X is a WPO, then we define the operator A∞ : X → X by the formula

A∞(x) := lim
n→∞

An(x).

Obviously A∞(X) = FA . Moreover, if A is a PO and we denote by x∗ its unique fixed
point, then A∞(x) = x∗ , for each x ∈ X .
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DEFINITION 2.3. Let (X ,→) be an L-space, c > 0 and d : X ×X → R+ . By
definition the operator A is c-WPO with respect to the functional d iff

d (x,A∞ (x)) � c ·d (x,A(x)) , for all x ∈ X .

We have (see [10], [11]):

THEOREM 2.1. (Characterization theorem) Let (X ,→) be an L-space and A :
X → X be an operator. Then, A is a WPO if and only if there exists a partition of X ,
X =

⋃
λ∈Λ

Xλ , such that:

(a) Xλ ∈ I (A) , for all λ ∈ Λ;

(b) A
∣∣Xλ : Xλ → Xλ is PO, for all λ ∈ Λ .

THEOREM 2.2. (Abstract Gronwall lemma) Let (X ,→,�) be an ordered L-
space and A : X → X be n operator. We suppose that:

(i) A is a PO;

(ii) A is increasing.

If we denote by x∗A the unique fixed point of A, then:

(a) x � A(x) =⇒ x � x∗A ;

(b) x � A(x) =⇒ x � x∗A .

THEOREM 2.3. (Comparison theorem) Let (X ,→,�) be an ordered L-space and
A,B,C : X → X be three operators such that:

(i) A � B � C;

(ii) A,B,C are WPOs;

(iii) the operator B is increasing.

Then
x � y � z =⇒ A∞ (x) � B∞ (y) � C∞ (z) .

We also need the following results:

THEOREM 2.4. (Data dependence) Let
(
X ,(dα)α∈A

)
be a gauge space and

A,B : X →X be two cα−WPOs. We suppose that, for each α ∈A there exists ηα > 0 ,
such that

dα (A(x) ,B(x)) � ηα , for all x ∈ X .

Then
Hdα (FA,FB) � cα ·ηα , for all α ∈ A .



258 M. A. ŞERBAN, I. A. RUS AND A. PETRUŞEL

Proof. The conclusion follows by the following relations:

Hα (FA,FB) � max

{
sup
x∈FB

dα (x,A∞ (x)) , sup
x∈FA

dα (x,B∞ (x))

}

and

dα (x,A∞ (x)) � cαdα (x,A(x)) = cαdα (B(x) ,A(x)) � cαηα , x ∈ FB,

dα (x,B∞ (x)) � cαdα (x,B(x)) = cαdα (A(x) ,B(x)) � cαηα , x ∈ FA. �

REMARK 2.5. For some similar results and applications see [2] and [12], [5], [6].

THEOREM 2.6. (Fibre contraction principle [14]) Let (X ,→) be an L-space and(
Y,(dα)α∈A

)
be a sequentially complete Hausdorff gauge space. Let B : X → X and

C : X ×Y → Y be two operators. We suppose that:

(i) B is a PO;

(ii) for every α ∈ A there exists lα ∈ [0;1[ such that C (x, ·) : Y → Y , x ∈ X , is
lα -contraction;

(iii) if (x∗,y∗)∈FA , where A : X×Y →X×Y , A(x,y)= (B(x) ,C (x,y)) , then C (·,y∗)
is continuous in x∗ .

Then A is a PO.

3. The solution set of the equation (1.1)

Let (B,+,R. |·|) be a Banach space. Let us consider the equation (1.1) and
suppose that:

(C1) G ∈C
(
R×B3,B

)
and K ∈C

(
R2×B2,B

)
;

(C2) g : C (R,B) → C (R,B) is an abstract Volterra operator and there exists lg > 0
such that

|g(x) (t)−g(y)(t)| � lg |x(t)− y(t)|
for all x,y ∈C (R,B) , t ∈ R ;

(C3) h ∈C (R,R) and |h(t)| � |t| for all t ∈ R ;

(C4) there exist l1G > 0, l2G > 0 such that

|G(t,u1,v1,w)−G(t,u2,v2,w)| � l1G |u1−u2|+ l2G |v1 − v2| ,
for all t ∈ R , ui,vi,w ∈ B and i ∈ {1,2} ;

(C5) l1G · lg + l2G < 1;
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(C6) there exists lK > 0 such that:

|K (t,s,u1,v1)−K (t,s,u2,v2)| � lK max{|u1−u2| , |v1 − v2|} ,

for all t ∈ R , ui,vi ∈ B , i ∈ {1,2} ;

(C7) there exists e ∈ B such that

g(x) (0) = e, for all x ∈C (R,B) .

With respect to the equation (1.1) we consider the equation (in β ∈ B),

β = G(0,e,β ,β ) (3.1)

Let SG be the solution set of the equation (3.1).
In what follows we consider the gauge space X :=

(
C (R,B) ,(dn)n∈N

)
, where

dn (x,y) = max
−n�t�n

(
|x(t)− y(t)| · e−τ|t|

)
, τ > 0.

Let B : X → X be defined by

B(x) (t) = G(t,g(x)(t),x(t),x(0))+
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R.

It is obvious that the solution set of the equation (1.1) coincides with FB .
Let Xβ = {x ∈ X | x(0) = β} . Notice that X =

⋃
β∈B

Xβ is a partition of X . We

have:

LEMMA 3.1.

(i) If x ∈ FB , then x(0) ∈ SG ;

(ii) FB∩Xβ �= /0 ⇐⇒ β ∈ SG .

LEMMA 3.2. If β ∈ SG , then Xβ ∈ I (B) .

Our first main result is the following.

THEOREM 3.1. If the conditions (C1)–(C7) are satisfied, then

B

∣∣∣∣∣ ⋃β∈SG

Xβ :
⋃

β∈SG

Xβ →
⋃

β∈SG

Xβ

is a WPO and Card(FB) = Card(SG) .
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Proof. Let β ∈ SG . We denote by Bβ := B
∣∣∣Xβ : Xβ → Xβ . From (C1)–(C7) we

have∣∣Bβ (x) (t)−Bβ (y)(t)
∣∣� (l1G · lg + l2G)dn (x,y)eτ|t| + lKdn (x,y)

∣∣∣∣ t∫
−t

eτ|s|ds

∣∣∣∣
� (l1G · lg + l2G)dn (x,y)eτ|t| + lKdn (x,y)

|t|∫
−|t|

eτ|s|ds

� (l1G · lg + l2G)dn (x,y)eτ|t| + 2lK
τ dn (x,y)eτ|t|, t ∈ [−n;n].

and therefore

dn
(
Bβ (x) ,Bβ (y)

)
�
(

l1G · lg + l2G +
2lK
τ

)
dn (x,y)

for any x,y ∈ Xβ .

For a suitable choice of τ , the operator B
∣∣∣Xβ is a contraction with respect to

(dn)n∈N . Since, for β ∈ SG , the operator Bβ is PO and from Lemma 3.1 we have that
CardFB = CardSG . Moreover, from the characterization theorem of WPOs we get that
B is a WPO. �

4. Data dependence

Consider the following integral equations:

x(t) = Gi (t,g(x)(t),x(t),x(0))+
t∫

−t

Ki (t,s,x(s) ,x(h(s))) , t ∈ R, i ∈ {1,2} .

We have:

THEOREM 4.1. Consider Gi , Ki , i∈{1,2} satisfying the conditions (C1)–(C7) .
In addition, we suppose:

(i) there exists η1 > 0 such that

|G1 (t,u,v,z)−G2 (t,u,v,z)| � η1

for all t ∈ R , u,v,z ∈ B;

(ii) there exists η2 > 0 such that

|K1 (t,s,u,v)−K2 (t,s,u,v)| � η2

for all t,s ∈ R , u,v ∈ B;
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We denote by

Bi : X → X

Bi (x) (t) = Gi (t,g(x)(t),x(t),x(0))+
t∫

−t
Ki (t,s,x(s) ,x(h(s))) , i ∈ {1,2}

the operators generated by the above integral equations.
Then we have:

Hdn (FB1 ,FB2) � (η1 +2nη2)max

{
1

1−a1
,

1
1−a2

}
,

where ai =
(
l1Gi · lg + l2Gi +

2lKi
τ

)
, for i ∈ {1,2} .

Proof. From Theorem 3.1 we have that

Bi

∣∣∣∣∣ ⋃
β∈SGi

Xβ :
⋃

β∈SGi

Xβ →
⋃

β∈SGi

Xβ , i ∈ {1,2}

are WPOs. Moreover, Bi

∣∣∣Xβ is a contraction, with constant ai =
(
l1Gi · lg + l2Gi +

2lKi
τ

)
,

i ∈ {1,2} , with respect to (dn)n∈N for a suitable choice of τ . Therefore Bi

∣∣∣∣∣ ⋃
β∈SGi

Xβ is

ci−WPO, where ci = 1
1−ai

. Also, we have:

|B1 (x)(t)−B2 (x) (t)| � |G1 (t,g(x)(t),x(t),x(0))−G1 (t,g(x)(t),x(t),x(0))|

+
∣∣∣∣ t∫
−t

|K1 (t,s,x(s) ,x(h(s)))−K2 (t,s,x(s) ,x(h(s)))|ds

∣∣∣∣
� η1 +2η2 |t| � η1 +2η2n

for every t ∈ [−n;n] .
Thus,

dn (B1 (x) ,B2 (x)) � η1 +2η2n.

The conclusion follows from Theorem 2.4. �

Further on, we consider the case SG = {β ∗} and the integral equation depending
on a parameter λ of the form:

x(t,λ ) = G(t,x(t,λ ),β ∗,λ )+
t∫

−t

K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ )ds, (4.1)

for any t ∈ R, λ ∈ J . In this case β ∗ ∈ B satisfies β ∗ = G(0,β ∗,β ∗,λ ) and x(0,λ ) =
β ∗ for all λ ∈ J .
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THEOREM 4.2. We suppose that:

(i) J is a compact interval of R and K ∈C
(
R2×B2× J,B

)
;

(ii) h satisfies condition (C3);

(iii) there exists a unique β ∗ ∈ B such that

β ∗ = G(0,β ∗,β ∗,λ ) , for all λ ∈ J.

(iv) G(t, ·,β ∗,λ ) ∈C1 (B,B) and there exists M1 > 0 such that

‖D2G(t, ·,β ∗,λ )‖ � M1, for all t ∈ R, λ ∈ J;

(v) l1G < 1 ;

(vi) K (t,s, ·,v,λ ) , K (t,s,u, ·, ,λ ) ∈C1 (B,B) and there exists M2 > 0 such that

‖D3K (t,s, ·,v,λ )‖ � M2, ‖D4K (t,s,u, ·,λ )‖ � M2,

for all t,s ∈ R, u,v ∈ B and λ ∈ J ;

(vii) K (t,s,u,v, ·) ∈C1 (J,B) , for all t,s ∈ R , u,v ∈ B .

In these conditions we have the following conclusions:

(a) the equation (4.1) has a unique solution x∗ in C (R× J,B);

(b) for all x0 ∈C (R× J,B) the sequence (xn)n∈N defined by:

xn+1 (t,λ )= G(t,xn(t,λ ),β ∗,λ )+
t∫

−t

K (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ )ds, t ∈R, λ ∈ J,

converges uniformly, on each compact of R× J , to x∗ ;

(c) x∗ (t, ·) ∈C1 (J,B) , for all t ∈ R .

Proof. Let X = C (R× J,B) and B : X → X ,

B(x)(t,λ ) = G(t,x(t,λ ),β ∗,λ )+
t∫

−t

K (t,s,x(s) ,x(h(s) ,λ ) ,λ )ds, t ∈ R, λ ∈ J.

The conclusions (a) and (b) follow as in the proof of Theorem 3.1. Since SG = {β ∗}
we have that B is a PO.
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(c) We shall use the following heuristic argument. We suppose that there exists
∂x∗
∂λ . Then, from (4.1), we have:

∂x∗

∂λ
(t,λ ) = (D2G(t,x∗ (s,λ ) ,β ∗,λ ))

(
∂x∗
∂λ (t,λ )

)
+ ∂G

∂λ (t,x∗ (s,λ ) ,β ∗,λ )

+
t∫

−t
(D3K (t,s,x∗ (s,λ ) ,x∗ (h(s) ,λ ) ,λ ))

(
∂x∗
∂λ (s,λ )

)
ds

+
t∫

−t
(D4K (t,s,x∗ (s,λ ) ,x∗ (h(s) ,λ ) ,λ ))

(
∂x∗
∂λ (h(s) ,λ )

)
ds

+
t∫

−t

∂K
∂λ (t,s,x∗ (s,λ ) ,x∗ (h(s) ,λ ) ,λ )ds

This relation suggests to consider the following operator

C : X ×X → X
(x,y) �→C (x,y)

where

C (x,y) (t,λ ) = (D2G(t,x(s,λ ) ,β ∗,λ )) (y(t,λ ))+ ∂G
∂λ (t,x(s,λ ) ,β ∗,λ )

+
t∫

−t
(D3K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ ))(y(s,λ ))ds

+
t∫

−t
(D4K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ ))(y(h(s) ,λ ))ds

+
t∫

−t

∂K
∂λ (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ )ds

By this procedure, we generate the triangular operator

A : X ×X → X ×X
A(x,y) = (B(x) ,C (x,y)) .

From (iv)–(vii) it follows that C (x, ·) : X → X , x ∈ X are contractions. Indeed, we
have:

|C (x,y) (t,λ )−C (x,z) (t,λ )|
� |(D2G(t,x(s,λ ) ,β ∗,λ ))(y(t,λ )− z(t,λ ))|

+
∣∣∣∣ t∫
−t

|(D3K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ ))(y(s,λ )− z(s,λ ))|ds

∣∣∣∣
+
∣∣∣∣ t∫
−t

|(D4K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ ))(y(h(s) ,λ )− z(h(s) ,λ ))|ds

∣∣∣∣
� M1 |y(t,λ )− z(t,λ )|+M2

|t|∫
−|t|

|y(s,λ )− z(s,λ )|ds
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+M2

|t|∫
−|t|

|y(h(s) ,λ )− z(h(s) ,λ )|ds

�
(

M1eτ|t| +2M2

|t|∫
−|t|

eτ|s|ds

)
·dn (y,z)

�
(
M1 + 4M2

τ

)
·dn (y,z)eτ|t|

�
(
l1G + 4lK

τ

)
·dn (y,z)eτ|t|, t ∈ [−n;n].

Therefore

dn (C (x,y) ,C (x,z)) �
(

l1G +
4lK
τ

)
·dn (y,z)

∀x,y,z ∈ X .
For suitable choices of the parameter τ > 0, the operator B and the operators

C (x, ·) are contractions. Using Theorem 2.6 we conclude that A is a PO and the se-
quences (xn)n∈N and (yn)n∈N defined by:

xn+1 (t,λ ) = G(t,xn(t,λ ),β ∗,λ )+
t∫

−t
K (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ )ds, t ∈ R, λ ∈ J,

yn+1 (t,λ ) = (D2G(t,xn (s,λ ) ,β ∗,λ ))(yn (t,λ ))+ ∂G
∂λ (t,xn (s,λ ) ,β ∗,λ )

+
t∫

−t
(D3K (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ ))(yn (s,λ ))ds

+
t∫

−t
(D4K (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ ))(yn (h(s) ,λ ))ds

+
t∫

−t

∂K
∂λ (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ )ds

converge uniformly on each compact of R× J to (x∗,y∗) ∈ FA , for all x0,y0 ∈ X .
Notice that, for fixed x0,y0 ∈ X such that y0 = ∂x0

∂λ we have that y1 = ∂x1
∂λ and thus,

by induction, we can prove that yn = ∂xn
∂λ . Hence ∂xn

∂λ converges uniformly on each

compact of R× J to y∗ . The above relations imply that there exists ∂x∗
∂λ and ∂x∗

∂λ =
y∗. �

5. The modified equation (1.1)

In this section we will consider the equation:

x(t) = G(t,g(x)(t) ,x(t) ,x(0))+

|t|∫
−|t|

K (t,s,x(s) ,x(h(s)))ds. (5.1)

From Theorem 3.1 we get:
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THEOREM 5.1. If (C1)–(C7) hold, then

B

∣∣∣∣∣ ⋃β∈SG

Xβ :
⋃

β∈SG

Xβ →
⋃

β∈SG

Xβ

is WPO and Card(FB) = Card(SG) .

THEOREM 5.2. We consider the equation (5.1) such that all the assumptions of
Theorem 5.1 hold. In addition, we suppose that :

(C8) B is an ordered Banach space;

(C9) the operators G(t, ·, ·, ·) : B×B×B → B , K (t,s, ·, ·) : B×B → B , g : B → B

are increasing.

Let x and y be two solutions of the equation (5.1). If x(0) � y(0) then x(t) � y(t)
for all t ∈ R .

Proof. We remark that x ∈ Xx(0) and y ∈ Xy(0) . If u ∈ B , then we denote by ũ the
constant function

ũ : B → B, ũ(t) = u, for all t ∈ R.

It is obvious that
x̃(0) ∈ Xx(0) and ỹ(0) ∈ Xy(0).

thus we have
x = B∞

(
x̃(0)

)
, y = B∞

(
ỹ(0)

)
.

From the monotonicity of the operator B∞ , we get x � y . �

THEOREM 5.3. Let Gi , Ki , g , h be as in Theorem 4.1, i ∈ {1,2,3} . In addition,
we suppose that:

(C
′
9) the operators G2 (t, ·, ·, ·) , K2 (t,s, ·, ·) and g are increasing;

(C10) G1 � G2 � G3 , K1 � K2 � K3 ;

(C11) SG1 = SG2 = SG3 .

If xi is a solution of equation (5.1) corresponding to Gi and Ki , for i ∈ {1,2,3} ,
then

x1 (0) � x2 (0) � x3 (0) =⇒ x1 � x2 � x3.

Proof. Let Bi be the operator corresponding to Gi and Ki , for i ∈ {1,2,3} . We
have that

xi = B∞
i

(
x̃i (0)

)
, i = 1,2,3.

The proof follows now from Theorem 2.3. �
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THEOREM 5.4. We suppose that all the hypothesis of Theorem 5.2 hold. Let x be
a lower solution of the equation (5.1), i.e.

x(t) � G(t,g(x)(t) ,x(t) ,x(0))+

|t|∫
−|t|

K (t,s,x(s) ,x(h(s)))ds.

Then x � B∞ (x) .

Proof. The conclusion follows from Theorem 2.2. �
In similar way to the previous section, we can give a result concerning the deriv-

ability with respect to the parameter λ . We, also, assume that G=G(t,x(t,λ ),x(0,λ ) ,λ ) ,
SG = {β ∗} and the integral equation (5.1) depending on the parameter λ is given by:

x(t,λ ) = G(t,x(t,λ ),β ∗,λ )+

|t|∫
−|t|

K (t,s,x(s,λ ) ,x(h(s) ,λ ) ,λ )ds. (5.2)

In the same manner as in the proof of Theorem 4.2, we can prove the following result:

THEOREM 5.5. Suppose that:

(i) J is a compact interval of R and K ∈C
(
R2×B2× J,B

)
;

(ii) h satisfies (C3);

(iii) there exists a unique β ∗ ∈ B such that

β ∗ = G(0,β ∗,β ∗,λ ) , for all λ ∈ J.

(iv) G(t, ·,β ∗,λ ) ∈C1 (B,B) and there exists M1 > 0 such that

‖D2G(t, ·,β ∗,λ )‖ � M1, for all t ∈ R, λ ∈ J;

(v) l1G < 1 ;

(vi) K (t,s, ·,v,λ ) , K (t,s,u, ·,λ ) ∈C1 (B,B) and there exists M2 > 0 such that

‖D3K (t,s, ·,v,λ )‖ � M2, ‖D4K (t,s,u, ·,λ )‖ � M2,

for all t,s ∈ R, u,v ∈ B and λ ∈ J;

(vii) K (t,s,u,v, ·) ∈C1 (J,B) , for all t,s ∈ R , u,v ∈ B .

In these conditions we have:

(a) the equation (5.2) has a unique solution x∗ in C (R× J,B);
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(b) for all x0 ∈C (R× J,B) the sequence (xn)n∈N given by:

xn+1 (t,λ ) = G(t,xn(t,λ ),β ∗,λ )

+

|t|∫
−|t|

K (t,s,xn (s,λ ) ,xn (h(s) ,λ ) ,λ )ds., t ∈ R, λ ∈ J,

converges uniformly, on each compact of R× J , to x∗ ;

(c) x∗ (t, ·) ∈C1 (J,B) , for all t ∈ R .

6. Examples

EXAMPLE 6.1.

x(t) = G(t)+
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R.

In this case, the conditions (C1)–(C7) become:

(C1) G ∈C (R,B) and K ∈C
(
R2 ×B2,B

)
;

(C3) h ∈C (R,R) and |h(t)| � |t| , for all t ∈ R ;

(C6) there exists lK > 0 such that:

|K (t,s,u1,v1)−K (t,s,u2,v2)| � lK max{|u1−u2| , |v1 − v2|} ,

for all t ∈ R , ui,vi ∈ B , i ∈ {1,2} ;

Notice that SG = {G(0)} and, therefore, the integral equation has a unique solu-
tion.

EXAMPLE 6.2.

x(t) = x(0)+
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R.

In this case, the conditions (C1)–(C7) become:

(C1) K ∈C
(
R2×B2,B

)
;

(C3) h ∈C (R,R) and |h(t)| � |t| , for all t ∈ R ;

(C6) there exists lK > 0 such that:

|K (t,s,u1,v1)−K (t,s,u2,v2)| � lK max{|u1−u2| , |v1 − v2|} ,

for all t ∈ R , ui,vi ∈ B , i ∈ {1,2} .
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In this case SG = B and the integral equation has an infinite number of solutions.

EXAMPLE 6.3. Let B = R and

x(t) = x(0)3 +
t∫

−t

K (t,s,x(s) ,x(h(s))) , t ∈ R.

The conditions (C1)–(C7) become:

(C1) K ∈C
(
R4,R

)
;

(C3) h ∈C (R,R) and |h(t)| � |t| , for all t ∈ R ;

(C6) there exists lK > 0 such that:

|K (t,s,u1,v1)−K (t,s,u2,v2)| � lK max{|u1−u2| , |v1 − v2|} ,

for all t,ui,vi ∈ R , i ∈ {1,2} .

In this case SG = {−1,0,1} and since Card(SG) = Card(FB) , we get that the
integral equation has exactly three solutions.
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[5] D. O’REGAN, A. PETRUŞEL, T. P. PETRU, Fixed point results for Ciric type contractions on a set
with two separating gauge structures, Sci. Math. Jpn., 68(2008), no. 3, 361–369.
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