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Abstract. We shall introduce natural regularizations for singular integrals from the viewpoint
of numerical treatments and establish very good error estimates (fundamental inequalities for
potentials) for the regularizations.

1. Introduction and motivation

In the paper [15], from its general ideas, we gave a concrete representation for-
mula of some general inverse functions. When we consider some general methods and
ideas for the inversion formulas for some general non-linear mappings, however, their
formulations will be, in general, very involved. We shall recall the principle for our
method for the representations of inverses of non-linear mappings based on [15]:

We shall consider some representation of the inversion φ−1 in terms of some inte-
gral form – at this moment, we need to postulate a natural assumption on the mapping φ
. Then, we shall transform the integral representation by the mapping φ to the original
space that is the defined domain of the mapping φ . Then, we will be able to obtain the
representation of the inverse φ−1 in terms of the direct mapping φ . In [15], we consid-
ered the representation of the inverse φ−1 in some reproducing kernel Hilbert spaces,
and in [22], we considered the representations of the inverse φ−1 for a very concrete
situation and we gave a very fundamental representation of the inverse for some gen-
eral functions on one dimensional spaces. When we consider its multi-dimensional
versions, it seems that we can not find some simple representations by some concrete
known reproducing kernels for some general domains, and indeed, we know the re-
producing kernels only for special domains and for special reproducing kernel Hilbert
spaces (cf. [16]). It seems that for the integral representations of some function spaces,
the representations by regular integrals (not singular integrals) are very complicated
numerically or as concrete representations. However, when we use singular integrals,
we can consider the representations in some general ways.

Indeed, we shall recall the following fundamental facts:
We can represent a function f in terms of the delta function δ in the form
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f (q) =
∫

D
f (p)δ (p−q)dp (1.1)

in some domain, symbolically for some general function f . Moreover, a fundamental
solution G(p−q) for some linear differential operator L is given by the equation,

LG(p−q) = δ (p−q). (1.2)

So, from (1.1) we obtain the representation

f (q) =
∫

D
f (p)LG(p−q)dp. (1.3)

Then, we can obtain the representation symbolically, by using the Green-Stokes for-
mula, for some adjoint operator L∗ for L ,

f (q) =
∫

D
L∗ f (p)G(p−q)dp+ some boundary integrals. (1.4)

We shall use this type of representation. In this approach, we will encounter a singular
integral representation in the first term of (1.4). However, if G(p− q) is integrable,
then a simple regularization of G(p− q) will enable us to realize the representation
in numerical treatments. We are interested in some very concrete results that may be
achieved by computers. For example, we shall consider very concrete cases in the two
dimensional spaces.

Let D ⊂ R2 be a bounded domain with a finite number of piecewise C1 class
boundary components. Let f be a one-to-one C1 class mapping from D into R2 and
we assume that its Jacobian J(x) is positive on D . We shall represent f as follows:

y1 = f1(x) = f1(x1,x2)
y2 = f2(x) = f2(x1,x2) (1.5)

and the inverse mapping f−1 of f as follows:

x1 = ( f−1)1(y) = ( f−1)1(y1,y2)

x2 = ( f−1)2(y) = ( f−1)2(y1,y2). (1.6)

Then, we shall represent (
( f−1)1(y∗)
( f−1)2(y∗)

)
(1.7)

in terms of the direct mapping (1.5).
Of course, we are interested in some numerical and practical solutions for the

simultaneous non-linear equations (1.5).
For some representation of type (1.4) connected to (1.2), of functions containing

the functions (1.6), we shall consider the representation by the fundamental solution for
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the Laplace equation. However, its representation will be complicated for the present
situation (note that for the three dimensional case, the representation is very simple
by using the fundamental solution of the Laplace equation) and furthermore, for the
Laplace equation we shall consider the representation for the C2 class functions. At
this moment, we shall recall the representation by using the fundamental solution for
the ∂z equation for complex versions ([8, Theorem 1.2.1]). Then we can obtain the
integral representations for the C1 class functions by using the Green-Stokes formula.
In the complex representation, we assume that the imaginary part is zero, then we can
obtain the integral representation of the C1 class functions. Then, following the general
method and transforming by the mapping (1.5) of the integral representation, we can
obtain the desired result.

PROPOSITION 1. ([24]) For the mappings (1.5) and (1.6), we obtain the following
representation of (1,7), for any y∗ = (y∗1,y

∗
2) ∈ f (D):(

( f−1)1(y∗)
( f−1)2(y∗)

)

=
1
2π

∮
∂D

(
x1

x2

)
d Arctan

f2(x)− y∗2
f1(x)− y∗1

− 1
2π

∫ ∫
D

1
| f (x)− y∗|2 adjJ(x)

(
f1(x)− y∗1
f2(x)− y∗2

)
dx1dx2.

Anyhow we can obtain many integral representations by using singular integrals
for many function spaces. Now we are interested in the numerical calculations for
the singular integrals. For example, in Proposition 1, we considered the very natural
method for the singular integral: Given the singular integral

− 1
2π

∫ ∫
D

1
| f (x)− y∗|2 adjJ(x)

(
f1(x)− y∗1
f2(x)− y∗2

)
dx1dx2,

we calculate the regularized integral, for a very small λ

− 1
2π

∫ ∫
D

1
| f (x)− y∗|2 +λ

adjJ(x)
(

f1(x)− y∗1
f2(x)− y∗2

)
dx1dx2.

For this regularized integral, its computational calculation is very simple. At this mo-
ment, we are interested in the error estimate in these integrals. So, in this paper, we
shall discuss this type of error estimates (fundamental inequalities for potentials).

There are huge amount of papers concerned with the integral operators of the type

K f (x) =
∫

Rn
k(x,y) f (y)dy,

where k is measurable function with certain integrability. From the viewpoint of har-
monic analysis, [1, 2, 3, 4] are key papers when k(x,y) = k(x− y) satisfies

|k(x)| � c
|x|n , |∇k(x)| � c

|x|n+1
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and K itself is L2 -bounded. Also, when the kernel k is a bound c | · |α−n, α > 0 or K
satisfies some estimates similar to this one, it is investigated from various viewpoints.
A famous result, as is written in the textbook [21], says that K is bounded from Lp to

Lq when 1 < p < q < ∞,
1
q

=
1
p
− α

n
and k(x) = |x|α−n . If k(x) = |x|α−n , then K

is called the potential operator. This boundedness has been investigated more subtly
and we have huge amount of results. We can find a tip of iceberg of this vast field
attempting to investigate the integrability of the fractional integral operators in more
depth in [6, 7, 9, 10, 12, 13, 17, 18, 19, 20], where the kernel and the function spaces
are very generalized.

In the present paper we are concerned with the potential operators with k(x) =
|x|α−n and k(x) = log |x| . However, we are not oriented to further generalization of the
results in [6, 7, 9, 10, 12, 13, 17, 18, 19, 20]. What we aim at is quite opposite : We
shall mainly consider the operators of the form

K f (x) =
∫

k(x− y) f (y)dy, I f (x) =
∫

f (y) log |x− y|dy.

In Section 2 we investigate some general inequalities for K . In Section 3 we consider
the case I f and in Section 4 we shall investigate the error estimates for the natural
regularization. In the final section, Section 5, we shall give computational experiments
for our natural regularizations.

2. Some general properties and inequalities for the operator K

LEMMA 1. Denote by M the uncentered ball-maximal operator, that is, we define

M f (x) = sup
x∈B

1
|B|
∫

B
| f (x)|dx

for measurable functions f , where B runs over all the balls containing x . Then

‖M f‖p �
(

p2p 3n

p−1

) 1
p

‖ f‖p

for all f ∈ Lp with 1 < p < ∞ .

This is a well-known theorem (see [21]). The number 3n comes about by using
a covering lemma called 5r -covering lemma. The 5r -coverling lemma, as the name
suggests, involves the number 5. However, this covering lemma is refined and the
number 3 comes about. We can find an example of this refined covering lemma in the
celebrated paper [14].

To formulate our result we need to define two norms.

DEFINITION 1. 1. Given a locally integrable function f , we define

‖ f : BMO‖ = sup
B

(
1
|B|
∫

B

∣∣∣∣ f (x)− 1
|B|
∫

B
f (y)dy

∣∣∣∣ dx

)
,

where B runs over all the balls in Rn .
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2. Given a continuous function f , one defines

‖ f : Lip(α)‖ = sup
x,y∈Rn,x�=y

| f (x)− f (y)|
|x− y|α

for 0 < α < 1 .

Our main result in this section reads:

THEOREM 1. Suppose that k : Rn ×Rn → C is a measurable function. Assume
that there exist c0,c1,δ ,α > 0 such that

|k(x,y)| � c0 |x− y|−n+α

|∂xk(x,y)| � c1 |x− x′|ε |x− y|−n+α−ε

for some ε ∈ (0,1] . Define

K f (x) =
∫

k(x,y) f (y)dy

as long as the integral converges. Then we have the following.

1. Let f ∈ Lp0 for some 1 � p0 < n
α . Then the integral defining K f (x) converges

absolutely. Assume that
1
s0

=
1
p0

− α
n

.

Furthermore, it satisfies the following pointwise inequality

|K f (x)| � c0 (n−α)n|B(1)|1− α
n

α(n− p0α)
M f (x)

p0
s0 ‖ f‖p0

1− p0
s0 ,

where B(1) denotes the open unit ball in Rn .

2. Assume that
1
s

=
1
p
− α

n
.

Then the inequality

‖K f‖s � c0 (n−α)n|B(1)|1− α
n

α(n− pα)

(
p2p 3n

p−1

) 1
s

‖ f‖p

holds for all f ∈ Lp .

3. Assume that

p =
α
n

, 1 < p0 <
n
α

,
1
s0

=
1
p0

− α
n

.

Then the inequality

‖K f : BMO‖ � C(c0,c1,s, p,s0, p0,α,n)‖ f‖p
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holds for all f ∈ Lp ∩L1 . Here

C(c0,c1,s, p,s0, p0,α,n) = 2
1+ n

s0
c0 (n−α)n|B(1)|1− α

n

α(n− p0α)

(
p0 2p0 3n

p0−1

) 1
s0

+ c1 (n+ ε−α)
∫ ∞

0

(1+ �)n− n
p d�

�1+n+ε−α .

4. Assume that
α <

n
p

< α +1.

Then the inequality

‖ f : Lip(α −n/p)‖� D(c0,c1,s, p,s0, p0,α,n)‖ f‖p

holds for all f ∈ Lp ∩L1 . Here

D(c0,c1,s, p,s0, p0,α,n)

=

⎛
⎝∫ ∞

1

(�+1)
1
p′

�n+ε−α+1

⎞
⎠

1
p′

+4

( |S1|
(n− p′(n−α))

) 1
p′

rn/p′−(n−α).

Proof. By the Fubini theorem we have

|K f (x)| � c0

∫
Rn

| f (y)|
|x− y|n−α dy

= c0 (n−α)
∫ ∞

0

1
�n−α+1

(∫
B(x,�)

| f (y)|dy

)
d�

= c0 (n−α)
∫ ∞

0

1
�n−α+1 min(|B(1)|M f (x)�n, |B(1)|1− 1

p ‖ f‖p�
n− n

p )d�.

Now let us calculate
∫ ∞

0

1
�n−α+1 min(A�n,B�n− n

p )d� with A,B > 0.

∫ ∞

0

1
�n−α+1 min(A�n,B�n− n

p )d� =
∫ ( B

A )
p
n

0
A�α−1 d�+

∫ ∞

( B
A)

p
n
B�α−

n
p−1 d�

=

(
1
α

+
1

n
p −α

)
A1− pα

n B
pα
n

=
n

α(n− pα)
A1− pα

n B
pα
n .

As a consequence we obtain

|K f (x)| � c0 (n−α)n|B(1)|1− α
n

α(n− pα)
M f (x)1− pα

n ‖ f‖p
pα
n .
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1. is therefore established.

Now we prove the second assertion. If we invoke Lemma 1, then we obtain

(∫
|K f (x)|s dx

) 1
s

� c0 (n−α)n|B(1)|1− α
n

α(n− pα)

(∫
M f (x)p dx

) 1
s

‖ f‖p
pα
n

� c0 (n−α)n|B(1)|1− α
n

α(n− pα)

(
p2p 3n

p−1

) 1
s

‖ f‖p.

Concerning the third assertion, we begin with fixing a cube B . Let us set

f1 = χ2B f , f2 = f − f1.

By using this decomposition, we have

1
|B|
∫

B
|K f (x)−mB(K f )|dx

� 1
|B|
∫

B
|K f1(x)−mB(K f1)|dx+

1
|B|
∫

B
|K f2(x)−mB(K f2)|dx.

Concerning the first term, we have chosen an auxiliary constant 1 < p0 <
n
α

. Set

1
s0

=
1
p0

− α
n

.

With this constant, we obtain

1
|B|
∫

B
|K f1(x)−mB(K f1)|dx

� 2
|B|
∫

B
|K f1(x)|dx

� 2

(
1
|B|
∫

B
|K f1(x)|s0 dx

) 1
s0

� 2
1+ n

p0
c0 (n−α)n|B(1)|1− α

n

α(n− p0α)

(
p0 2p0 3n

p0 −1

) 1
s0 |B| αn

(
1

|2B|
∫

2B
| f (x)|p0 dx

) 1
p0

� 2
1+ n

s0
c0 (n−α)n|B(1)|1− α

n

α(n− p0α)

(
p0 2p0 3n

p0−1

) 1
s0
(∫

| f (x)| n
α dx

) α
n

.
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Now let us turn to the second term

1
|B|
∫

B
|K f2(x)−mB(K f2)|dx

=
1
|B|
∫

B

∣∣∣∣
∫

Rn
K(x,y) f2(y)dy− 1

|B|
∫

B

(∫
Rn

K(z,y) f2(y)dy

)
dz

∣∣∣∣ dx

=
1

|B|2
∫

B

∣∣∣∣
∫

Rn

∫
B
K(x,y) f2(y)−K(z,y) f2(y)dydz

∣∣∣∣ dx

=
1

|B|2
∫

B×B×Rn\2B
|K(x,y)−K(z,y)| · | f (y)|dzdxdy

� c1
1

|B|2
∫

B×B×Rn\2B

r(B)ε | f (y)|
(|y− c(B)|− r(B))n+ε−α dzdxdy

� c1

∫
Rn\2B

r(B)ε | f (y)|
(|y− c(B)|− r(B))n+ε−α dy.

Note that

1
(|y− c(B)|− r(B))n+ε−α = (n+ ε−α)

∫ ∞

|y−c(B)|−r(B)

d�

�1+n+ε−α

= (n+ ε−α)
∫ ∞

0
χB(c(B),r(B)+�)(y)

d�

�1+n+ε−α .

Hence it follows that

1
|B|
∫

B
|K f2(x)−mB(K f2)|dx � c1 (n+ ε−α)

∫ ∞

0

(1+ �)n− n
p d�

�1+n+ε−α ‖ f‖p.

In view of the definition of the BMO spaces, the proof follows.
Finally let us consider the last assertion. Let us fix two (distinct) points x,y and

set
r = 2|x− y|.

Then we have

K f (x)−K f (y) =
∫

B(x,r)
+
∫

B(y,r)\B(x,r)
+
∫

Rn\B(x,r)∪B(y,r)
(k(x,z)− k(y,z)) f (z) dz.

As for the first term, we use the second assertion,∫
B(x,r)

|(k(x,z)− k(y,z)) f (z)|dz � 2
∫

B(x,r)

| f (z)|
|x− z|n−α dz

� 2‖ f‖p

(∫
B(x,r)

1

|x− z|p′(n−α) dz

) 1
p′

� 2‖ f‖p

(∫ r

0

|S1|
Rp′(n−α)−n+1

dR

) 1
p′

� 2‖ f‖p

( |S1|
(n− p′(n−α))

) 1
p′

rn/p′−(n−α).
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The second term can be estimated similarly.
As for the last term, we have∫
Rn\B(x,r)∪B(y,r)

|k(x,z)− k(y,z)|| f (z)|dz �
∫

Rn\B(x,r)

c1 |x− y|ε | f (z)|dz
(|x− z|− |x− y|)n+ε−α .

A similar computation yields

∫
Rn\B(x,r)

c1 |x− y|ε | f (z)|dz
(|x− z|− |x− y|)n+ε−α � ‖ f‖p|x− y|n−α

⎛
⎝∫ ∞

1

(�+1)
1
p′

�n+ε−α+1

⎞
⎠

1
p′

.

By combining the estimates above, we obtain the last inequality and the proof is com-
plete.

We are in the position of applying Theorem 1 to the special case :

K(x,y) =
1

(|x− y|+ δ )n−α − 1
(|x− y|+ δ ′)n−α . (2.8)

Then, we can obtain the desired error estimates

THEOREM 2. 1. Assume that

1 < α < n+1, 1 < p < q < ∞,
1
q

=
1
p
− α−1

n
.

Then, the operator K defined by (2.8), satisfies ‖K‖Lp→Lq � c |δ − δ ′| , where c
is independent of δ ,δ ′ .

2. Assume that
1 < α < n+1, p =

n
α−1

.

Then, the operator K defined by (2.8), satisfies ‖K‖Lp→BMO � c |δ − δ ′| , where
c is independent of δ ,δ ′ .

3. Assume that
1 < α < n+1, 0 < β = α−1− n

p
< 1.

Then, the operator K defined by (2.8), satisfies ‖K‖Lp→Lipβ � c |δ − δ ′| , where
c is independent of δ ,δ ′ .

Proof. Note that

|K(x,y)| � |δ − δ ′|
|x− y|n−α+1

for all x,y ∈ Rn with x �= y and

|∂xK(x,y)| = |∂yK(x,y)| � (n−α)|δ − δ ′|
|x− y|n−α+2

for all x,y∈Rn with x �= y . As a consequence we can use Theorem 1 with c0 = |δ−δ ′|
and c1 = (n−α)|δ − δ ′| and the proof follows.
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3. The logarithmic potential case

In this section, we shall consider the integral operator

I f (x) :=
∫
Ω

f (y) log |x− y|dy,

where Ω is a bounded domain in Rn . Here, we assume that n � 2.
Let us set

Ω∗ := {x− y : x,y ∈Ω},
which is still bounded. Assume that Ω ⊂ B(R) , where B(R) denotes the open ball
centered at the origin of radius R > 0. We also denote by σn the volume of the unit

surface: σn = 2π
n
2Γ
(n

2

)−1
.

Our main result in this section reads:

THEOREM 3. Let n � 2 and 1 � p �∞ . Suppose Ω is a bounded domain in Rn .

1. The operator I given by

I f (x) :=
∫
Ω

f (y) log |x− y|dy

converges for almost every x ∈Ω , whenever f ∈ L1(Ω) .

2. The operator I is Lp(Ω)-bounded. More precisely, we have the following in-
equality

‖I‖Lp(Ω)→Lp(Ω) � M(I) := σn

∫ 2R

0
rn−1| logr|dr.

3. Let δ > 0 and define

Iδ f (x) :=
∫

f (y) log(|x− y|+ δ )dy.

Then we have the following inequality

‖ Iδ − I‖Lp(Ω)→Lp(Ω) � 2n−1δ
n−1

Rn−1.

We remark that M∗(I) is finite because we are assuming that n � 2.

Proof. Let us begin with the proof of 2. because 1. is tacitly contained in 2.. Let
f ∈ Lp(Ω) and x ∈Ω . Then we have

I f (x) =
∫
Ω

f (y) · (χΩ∗(x− y) log |x− y|)dy.

Below it will be understood that any function f defined in Ω or Ω∗ is extended by
setting f ≡ 0 outside the domain where f is defined. By the Young inequality we have

‖I f‖Lp(Ω) = ‖I f‖Lp � ‖χΩ∗ log | · |‖1‖ f‖Lp = ‖χΩ∗ log | · |‖1‖ f‖Lp(Ω).
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If we write ‖χΩ∗ log | · |‖1 in the polar coordinate, then we have

‖χΩ∗ log | · |‖1 � ‖χB(2R) log | · |‖1 = σn

∫ 2R

0
rn−1| logr|dr

and the proof of 2. follows. Also the proof of 3. is similar. In fact, note that the operator
norm of I− Iδ is bounded by∫

Ω∗
| log |y|− log(|y|+ δ ) | dy.

If we use the trivial estimate log(1+ t) � 1+ t , then we obtain

∫
Ω∗

| log |y|− log(|y|+ δ ) | dy =
∫
Ω∗

log

(
1+

δ
|y|
)

dy

�
∫

B(2R)
log

(
1+

δ
|y|
)

dy �
∫

B(2R)

δ
|y| dy.

Again by writing the integral in the polar coordinate we obtain

∫
B(2R)

δ
|y| dy = δ σn

∫ 2R

0
rn−2 dr =

2n−1δ
n−1

Rn−1.

Therefore, the proof is complete.

4. Various inequalities connected to the operator I

THEOREM 4. Let 1 � p � q � ∞ . Define P by

1+
1
q

=
1
p

+
1
P

.

Then we have

‖I f‖Lq(Ω) � vn
1
P

(∫ 2R

0
rn−1| logr|P dr

) 1
P

‖ f‖Lp(Ω),

where R is a constant such that Ω⊂ B(R) .

Proof. Let us keep to the same notation and the same convention as the proof of
Theorem 3. By the Hölder inequality we have

|I f (x)| �
∫

Rn
| f (y)|χΩ∗ | log(x− y)|dy.

Therefore, by the Young inequality, we obtain

‖I f‖Lq � ‖ f‖Lp

(∫
Ω∗

| logx|P dx

) 1
P

� ‖ f‖Lp

(∫
B(2R)

| logx|P dx

) 1
P
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If we write

(∫
B(2R)

| logx|P dx

) 1
P

in the polar coordinate, then we obtain the desired

result.
Now we consider the condition for I f to be continuous.

THEOREM 5. Let 1 � p <∞ . Then I f belongs to BUC, the set of all continuous
functions, with the norm estimate

‖I f‖BUC � vn

1
p′
(∫ 2R

0
rn−1| logr|p′ dr

) 1
p′ ‖ f‖Lp(Ω).

Proof. Let p < ∞ . If f is a continuous function with compact support and con-
tained in Ω , then I f = (χΩ∗ log | · |)∗ f is continuous and supported compactly in Rn .
As a result I f is a uniformly continuous function for such f . Now, since the set of all
continuous functions with support contained in Ω forms a dense subset in Lp(Ω) , we
obtain f ∈ BUC for all f ∈ Lp(Ω) .

If p = ∞ , then inclusion f ∈ L∞(Ω) ⊂ L1(Ω) gives us that I f ∈ BUC if f ∈
L∞(Ω) . The proof is therefore complete.

Truncation procedure (Subcritical case)

THEOREM 6. Assume that 1 � p �∞, 0 < θ � 1 satisfies p′θ < n. Then we have

‖ I− Iδ ‖Lp(Ω)→BUC � cp,θδ vn

1
p′ (n− p′)−

1
p′ R

n
p′ −1

.

Proof. As before, the crux of the proof is to show

‖ I− Iδ ‖Lp(Ω)→L∞(Ω) � cθ δθ
(∫

B(R)

dx

|x|p′θ
)

.

The difference lies in the point that we use

log(1+ t) � cθ tθ , t > 0.

Indeed, if we write I− Iδ out in full, we obtain

I f (x)− Iδ f (x) =
∫
Ω

f (y) log

(
1+

δ
|x− y|

)
dy.

Hence it follows that

|I f (x)− Iδ f (x)| �
∫
Ω
| f (y)|χΩ∗(x− y) log

(
1+

δ
|x− y|

)
dy,

where Ω∗ = {x− y : x,y ∈Ω} . As a consequence, it follows that

|I f (x)− Iδ f (x)| � cθ

∫
Ω
| f (y)|χΩ∗(x− y)

(
δ

|x− y|
)θ

dy.
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If we use the Young inequality, then we obtain

‖I f − Iδ f‖L∞(Ω) � ‖ f‖Lp(Ω) ·
{∫

B(2R)

(
δ

|x− y|
)p′θ

dy

} 1
p′

.

If we calculate

{∫
B(2R)

(
δ

|x− y|
)p′θ

dy

} 1
p′

, we have the desired result.

Truncation procedure (Limit case)

THEOREM 7. Let 0 < δ < 1 . Then we have

‖I− Iδ‖L
n

n−1 (Ω)→Lip(δ )
� cδ ,

where c is independent of δ .

Proof. This is just a corollary of Theorem 1.

5. Some numerical experiments

For the case of n = 2 in Theorem 6, Figure 1 shows the graphs of the differ-
ence I f (x)− Iδ f (x) on Ω = [0,1]2 for f (y) = 1(left), y1 + y2 (middle), y1y2 (right),
δ = 10−2 (bottom), 10−3 (middle), 10−4 (top). For the case of n = 3,α = 2 in Theo-
rem 1, Figure 2 shows the graphs of the differences K f |[0,1]2×{0.5} on [0,1]2×{0.5}
for f (y) = 1(left), y1 + y2 (middle), y1y2 (right), δ = 10−2 (bottom), 10−3 (middle),
10−4 (top), δ ′ = 10−10 . From these figures we see that the differences I f (x)− Iδ f (x)
and K f (x)−Kδ f (x) seem to converge to zero as parameters δ and δ ′ tend to zero.
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Figure 1. (case of n = 2 in Theorem 6): For f (y) = 1(left), y1 +y2 (middle), y1y2 (right), δ = 10−2 (bottom),

10−3 (middle), 10−4 (top), the graphs of I f (x)− Iδ f (x) on Ω = [0,1]2 .
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