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ON THE TWO–POINT OSTROWSKI INEQUALITY

JOSIP PEČARIĆ AND ŠIME UNGAR

(Communicated by M. Matić)

Abstract. We prove the Lp -version of an inequality similar to the two-point Ostrowski inequality
of Matić and Pečarić [4].

1. Introduction

For a function f : [a,b]→ R satisfying the Lipschitz condition with constant M >
0, and a � c < d � b , Matić and Pečarić [4] proved the following two-point Ostrowski
inequality: ∣∣∣∣∣ 1

b−a

∫ b

a
f (t)dt− 1

d− c

∫ d

c
f (x)dx

∣∣∣∣∣� (c−a)2 +(b−d)2

2(c−a+b−d)
·M .

This result was generalized by Pečarić, Perić and Vukelić in [6]. Further gener-
alizations were done by Aglić Aljinović, Pečarić and Perić in [1], where they consider
also the Lp -cases, 1 � p � ∞ , as well as the general case when [c,d] � [a,b] . For
instance, they proved that for a � c < b � d and for a function f such that | f ′|p is
R-integrable on [a,d] , the following inequality holds:∣∣∣∣ 1

b−a

∫ b

a
f (t)dt − 1

d− c

∫ d

c
f (t)dt

∣∣∣∣
�
(

1
(q+1)(a−b+d− c)

·
(

(d−b)q+1

(d− c)q−1 − (c−a)q+1

(b−a)q−1

))1
q

· ‖ f ′‖p .

Recently Dragomir [3] proved the following Ostrowski type inequality for a con-
tinuous function f : [a,b] → R which is differentiable on (a,b) :

∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣� b−a
|x|

(
1
4

+
(

x− a+b
2

b−a

)2
)
· ‖ f − ι f ′‖∞ ,

where ι(t)= t , t ∈ [a,b] . This was generalized to the Lp -case by Pečarić and Ungar [7].
Here we will, in a similar manner, obtain an estimate of the two-point Ostrowski type,
which will, in special cases, reduce to results from [7] and [3].
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2. The main result

We will first consider the case of a function f : [a,b] → R and a sub-segment
[c,d] ⊆ [a,b] . The general case of ‘overlapping’ intervals, i. e. when the intersection
[a,b]∩ [c,d] equals [c,b] or [a,d] , will be dealt with in Section 4.

Now we state our main result:

THEOREM 1. Let the function f : [a,b]→ R be continuous on [a,b] and differen-
tiable on (a,b) with 0 < a < b. Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ , and numbers

a � c < d � b, the following inequality holds:∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 2(b−a)

1
p · (d− c)

1
p · ‖ f − ι f ′‖p·

·
((

d3 − c3

3(1+q)(2−q)
+

a2−q(d1+q− c1+q)−a1+q(d2−q− c2−q)
(1−2q)(1+q)(2−q)

)1
q

+

+
(

d3− c3

3(1+q)(2−q)
+

b2−q(d1+q− c1+q)−b1+q(d2−q− c2−q)
(1−2q)(1+q)(2−q)

)1
q
)

(1)

where ι(t) = t , t ∈ [a,b] .

First we state a simple lemma (for the proof see [7]):

LEMMA 2. Let the function f : [a,b] → R be continuous on [a,b] and differenti-
able on (a,b) with a ·b > 0 . Then

t f (x)− x f (t) = xt
∫ t

x

(
f (u)−u f ′(u)

) 1
u2 du (2)

for all x, t ∈ [a,b] . �

Proof of Theorem 1. We first prove the theorem for 1 < p,q <∞ , p,q �= 2. These limit
cases will be discussed in the next section.

Applying Lemma 2 to our function f and integrating on t over [a,b] , gives

b2−a2

2
f (x)− x

∫ b

a
f (t)dt = x

∫ b

a

(
t
∫ t

x

(
f (u)−u f ′(u)

) 1
u2 du

)
dt.

Integrating this identity on x over [c,d] , gives

b2−a2

2

∫ d

c
f (x)dx− d2 − c2

2

∫ b

a
f (t)dt

=
∫ d

c

(
x
∫ b

a

(
t
∫ t

x

(
f (u)−u f ′(u)

) 1
u2 du

)
dt

)
dx. (3)
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Taking the absolute value gives

1
2
·
∣∣∣∣(b2−a2)

∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
=
∣∣∣∣
∫ d

c

(∫ b

a

(∫ t

x

(
f (u)−u f ′(u)

)xt
u2 du

)
dt

)
dx

∣∣∣∣
�
∫ d

c

∣∣∣∣
∫ b

a

∣∣∣∫ t

x

∣∣∣( f (u)−u f ′(u)
) xt
u2

∣∣∣du
∣∣∣dt∣∣∣∣dx

=
∫ d

c

(∫ x

a

(∫ x

t

∣∣∣( f (u)−u f ′(u)
) xt
u2

∣∣∣du
)

dt

)
dx+

+
∫ d

c

(∫ b

x

(∫ t

x

∣∣∣( f (u)−u f ′(u)
) xt
u2

∣∣∣du
)

dt

)
dx. (4)

Application of the Hölder’s inequality shows that the right hand side of (4) is

�
(∫ d

c

(∫ x

a

(∫ x

t

∣∣ f (u)−u f ′(u)
∣∣pdu

)
dt

)
dx

)1
p

·
(∫ d

c

(∫ x

a

(∫ x

t

xq tq

u2q du
)
dt

)
dx

)1
q

+

+

(∫ d

c

(∫ b

x

(∫ t

x

∣∣ f (u)−u f ′(u)
∣∣pdu

)
dt

)
dx

)1
p

·
(∫ d

c

(∫ b

x

(∫ t

x

xq tq

u2q du
)
dt

)
dx

)1
q

�
(∫ d

c

(∫ b

a

(∫ b

a

∣∣ f (u)−u f ′(u)
∣∣pdu

)
dt

)
dx

)1
p

·

·
((∫ d

c

(∫ x

a

(∫ x

t

xq tq

u2q du
)
dt

)
dx

)1
q

+

(∫ d

c

(∫ b

x

(∫ t

x

xq tq

u2q du
)
dt

)
dx

)1
q
)

= (b−a)
1
p (d− c)

1
p ‖ f − ι f ′‖p·

·
((∫ d

c

(∫ x

a

(∫ x

t

xq tq

u2q du
)
dt

)
dx

)1
q

+

(∫ d

c

(∫ b

x

(∫ t

x

xq tq

u2q du
)
dt

)
dx

)1
q
)

. (5)

The first triple integral in the last line of (5) equals

d3− c3

3(1+q)(2−q)
+

a2−q (d1+q− c1+q)−a1+q (d2−q− c2−q)
(1−2q)(1+q)(2−q)

(6)

and similarly for the second integral (b replaces a ).
Plugging this two integrals into (5) , appending the result to (4) and multiplying

by 2, gives the required inequality (1) , and proves the theorem for 1 < p,q < ∞ ,
p,q �= 2. �
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3. Limit cases

Let us now have a look at the limit cases (p,q) = (∞,1) , (1,∞) , and (2,2) . Ex-
amining the calculations in the proof of Theorem 1, one readily sees that everything
goes through also in the case p = ∞ , q = 1, so inequality (1) holds in this case too.
For reference, we will state this result separately:

COROLLARY 3. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a � c < d � b. Then∣∣∣∣(b2−a2)

∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� (d2− c2) ·

(
a2 +b2

c+d
− (a+b)+

2
3
· c

2 + cd +d2

c+d

)
· ‖ f − ι f ′‖∞, (7)

or equivalently, resembling more the form of the results in [3] and [7],∣∣∣∣a+b
c+d

· 1
d− c

∫ d

c
f (x)dx− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

b−a

(
a2 +b2

c+d
− (a+b)+

2
3
· c

2 + cd +d2

c+d

)
· ‖ f − ι f ′‖∞, (7a)

where ι(t) = t , t ∈ [a,b] . �

In the case p = 1, q = ∞ , the last line in (5) has to be interpreted as

max
t�u�x
a�t�x
c�x�d

xt
u2 + max

x�u�t
x�t�b
c�x�d

xt
u2 � max

c�x�d

(
x · max

t�u�x
a�t�x

t
u2

)
+ max

c�x�d

(
x · max

x�u�t
x�t�b

t
u2

)

� max
c�x�d

(
x · 1

a

)
+ max

c�x�d

(
x · b

x2

)
=

d
a

+
b
c
. (8)

Putting (8) into (5) and appending the result to (4) , gives

COROLLARY 4. Let the functions f and ι be as in Corollary 3 . Then∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2−c2)

∫ b

a
f (t)dt

∣∣∣∣� 2(b−a)(d−c)
(d

a
+

b
c

)
·‖ f−ι f ′‖1. �

It is not difficult to see that the constant 2(b− a)(d − c)
(

d
a + b

c

)
in Corollary 4

is equal to the limit of the constant on the right hand side in (1) as q → ∞ , proving
Theorem 1 for p = 1 and q = ∞ .

Finally, for p = q = 2, the integrals in the last line of (5) have to be calculated
separately ‘by hand’, so for the first of these integrals, instead of (6) we get

1
27

(
2(c3−d3)+3(c3−d3) lna−3(a3 + c3) lnc+3(a3 +d3) lnd

)
,

and similarly for the second integral (b replaces a ). Putting this into (5) , appending
the result to (4) and multiplying by 2, gives
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COROLLARY 5. Let the functions f and ι be as in Corollary 3 . Then

∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 2

3
√

3
(b−a)

1
2 · (d− c)

1
2 · ‖ f − ι f ′‖2·

·
((

2(c3−d3)+3(c3−d3) lna−3(a3 + c3) lnc+3(a3 +d3) lnd
)1

2 +

+
(
2(c3−d3)+3(c3−d3) lnb−3(b3 + c3) lnc+3(b3 +d3) lnd

)1
2
)

. �

Again, it is not difficult to see that the constant on the right hand side in Corollary 5
is equal to the limit of the constant on the right hand side in (1) as q → 2, proving the
required inequality (1) for p = q = 2. This completes the proof of Theorem 1.

Let us now consider the limit case d = c =: x . It is reasonable to assume that
1

d−c

∫ d
c f (s)ds has the value f (x) . It will be more convenient, both for taking the re-

quired limits and for comparing the results with those in [7], to rewrite the inequal-
ity (1) in the following form:

∣∣∣∣a+b
c+d

· 1
d− c

∫ d

c
f (x)dx− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
� 2(b−a)

1
p−1 · (d− c)

1
p−1 · (c+d)−1 · ‖ f − ι f ′‖p·

·
((

d3− c3

3(1+q)(2−q)
+

a2−q(d1+q− c1+q)−a1+q(d2−q− c2−q)
(1−2q)(1+q)(2−q)

)1
q

+

+
(

d3− c3

3(1+q)(2−q)
+

b2−q(d1+q− c1+q)−b1+q(d2−q− c2−q)
(1−2q)(1+q)(2−q)

)1
q
)

. (1a)

Taking the appropriate limits in (1a) and using Corollaries 3, 4, and 5, we obtain

COROLLARY 6. Let the functions f and ι be as in Corollary 3 . Then for every
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x ∈ [a,b] we have the following inequalities:∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

b−a

(a2 +b2

2x
− (a+b)+ x

)
· ‖ f − ι f ′‖∞ (9)

∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣
�
(1

a
+

b
x2

)
· ‖ f − ι f ′‖1 (10)

∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

3(b−a)
1
2

((
ln
( x

a

)3
+

a3

x3 −1

)1
2

+
(
ln
( x

b

)3
+

b3

x3 −1

)1
2
)
·‖ f − ι f ′‖2.

(11)

The above results coincide with those in [3] and [7].

4. Case of overlapping intervals

We turn now to the case when the line segments [a,b] and [c,d] overlap, i. e.
[a,b]∩ [b,d] equals [c,b] or [a,d] . It suffices to consider the first case, a � c < b � d .
The other one is obtained by interchanging a ↔ c and b ↔ d .

First let us introduce a notation. For real numbers α � γ < δ � β and a real
function ϕ ∈ Lp[α,β ] , 1 � p � ∞ , denote by

‖ϕ‖p,[γ,δ ] :=
(∫ δ

γ
|ϕ(t)|p dt

) 1
p

the Lp -norm of the restriction of ϕ to the sub-interval [γ,δ ] ⊆ [α,β ] . Obviously, for
[γ ′,δ ′] ⊆ [γ,δ ] , the following holds:

‖ϕ‖p,[γ ′,δ ′] � ‖ϕ‖p,[γ,δ ] . (12)

We can now state our main result for overlapping intervals:

THEOREM 7. Let 0 < a � c < b � d and let the function f : [a,d] → R be con-
tinuous on [a,d] and differentiable on (a,d) . Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ ,

and ι(t) = t , t ∈ [a,d] , the following inequality holds:∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣� 2(b−a)
1
p

(1+q)
1
q (2−q)

1
q

·

·
(
Ap,[a,b]·‖ f − ι f ′‖p,[a,b] +Bp,[a,d]·‖ f − ι f ′‖p,[a,d]

)
(13)
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where the constants Ap,[a,b] and Bp,[a,d] are given by the following formulas:
For 1 < p,q < ∞ , p,q �= 2

Ap,[a,b] = (b− c)
1
p ·
((

b3− c3

3
+

a2−q(b1+q− c1+q)−a1+q(b2−q− c2−q)
1−2q

)1
q

+

+
(

b3− c3

3
+

b1+q c2−q−b2−q c1+q

1−2q

)1
q
)

Bp,[a,d] = (d−b)
1
p ·
(

(b1+q−a1+q)(d2−q−b2−q)− (b2−q−a2−q)(d1+q−b1+q)
1−2q

)1
q

;

for p = ∞ , q = 1

A∞,[a,b] =
1
3
(b− c)(3a2 +2b2 +2c2−3ab−3ac−bc)

B∞,[a,d] = (b−a)(d−b)(d−a) ;

for p,q = 2

A2,[a,b] =
(b− c)

1
2√

3
·
((

a3 ln
b
c

+b3 ln
b
a
− c3 ln

c
a
− 2

3
(b3− c3)

)1
2 +

+
(
(b3 + c3) ln

b
c
− 2

3
(b3− c3)

)1
2
)

B2,[a,d] =
(d−b)

1
2√

3
·
(
(d3 −b3) ln

b
a
− (b3−a3) ln

d
b

)1
2
;

and for p = 1 , q = ∞

A1,[a,b] = (b− c) ·
(b

a
+

b
c

)
B1,[a,d] = (d−b) · d

a
.

Proof. We proceed as in the proof of Theorem 1, except that in (4) we split

the triple integral
∫ d
c

∣∣∣∫ b
a

∣∣∫ t
x |g(u,t,x)|du

∣∣dt∣∣∣dx , where we have denoted g(u,t,x) :=

( f (u)−u f ′(u)) xt
u2 , into three terms

∫ b

c

∣∣∣∫ x

a

∣∣∫ t

x
|g|du

∣∣dt∣∣∣dx+
∫ b

c

∣∣∣∫ b

x

∣∣∫ t

x
|g|du

∣∣dt∣∣∣dx+
∫ d

b

∣∣∣∫ b

a

∣∣∫ t

x
|g|du

∣∣dt∣∣∣dx

=
∫ b

c

(∫ x

a

(∫ x

t
|g|du

)
dt
)
dx+

∫ b

c

(∫ b

x

(∫ t

x
|g|du

)
dt
)
dx+

∫ d

b

(∫ b

a

(∫ x

t
|g|du

)
dt
)
dx (14)

For the first two terms we proceed as in (5) with b instead of d , giving the term
in (13) containing Ap,[a,b] , and integrating the third term in (14) we obtain the term
in (13) containing Bp,[a,d] .
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Starting from (14) , the special cases p = ∞ , p = 2, and p = 1 are dealt with in
the same manner as in Section 3 for the case a � c < b � d , so we omit the details. �

For a � c < b � d let ‖ ‖p denote ‖ ‖p,[a,d] — the norm over the whole domain
[a,b]∪ [c,d] of f . Then, using the discrete Hölder’s inequality, and because of (12) ,
we have also

COROLLARY 8. With notations as in Theorem 7, the following inequalities hold:∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 2(b−a)

1
p

(1+q)
1
q (2−q)

1
q

·
(
Aq

p,[a,b] +Bq
p,[a,d]

)1
q ·
(
‖ f − ι f ′‖p

p,[a,b] +‖ f − ι f ′‖p
p,[a,d]

)1
p

(15)

� 2 ·2 1
p · (b−a)

1
p

(1+q)
1
q (2−q)

1
q

·
(
Aq

p,[a,b] +Bq
p,[a,d]

)1
q · ‖ f − ι f ′‖p . (16)

As special cases of Corollary 8, for p = ∞ and for p = 1, we have

COROLLARY 9. Let 0 < a � c < b � d and let the function f : [a,d] → R be
continuous on [a,d] and differentiable on (a,d) . Then the following inequality holds:∣∣∣∣(b2−a2)

∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
�
(2

3
(b3−c3)+a2(d−c)−b2(c+d)+ c2(a+b)+d2(b−a)

)
·‖ f − ι f ′‖∞

and ∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 4(b−a)(d− c) ·

(b
a

+
b
c

+
d
a

)
· ‖ f − ι f ′‖1

where ι(t) = t , t ∈ [a,d] . �
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