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A REFINED REVERSE ISOPERIMETRIC INEQUALITY IN THE PLANE

SHENGLIANG PAN, XUEYUAN TANG AND XIAOYU WANG

(Communicated by S. Varošanec)

Abstract. It is proved that if γ is a closed strictly convex curve in the plane with length L and
area A , then

L2 � 4πA+2π|Ã|,
with equality holding if and only if γ is a circle, where Ã denotes the oriented area enclosed by
the locus of curvature centers of γ .

1. Introduction

The classical isoperimetric inequality in the Euclidean plane R
2 states that for a

simple closed curve γ of length L , enclosing a region of area A , one gets

L2 −4πA � 0, (1.1)

and the equality holds if and only if γ is a circle. This fact was known to the ancient
Greeks, the first complete mathematical proof was only given in 1882 by Edler [7]
(based on the arguments of Steiner [21]). Since then, there have been various proofs,
sharpened forms, generalizations and applications of this inequality, see, for instance,
papers by Gardner [8], Klain [12], Lawlor [13], survey articles by Blasjö [3], Osserman
[14], [15] and Talenti [22], and books by Bandle [2], Bonnesen-Fenchel [4], Burago-
Zelgaller [5], Chavel [6], Santaló [19], and Schneider [20] and the literature therein.

In 1995, Howard and Treibergs ([10]) gave a reverse isoperimetric inequality for
the plane curves under some assumption on curvature. In the paper [18] by Pan and
Zhang there is a reverse isoperimetric inequality for closed strictly convex plane curve
γ with length L and area A ,

L2 � 4π(A+ |Ã|), (1.2)

where Ã denotes the oriented area of the domain enclosed by the locus of curvature
centers of γ , and the equality in (1.2) holds if and only if γ is a circle. In the present
note, it shows a new reverse isoperimetric inequality

L2 � 4πA+2π |Ã|, (1.3)
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and the equality holds if and only if γ is a circle. (1.3) is a strengthened form of (1.2)
and is a direct consequence of Proposition 2.2 below and the following isoperimetric
inequality (Theorem 3.1): for closed strictly convex planar curves,

∫ 2π

0
ρ2(θ )dθ � L2 −2πA

π
(1.4)

where ρ is the radius of curvature of the curve γ , and furthermore, the equality in (1.4)
holds if and only if γ is a circle. To our surprise, inequality (1.4) is also essential to the
perimeter-preserving curve expanding flow in the plane studied in [17].

REMARKS. (i) It should be pointed out that the above reverse isoperimetric in-
equalities (1.2) and (1.3) are obtained by the integration of the radius of curvature, our
curves must be strictly convex. We wonder if this sort of inequalities can be obtained
for any (simple) closed plane curves. And furthermore, it would be interesting to gen-
eralize these inequalities to the higher dimensional spaces or manifolds. (ii) Another
open problem is that if there is a best constant C such that

L2 � 4πA+C|Ã|, (1.5)

where the equality holds if and only if γ is a circle. we conjecture that the best constant
in (1.5) would be π ; (iii) In higher dimensions, Ball [1] gave a reverse isoperimetric
inequality through volume ratios.

This note is arranged as follows. §2 contains some preliminaries. §3 provides a
detailed outline of the proof of inequality (1.4), and finally, §4 gives the strengthened
reverse isoperimetric inequality (1.3) and its corollary.

2. Preliminaries

2.1. Minkowski’s Support Function

From now on, without loss of generality, suppose that γ is a smooth regular posi-
tively oriented and closed strictly convex curve in the plane R

2 . Take a point O inside
γ as the origin of our frame. Let p be the Minkowski support function of γ which
measures the oriented perpendicular distance from O to the tangent line at a point on
γ , and let θ be the oriented angle from the positive x1 -axis to this perpendicular ray.
Clearly, p is a single-valued 2π -periodic function of θ and γ can be parameterized in
terms of θ and p(θ ) as follows

γ(θ ) =
(
γ1(θ ), γ2(θ )

)
=

(
p(θ )cosθ − p′(θ )sinθ , p(θ )sinθ + p′(θ )cosθ

)
, (2.1)

(see for instance [11]).
The geometric quantities of γ can be expressed in terms of its Minkowski support

function p(θ ) . Its curvature k can be calculated according to

k(θ ) =
dθ
ds

=
1

p(θ )+ p′′(θ )
> 0, (2.2)
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where s is the arc-length parameter of γ . Or equivalently, the radius of curvature ρ is
given by

ρ(θ ) =
ds
dθ

= p(θ )+ p′′(θ ). (2.3)

Denote L and A the length of γ and the area it bounds, respectively. Then one can get
the following Cauchy’s and Blaschke’s formulae

L =
∫
γ
ds =

∫ 2π

0
ρ(θ )dθ =

∫ 2π

0
p(θ )dθ , (2.4)

A =
1
2

∫
γ
p(θ )ds =

1
2

∫ 2π

0
p(θ )

(
p(θ )+ p′′(θ )

)
dθ

=
1
2

∫ 2π

0

[
p2(θ )− p′2(θ )

]
dθ . (2.5)

2.2. Some Properties of the Locus of Curvature Centers

Let β represent the locus of curvature centers of a closed and strictly convex plane
curve γ which is given by (2.1). Then β (θ ) =

(
β1(θ ), β2(θ )

)
can be expressed as

β (θ ) = γ(θ )−ρ(θ )N(θ ) =
(− p′(θ )sinθ − p′′(θ )cosθ , p′(θ )cosθ − p′′(θ )sinθ

)
,

(2.6)
where N(θ ) = (cosθ ,sinθ ) is the unit outward normal vector field along γ .

The following two propositions are essential to the main result of this note, whose
proofs are contained in [18].

PROPOSITION 2.1. The oriented area of the domain enclosed by β is nonpositive.
And moreover, if β is simple, then the orientation of β is the reverse direction against
that of the original curve γ and the total curvature of β is equal to −2π .

PROPOSITION 2.2. Let γ be a C2 closed and strictly convex curve in the plane,
ρ the radius of curvature of γ , A the area enclosed by γ and Ã the oriented area
enclosed by β . Then we have

∫ 2π

0
ρ2dθ = 2(A+ |Ã|). (2.7)

2.3. The Unit-speed Outward Normal Flow

Consider a closed convex plane curve γ(θ ) � γ0(θ ) and suppose it moves so that
the velocity vector at each point on the curve is equal to its outward unit normal vector
at that point. The unit-speed outward normal flow is to find a family of simple closed
plane curves γ(θ , t) with initial curve γ(θ ,0) being equal to γ0(θ ) . Thus the evolution
problem in question can be expressed as follows⎧⎨

⎩
∂γ(θ ,t)

∂ t
= N(θ ),

γ(θ ,0) = γ0(θ ).
(2.8)
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In this case, the first author of the present note has shown in [16] that the tangent vector
field T and the unit outward normal vector field N are independent of the time t . And
futthermore

LEMMA 2.3. Under the evolution defined by (2.8), let γ(θ ,t) be the curve at time
t � 0 , we have the following formulas:

ρ(θ ,t) = ρ(θ ,0)+ t; (2.9)

k(θ ,t) =
k(θ ,0)

1+ k(θ ,0)t
; (2.10)

L(t) = L(0)+2πt; (2.11)

A(t) = A(0)+L(0)t +πt2, (2.12)

where ρ(θ , t) and k(θ ,t) are the radius of curvature and the curvature, L(t) and A(t)
are the length of the evolving curve and the area it encloses at time t , respectively.

(2.12) is usually called the Steiner polynomial for the evolving curve. It is easy
to check that the isoperimetric defect L2−4πA of the evolving curve is invariant under
the unit-speed outward normal follow.

3. A Newly Obtained Isoperimetric-type Inequality

The following isoperimetric inequality has appeared in [17], for completeness of
the present note, we outline its proof below.

THEOREM 3.1. For a C2 closed and strictly convex curve γ , L and A are the
length of γ and the area it encloses, one gets

∫ 2π

0
ρ2(θ )dθ � L2 −2πA

π
(3.1)

And moreover, the equality in (3.1) holds if and only if γ is a circle.

Proof. It is obvious that the equality in (3.1) holds when γ is a circle. If we can

prove that
∫ 2π
0 ρ2(θ )dθ > L2−2πA

π when γ is not a circle, then the result holds. This
can be concluded by proving the following theorem. �

THEOREM 3.2. If γ is a C2 closed strictly convex and non-circular curve in the
plane, then ∫ 2π

0
ρ2(θ )dθ >

L2 −2πA
π

(3.2)

holds.

We will make full use of the unit-speed outward normal flow to prove Theorem
3.2. To this end, we need some definitions.



A REFINED REVERSE ISOPERIMETRIC INEQUALITY IN THE PLANE 333

DEFINITION 3.3. Let t1 � t2 be the roots of the Steiner polynomial A(t) (see
(2.12) above), ri and re be the radii of the largest inscribed and the smallest circum-
scribed circles of γ (called the inradius and the outradius of γ ), respectively. Let k be
the curvature of γ , ρ = 1

k the radius of curvature , and ρmax and ρmin the maximum
and the minimum values of ρ . These quantities are all equal if the curve γ is a circle.

LEMMA 3.4. If γ is convex and non-circle, then

−ρmax < t2 < −re < − L
2π

< −ri < t1 < −ρmin. (3.3)

Proof. See Green and Osher [9]. �

DEFINITION 3.5. Consider

sup

{∫
I
ρ(θ )dθ |I ⊂ S1,

∫
I
dθ = π

}
.

Let I1 denote a subset of S1 of measure π realizing this bound , and let I2 be its
complement. There exists a real number a such that

I1 ⊆ {θ |ρ(θ ) � a}, I2 ⊆ {θ |ρ(θ ) � a}.
We set

ρ1 =
1
π

∫
I1
ρ(θ )dθ , ρ2 =

1
π

∫
I2
ρ(θ )dθ ,

Note that

ρ1 +ρ2 =
L
π

, ρ1 � ρ2.

PROPOSITION 3.6. Let γ be a strictly convex curve, if it is not a circle, then

ρ1 > ρ2.

In other words, there exists a real number b > 0 such that

ρ1 =
L
2π

+b, ρ2 =
L
2π

−b.

Proof. By Definition 3.5 we know that ρ1 � ρ2 , thus it suffices to prove that
ρ1 = ρ2 implies that γ is a circle. �

PROPOSITION 3.7. For γ a symmetric strictly convex curve and not a circle, then

ρ1 > −t2.

Proof. The symmetry of the curve dictates that the breadth of the curve bN(θ) =
2p(θ ) in the direction determined by the normal N(θ ) is twice the support function
p(θ ) . Since γ is convex, the breadth satisfies 2ri � bN(θ) � 2re , and thus, for all θ ,

ri � p(θ ) � re.
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This together with Lemma 3.4 implies that

−t1 < p(θ ) < −t2

holds for all θ . We recall that

−t1 =
L
2π

−u, −t2 =
L
2π

+u.

where

u =

√
L2 −4πA

2π
.

Since γ is not a circle,
u > 0.

Combining these formulae we have

−u < p(θ )− L
2π

< u.

From Proposition 3.6, we obtain

ρ1 =
L
2π

+b, ρ2 =
L
2π

−b.

for some b > 0. The inequality we are trying to prove, ρ1 > −t2 , is equivalent to

b > u.

On I1 , ρ(θ ) � a and on I2 , ρ(θ ) � a , while ρ(θ ) ≡ a holds on at most one
interval, unless γ is a circle.

We assume that ρ(θ ) > a on a small interval I(1)
1 of I1 , it is true because ρ(θ ) is

a continuous function. Thus, on this subinterval I(1)
1 ,

−
(

p(θ )− L
2π

)
(ρ(θ )−a) < u(ρ(θ )−a).

Integrating this on the interval I1 gives us

− 1
π

∫
I1

(
p(θ )− L

2π

)
(ρ(θ )−a)dθ < u(ρ1−a). (3.4)

On I2 , ρ(θ )−a � 0, we have

−
(

p(θ )− L
2π

)
(ρ(θ )−a) � −u(ρ(θ )−a).

Integrating this on the interval I2 gives us

− 1
π

∫
I2

(
p(θ )− L

2π

)
(ρ(θ )−a)dθ � −u(ρ2−a). (3.5)
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Adding (3.4) and (3.5) yields

− 1
π

∫
S1

(
p(θ )− L

2π

)
(ρ(θ )−a)dθ < u(ρ1−ρ2).

The left-hand side can be simplified to

2
4π2 (L2 −4πA) = 2u2,

and the right-hand side is 2ub . The inequality is then 2u2 < 2ub, and thus u < b, as
desired. �

PROPOSITION 3.8. For γ a strictly convex curve and not a circle, then

ρ1 > −t2.

Proof. We proceed by a symmetrization. Given γ , for any θ , we divide γ into
two curves by joining the points on γ corresponding to θ and θ +π by a straight line.
Let L1,L2 be the lengths of the two pieces of γ and A1,A2 the areas of the two halves;
thus

L = L1 +L2, A = A1 +A2.

Choose θ so that
(2L1)2−8πA1 = (2L2)2−8πA2, (3.6)

Call this quantity β .
Let γ1 be the symmetric convex curve obtained by joining the first half of γ to

a copy of itself rotated by 180 degrees, and γ2 a symmetric convex curve obtained by
doing the same thing to the second half. Thus γi has perimeter 2Li and area 2Ai for
i=1,2.

Now, for symmetric curves, we may take the subset I1 of the circle to be symmet-
ric. Since

∫
I ρ(θ )dθ is maximized by I1 among all subsets of measure π , it follows

that

ρ1(γ) � 1
2π

[∫
I1(γ1)

ρ(θ )dθ +
∫

I1(γ2)
ρ(θ )dθ

]
=

1
2
[ρ1(γ1)+ρ1(γ2)].

Since γ is not a circle, there exists at least one curve γ1 or γ2 not be a circle. We
assume that γ1 is not a circle.

Now, by applying Proposition 3.7 to the symmetric curves γ1 , γ2 ,

ρ1(γ1) >
2L1

2π
+

√
(2L1)2 −8πA1

2π
, ρ1(γ2) � 2L2

2π
+

√
(2L2)2 −8πA2

2π
.

Thus,

ρ1(γ) >
L1 +L2

2π
+

1
2

{√
(2L1)2−8πA1

2π
+

√
(2L2)2−8πA2

2π

}
.



336 SHENGLIANG PAN, XUEYUAN TANG AND XIAOYU WANG

The inequality we want is

ρ1(γ) >
L
2π

+

√
(L1 +L2)2 −4π(A1 +A2)

2π
.

It will be done if we can show that

β � (L1 +L2)2 −4π(A1 +A2),

Now,

β = 2L2
1−4πA1 +2L2

2−4πA2

= (L1 +L2)2 +(L1−L2)2 −4π(A1 +A2)
� (L1 +L2)2−4π(A1 +A2).

This proves the proposition. �
The following two elementary lemmata have appeared in Green and Osher [9], we

omitted their proofs here.

LEMMA 3.9. Let F(x) be a convex function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2
[F(ρ1)+F(ρ2].

LEMMA 3.10. If F(x) is strictly convex on (0,+∞) , then for b > a > 0 and c
arbitrary, one gets

F(c−a)+F(c+a) < F(c−b)+F(c+b). �

Proof of Theorem 3.2. We already have that

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2
[F(ρ1)+F(ρ2)],

Now

ρ1 =
L
2π

+b, ρ2 =
L
2π

−b, −t1 =
L
2π

−u, −t2 =
L
2π

+u.

By Proposition 3.8, b > u > 0, and so by Lemma 3.10,

F(ρ1)+F(ρ2) > F(−t1)+F(−t2). (3.7)

Takeing F(x) = x2 and using Lemma 3.9 we get

1
2π

∫ 2π

0
ρ2(θ )dθ � 1

2
(ρ2

1 +ρ2
2 ).

The above inequality (3.7) is
ρ2

1 +ρ2
2 > t21 + t22 ,
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and t1, t2 are the roots of A(t) = πt2 +Lt +A = 0.Thus

t21 + t22 =
L2 −2πA

π2 .

All the results indicate that ∫ 2π

0
ρ2(θ )dθ >

L2−2πA
π

,

which proves the theorem. �

4. A Reverse Isoperimetric Inequality

Now, from Theorem 3.1 and Proposition 2.2 above, one can easily get our main
result.

THEOREM 4.1. If γ is a closed strictly convex plane curve with length L and
enclosing an area A, let Ã denote the oriented area bounded by its locus of centers of
curvature, then we get

L2 � 4πA+2π |Ã|, (4.1)

and the equality holds if and only if γ is a circle.

The following corollary is a direct consequence of the classical isoperimetric in-
equality (1.1) and our reverse isoperimetric inequality (4.1).

COROLLARY 4.2. Let β be the locus of curvature centers of a closed strictly
convex plane curve γ . Then the oriented area Ã of β is zero if and only if γ is a circle
and thus β can only be the center of γ .
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[7] F. EDLER, Vervollständigung der Steinerschen elementargeometrischen Beweise für den Satz, das
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