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ON THE TWO-POINT OSTROWSKI INEQUALITY

JOsIP PECARIC AND SIME UNGAR

(Communicated by M. Matic)

Abstract. We prove the L, -version of an inequality similar to the two-point Ostrowski inequality
of Mati¢ and Pecari¢ [4].

1. Introduction

For a function f: [a,b] — R satisfying the Lipschitz condition with constant M >
0, and a < ¢ < d < b, Mati¢ and Pecari¢ [4] proved the following two-point Ostrowski

inequality:
1 b
e [Crna— 1 [*reoa

This result was generalized by Pecari¢, Peri¢ and Vukeli¢ in [6]. Further gener-
alizations were done by Agli¢ Aljinovié, Pecari¢ and Peri€ in [1], where they consider
also the Lp-cases, 1 < p < oo, as well as the general case when [c,d]| ¢ [a,b]. For
instance, they proved that for ¢ < ¢ < b < d and for a function f such that |f’|? is
R-integrable on [a,d], the following inequality holds:

‘bia/ahf( dt——/f 1) dr

1
. 1 (@b (@ NN
S\Ng+D)(a—b+d—c) \(d—c)i ! (b—a)i! P

Recently Dragomir [3] proved the following Ostrowski type inequality for a con-

tinuous function f: [a,b] — R which is differentiable on (a,b):

a+b f x_ﬂ 2
‘ 2 x  b- a/f dt x| <1+<b_a>> 1f = f 'l

where 1(t) =1, t € [a,b]. This was generalized to the L, -case by Pecari¢ and Ungar [7].
Here we will, in a similar manner, obtain an estimate of the two-point Ostrowski type,
which will, in special cases, reduce to results from [7] and [3].

—a)’+(b—d)?

< M.
(c—a—l—b d)
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2. The main result

We will first consider the case of a function f: [a,b] — R and a sub-segment
[c,d] C [a,b]. The general case of ‘overlapping’ intervals, i.e. when the intersection
[a,b] N [c,d] equals [c,b] or [a,d], will be dealt with in Section 4.

Now we state our main result:

THEOREM 1. Let the function f: [a,b] — R be continuous on [a,b] and differen-

tiable on (a,b) with 0 < a < b. Then for 11—7—1-% =1, with 1 < p,q < o, and numbers
a < c <d < b, the following inequality holds:

- [ 1eae- @) [ g

<2b—a)F-([d—c)7-|[f—1f |l

P=c3 az—q(dl+q _ Cl+q) —a1+q(d2_q _ CZ—q) é
'<<3<1+q><2—q>+ 1291 +q)2—q) ) i

& — 3 PRa(d1Ha — 1) pla(gP—a — 29) :
+(srtgemat ey ) @

where 1(t) =t, t € |a,b].

First we state a simple lemma (for the proof see [7]):

LEMMA 2. Let the function f: [a,b] — R be continuous on |a,b] and differenti-
able on (a,b) with a-b > 0. Then

W)= @) =t [ ()= s () 5 du @)

forall x,t €la,b]. O

Proof of Theorem 1. We first prove the theorem for 1 < p,g <o, p,q # 2. These limit
cases will be discussed in the next section.
Applying Lemma 2 to our function f and integrating on ¢ over [a,b], gives

b — a?

- f(x)—x/abf(t)dt :x/ub<z/xt(f(u)_uf/(u))%du) dr.

Integrating this identity on x over [c,d], gives
b2 _ a2 d d2 _ C2 b
[ r@a= == o
c a

2
_ /Cd (x/ab (t/x’ (f() _uf/(u))u%d@ dt) dx. 3)
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Taking the absolute value gives
%.'(b2—a2)/cdf(x)dx—(dz—cz)/ahf(t)dt

/j(/ﬂb(/xt(f(u)—uf’(u))i—édu) dt) dx'

< [ 1[0 s | aua

AT

dx

(7(0) =05 0) 5 ) ) s
+/cd (/Xb </;
Application of the Holder’s inequality shows that the right hand side of (4) is
(LU wormaroraa)a) ([ 5 w9
(LG rraragau) ([ 5 0)a)e)

< (L[ 1r00-aroradaes)’
((rCrerszempe) (LR ) )

=(b—a)r(d—)F|f—1 /] l l
((/d</</)%du>dt)dx>_'_(/d(/b(/)%du)dt)dx)) 5)

The first triple integral in the last line of (5) equals

(f () — uf'(w)) ’;—; | du) dt) de. 4

o

-

d3 _ 6‘3 a27q (lerq _ Cl+q> _al+q (d2fq _ 62711)
M +aC-a) 1-29)(1+92—0)

(6)

and similarly for the second integral (b replaces a).

Plugging this two integrals into (5), appending the result to (4) and multiplying
by 2, gives the required inequality (1), and proves the theorem for 1 < p,q < oo,
p.q#2. O
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3. Limit cases

Let us now have a look at the limit cases (p,q) = (e, 1), (1,00), and (2,2). Ex-
amining the calculations in the proof of Theorem 1, one readily sees that everything
goes through also in the case p =0, ¢ = 1, so inequality (1) holds in this case too.
For reference, we will state this result separately:

COROLLARY 3. Let the function f: [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 <a <b, andlet a<c<d <b. Then

- [T @) [ roa

2,12 2 2
+b 2 ¢“+cd+d
<d2_2.a — N+ . — =277 Vo f=1f. 7
or equivalently, resembling more the form of the results in [3] and [7],
a+b 1 d 1 b
c—l—d'd—c/c f(x)d‘_b—a/af(’>d’
1 [ad®+b? 2 Ptcd+d ,
< — by ———— |- |lf— oo 7

where 1(t) =t, t € [a,b]. O

In the case p =1, g = oo, the last line in (5) has to be interpreted as

Xt Xt t 1t
max — + max — < max <x-max —) + max <x-max —)

2 2 2 2
t<u<x x<u<st ~<x< 1<U<x -<x< x<u<st
ast<x u x<t<bh u esrsd a<t<x u esrsd x<r<b u
c<x<d c<x<d
1 b d b
< max (x-— )+ max {(x-—)=—+—. (8)
c<x<d a c<x<d X a c

Putting (8) into (5) and appending the result to (4), gives

COROLLARY 4. Let the functions f and 1 be as in Corollary 3. Then

2= [ 1ac— @-) [0 w] <20-a@-o (S + L) -1 O

It is not difficult to see that the constant 2(b —a)(d —¢)(£ + 2) in Corollary 4
is equal to the limit of the constant on the right hand side in (1) as g — oo, proving
Theorem 1 for p =1 and g = oo.

Finally, for p = g = 2, the integrals in the last line of (5) have to be calculated

separately ‘by hand’, so for the first of these integrals, instead of (6) we get

1
7 <2 (A —d®)+3(—d*)Ina—3(a® + ) Inc+3(d° +d3)1nd>7

and similarly for the second integral (b replaces a). Putting this into (5), appending
the result to (4) and multiplying by 2, gives
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COROLLARY 5. Let the functions f and 1 be as in Corollary 3. Then

’ —a /f dx—(dz—cz)/ahf(t)dt

3\/—(17 a)r-(d—o)2-|f=1f|r

-((2(c3—d3)+3(c3—d3)1na— (@®+c)Inc+3(a? +d3)lnd>%+

l
+( (A —d)+3(3 =) Inb =3B+ Inc+3(6° + d°) lnd ) O

Again, it is not difficult to see that the constant on the right hand side in Corollary 5
is equal to the limit of the constant on the right hand side in (1) as ¢ — 2, proving the
required inequality (1) for p = ¢ = 2. This completes the proof of Theorem 1.

Let us now consider the limit case d = ¢ =: x. It is reasonable to assume that
ﬁ fcd f(s)ds has the value f(x). It will be more convenient, both for taking the re-
quired limits and for comparing the results with those in [7], to rewrite the inequal-
ity (1) in the following form:

e g S g 10w

<2b-ap " (@d—)r (et d) 1~
( B3 @?9(d\T9 — 1) — g1 +9(q2a — (2-) :
(5 ’ )+

14+4¢)(2—q) (1-2¢)(1+4q)(2—q)
B3 bZ—q(dH—q _ Cl+q) _ b1+q(d2—q _ 02—4) 5
BEErrEn. T—29(102—a ) ) (1

Taking the appropriate limits in (1a) and using Corollaries 3, 4, and 5, we obtain

COROLLARY 6. Let the functions f and 1 be as in Corollary 3. Then for every
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X € [a,b] we have the following inequalities:

a+b f
2 x  b- a/f ar
1 /d®+ b ,
< (5 @t +x) i s ©
a+b f
2 x  b- a/f ar
! :
<(z+5)Ir=eslh 10)

a+bf
X ba/f ) dr

2
1 PECIP RN 3 B \? /
< W((“‘(a) +x—3‘1> +<1“(z) +x—s—1) >~||f—tf -

(11)

The above results coincide with those in [3] and [7].

4. Case of overlapping intervals

We turn now to the case when the line segments [a,b] and [c,d]| overlap, i.e.
[a,b]N[b,d] equals [c,b] or [a,d]. It suffices to consider the first case, a < ¢ < b <d.
The other one is obtained by interchanging a < ¢ and b < d.

First let us introduce a notation. For real numbers o < ¥ < 8 < 8 and a real
function ¢ € L,[ct,B], 1 < p < oo, denote by

1
folliyar= ([ o1 ar)”
the L, -norm of the restriction of ¢ to the sub-interval [y, 8] C [, B]. Obviously, for
ly', &' } C [y, 8], the following holds:
ol .61 < Q.8 - (12)

We can now state our main result for overlapping intervals:

THEOREM 7. Let 0 < a < ¢ < b <d and let the function f: [a,d] — R be con-
tinuous on [a,d) and differentiable on (a,d). Then for %—F é =1, with 1 < p,g <o,
and 1(t) =t, t € [a,d], the following inequality holds:

2(b—a)r

d b
*—d) | f)yde—(d*—c*) [ f)dt| < ————F———
‘ /C /" (1+q)7(2—q)*

. (Ap,[mb]'Hf_ lf/Hp,[mb] +Bp,[a7d]'Hf_ lf/Hp,[md]) (13)
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where the constants A, |, p) and B, |, q) are given by the following formulas:
For 1 <p,qg<e, p,q#2

1
1 »—c3 a2—q(b1+q _ Cl+q> _ a1+q(b2_q _ CZ—q) 7
Apfas) = (b=c)? (( 3 F 1-24 ) -

B3 plta2a_praplta\g
+< I 1-2q )

1
1 (B —a ) (@?~ b)) — (B*~1—a? ) (d' T b H)\4
Bp,[a,d] = (d—b)l’ ( 1—2q ) 5

fgrp:oo, q:l

Aco fap) = %(b —¢)(3a®+2b*+2¢* — 3ab — 3ac — be)
B jaq) = (b—a)(d = b)(d - a);

Cc

b b 2 5
A27[a,b] — \/§ -((a3lng+b3lna—c3ln5—§(b3—c3)> —+

+ ((b3+c3)ln§— %(b3—c3)>%>

Brjoa = \_/?5 (@ —b3)ln§ - —a3)1n%>%;
andfor p=1, g=oo
A fap)=(b=c)- <Z+§)
B jaa) = (d—b)-g.

Proof. We proceed as in the proof of Theorem 1, except that in (4) we split
the triple integral [ | 7] /! |g(u7t,x)\du’dt‘dx, where we have denoted g(u,t,x) :=

(f(u) = uf'(u)) %, into three terms
bt
/u}/x ¢l | dr| e

/Ch /ux}/xt|g\du}dt‘dx—|—/ch /xb|/xt\g|du|dt’dx+/bd
:/Cb</ax(/tx\g|du)dt)dx+/ch</xh(/xt\g|du)dt)dx+/bd(/ab(/tx|g\du)dt)dx (14)

For the first two terms we proceed as in (5) with b instead of d, giving the term

in (13) containing A, |, 5, and integrating the third term in (14) we obtain the term
in (13) containing By, (4 4] -
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Starting from (14), the special cases p =0, p =2, and p = | are dealt with in
the same manner as in Section 3 for the case a < ¢ < b < d, so we omit the details. [

For a<c<b<dlet || [, denote || ||, o0 — the norm over the whole domain
[a,b)U[c,d] of f. Then, using the discrete Holder’s inequality, and because of (12),
we have also

COROLLARY 8. With notations as in Theorem 7, the following inequalities hold:

b2—a2)/cdf(x)dx—(d2—c2)/abf(t)dt

2(b—a)
(14+q)1 (2—q)7

=

1 1
< (A B ) (1 =21 g 1 =110 )

15)

_2 25 (b—a)?
S o) 2-a)

As special cases of Corollary 8, for p =< and for p =1, we have

1
'(Aq[ ]+Bq[ad>q ”f_lf”p (16)

COROLLARY 9. Let 0 < a < ¢ < b < d and let the function f: [a,d] — R be
continuous on [a,d] and differentiable on (a,d). Then the following inequality holds:

) [ gac-@-) [ 1o

< (G308 =)+ @ (@)~ Betd) + ath) +d(b-a) )|~ 1/ -

and

- [gwac-@-) [Crow

so-ad—o- 2+ 2+ D) ol

where 1(t) =t, t € [a,d]. O
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