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Abstract. The purpose of the present paper is to derive some inclusion relationships and other
interesting properties of a certain subclass ∑+

p (a,c,A,B) of meromorphically p-valent functions
with positive coefficients which are defined by means of a linear operator. The familiar con-
cept of neighborhood of analytic functions is extended and applied to meromorphically p-valent
functions considered here. We also derive many interesting results on the Hadamard product of
functions belonging to the class ∑+

p (a,c,A,B) .

1. Introduction and Definitions

Let ∑p be the class of functions of the form:

f (z) = z−p +
∞

∑
k=1

akz
k−p (p ∈ N = {1,2,3, · · ·}), (1.1)

which are analytic and p -valent in the punctured unit disk U∗ = {z∈ C : 0 < |z|< 1}=
U\ {0}.

If f and g are analytic in U , we say that the function f is subordinate to g ,
written f ≺ g or f (z) ≺ g(z), z ∈ U , if there exists a Schwarz function ω in U such
that f (z) = g(ω(z)), z ∈ U . If g is univalent in U , then the following equivalence
relationship holds true:

f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Given two functions f ,g ∈∑p , where f is given by (1.1) and g is defined by

g(z) = z−p +
∞

∑
k=1

bkz
k−p (p ∈ N;z ∈ U

∗),

the Hadamard product (or convolution) of f and g , denoted by f ∗g , is defined by the
power series:

( f ∗ g)(z) = z−p +
∞

∑
k=1

akbkz
k−p = (g ∗ f )(z) (z ∈ U

∗).
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We note that f ∗ g ∈∑p .
In terms of the Pochhammer symbol (or shifted factorial) (x)n given by

(x)n =

{
1 (n = 0)
x(x+1) · · ·(x+n−1) (n ∈ N),

we define the function φp by

φp(a,c;z) = z−p +
∞

∑
k=1

(a)k

(c)k
zk−p (

a ∈ R, c ∈ R\Z
−
0 ; Z

−
0 = {0,−1,−2, · · ·}; z ∈ U

∗) .
(1.2)

Corresponding to the function φp , we consider the linear operator Lp(a,c) :∑p −→∑p
defined by

Lp(a,c) f (z) = φp(a,c;z)∗ f (z)
(

f ∈ ∑p

)
. (1.3)

The linear operator Lp(a,c) was introduced and studied by Liu and Srivastava [9].
From (1.2) and (1.3), it follows that

z(Lp(a,c) f (z))′ = a Lp(a+1,c) f (z)− (a+ p)Lp(a,c) f (z) (z ∈ U
∗). (1.4)

We note that for f ∈ ∑p ,
Lp(a,a) f (z) = f (z), Lp(2,1) f (z) = (p+1) f (z)+z f ′(z) and for any integer n >−p ,

Lp(n+ p,1) f (z) = Dn+p−1 f (z) =
1

zp(1− z)n+p ∗ f (z) , where Dn+p−1 is the differen-

tial operator studied by Uralegaddi and Somanatha [12].
Making use of the operator Lp(a,c) , we introduce a subclass of ∑p as follows:

DEFINITION 1.1. A function f ∈ ∑p is said to be in the class f ∈ ∑p(a,c,A,B) ,
if it satisfies

−zp+1 (Lp(a,c) f (z))′ ≺ p(1+Az)
1+Bz

(a ∈ R,c ∈ R\Z
−
0 ,−1 � B < A � 1; z ∈ U),

(1.5)

where the symbol ”≺” stands for subordination. For the sake of convenience, we write

∑p

(
a,c,1− 2α

p
,−1

)
= ∑p

(a,c;α) , (1.6)

where ∑p (a,c;α) is the class of functions in ∑p satisfying the condition

−ℜ{zp+1 (Lp(a,c) f (z))′
}

> α (0 � α < p; z ∈ U)

and for a = c = 1 in (1.6), we get the subclass ∑p(α) consisting of functions in ∑p
and satisfying the inequality:

−ℜ{zp+1 f ′(z)
}

> α (0 � α < p; z ∈ U),
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i.e., the class of meromorphically p -valent close-to-convex functions of order α in U∗ .
Further, we write by ∑+

p , the class of functions of the form:

f (z) = z−p +
∞

∑
k=p

akz
k (ak � 0, p ∈ N) (1.7)

that are analytic and p -valent in U∗ . We say that a function f ∈ ∑+
p is in the class

∑+
p (a,c,A,B) , if it satisfies the condition (1.5). We denote

∑+
p
(a,c;α) = ∑+

p
∩∑p

(a,c;α) and ∑+
p
(α) = ∑+

p
∩∑p

(α) (0 � α < p).

In particular, we have the following observations:
(i) ∑1(a,a;α) = MC(α) (0 � α < 1) , the class of meromorphic close-to-convex

functions of order α studied by in [7].
(ii) ∑+

p (a,a,A,B) = H (p;A,B) , the class introduced and studied by Mogra [10].
(iii) ∑p(n + p,1,A,B) = Cn,p(A,B) , the class introduced and studied by Urale-

gaddi and Somanatha [12].

(iv) ∑p

(
n+ p,1,1− 2α

p
,−1

)
= ∑n,p(α) (0 � α < p) , the class considered by

Cho and Nunokawa [6].
Meromorphically multivalent functions with positive coefficients have also been

extensively studied by (for example) Uralegaddi and Ganigi [11] and Aouf [3, 4, 5].
In the present paper, we derive an inclusion relationship of the subclass ∑+

p (a,c,A,B)
which is defined here by means of the linear operator Lp(a,c) . The familiar concept
of neighborhoods of analytic functions is extended and applied to the functions belong-
ing to the class ∑+

p (a,c,A,B) . Some interesting results on the Hadamard product for
functions in the class ∑+

p (a,c,A,B) are also obtained.
Unless otherwise mentioned, we assume throughout this paper that a > 0, c >

0, p ∈ N and −1 � B < A � 1 (−1 � B < 0) .

2. Inclusion relationship of the class ∑+
p (a,c,A,B)

To prove our results, we need the following lemma. A more general form of this
lemma can be found in [5, Theorem 4].

LEMMA 2.1. Let f ∈ ∑+
p be given by (1.7). Then f ∈ ∑+

p (a,c,A,B) , if and only
if

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
ak � 1.

The result is the best possible for the functions fk , given by

fk(z) = z−p +
k(1−B)(a)p+k

p(A−B)(c)p+k
zk (k � p; z ∈ U

∗).
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THEOREM 2.1. We have

∑+
p
(a+1,c,A,B)⊂ ∑+

p
(a,c,A′,B)

(
A′ = B+

a(A−B)
2p+a

)
.

The result is the best possible.

Proof. Let f , defined by (1.7) be in the class ∑+
p (a+1,c,A,B) . Then by Lemma

2.1,

∞

∑
k=p

k(1−B)(a+1)p+k

p(A−B)(c)p+k
ak � 1. (2.1)

To prove that f ∈ ∑+
p (a,c,A′,B) , we need to find the largest A′ such that

∞

∑
k=p

k(1−B)(a)p+k

p(A′ −B)(c)p+k
ak � 1.

In view of (2.1), it is enough to show that

k(1−B)(a)p+k

p(A′ −B)(c)p+k
� k(1−B)(a+1)p+k

p(A−B)(c)p+k
(k � p),

which is equivalent to

B+
(A−B)(a)p+k

(a+1)p+k
� A′ (k � p). (2.2)

Since (a)p+k/(a+ 1)p+k is a decreasing function of k , putting k = p in (2.2), we get
the required result. �

It is easily seen that the result is the best possible for the function

f (z) = z−p +
(A−B)(c)2p

(1−B)(a+1)2p
zp (z ∈ U

∗). (2.3)

Setting a = c = 1, A = 1− (2α/p) and B = −1 in Theorem 2.1, we get

COROLLARY 2.1. If f ∈ ∑+
p satisfies

−ℜ[zp+1{(p+2) f ′(z)+ z f ′′(z)
}]

> α (0 � α < p; z ∈ U), (2.4)

then f ∈ ∑+
p (β ) , where

β = p− p−α
2p+1

.

The result is the best possible.
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3. Neighborhoods results

Following the earlier work (based upon the familiar concept of neighborhoods of
analytic functions) by Goodman [8], Ruscheweyh [13], Altintas [1] and also by Altintas
et al. [2], we define here the T+

δ and N+
δ neighborhoods of a function f ∈ ∑+

p of the
form (1.7) as follows:

T+
δ ( f ) =

{
g ∈ ∑+

p
: g(z) = z−p +

∞

∑
k=p

bkz
k and

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
|bk−ak| � δ ;δ > 0

}
.

(3.1)

and

N+
δ ( f ) =

{
g ∈ ∑+

p
: g(z) = z−p +

∞

∑
k=p

bkz
k and

∞

∑
k=p

k|bk −ak| � δ ;δ > 0

}
. (3.2)

For a function f ∈∑p , given by (1.1), we define a linear operator Fλ :∑p −→∑p
by

Fλ ( f )(z) =
λ

zλ+p

∫ z

0
tλ+p−1 f (t)dt = z−p +

∞

∑
k=1

λ
λ + k

akz
k−p (λ > 0; z ∈ U

∗).

(3.3)

If f is given by (1.7), then from (3.3), it follows that

Fλ ( f )(z) = z−p +
∞

∑
k=p

λ
λ + p+ k

akz
k (λ > 0; z ∈ U

∗). (3.4)

Now, by employing the techniques that proved Theorem 2.1 and using (3.4), it can
be shown that

THEOREM 3.1. If f ∈ ∑+
p (a+1,c,A,B) and Fλ ( f ) is defined by (3.4), then

Fλ ( f ) ∈ ∑+
p
(a,c,A∗,B)

(
A∗ = B+

λ a(A−B)
(2p+a)(2p+λ )

)
.

The result is the best possible for the function f , given by (2.3).

Letting a = c = 1, A = 1− (2α/p) (0 � α < p) and B = −1 in Theorem 3.1, we
get

COROLLARY 3.1. If f ∈∑+
p satisfies the condition (2.4), then the function Fλ ( f )∈

∑+
p (γ) , where

γ = p− λ (p−α)
(2p+1)(2p+λ )

.

The result is the best possible.
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THEOREM 3.2. Under the hypothesis of Theorem 3.1, we have

T+
δ1

(Fλ ( f )) ⊂ ∑+
p
(a,c,A,B),

where

δ1 =
2p(2p+a+λ )

(2p+a)(2p+λ )
. (3.5)

The result is the best possible in the sense that δ1 cannot be increased.

Proof. Let f , defined by (1.7) be in the class ∑+
p
(a + 1,c,A,B) . By Theorem

3.1, we obtain
∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(p+ k+λ )(c)p+k
ak � a

(2p+a)(2p+λ )
. (3.6)

Suppose that

g(z) = z−p +
∞

∑
k=p

bkz
k (bk � 0; z ∈ U

∗) (3.7)

and g ∈ T+
δ1

(Fλ ( f )) for δ1 given by (3.5). By (3.1), we get

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k

∣∣∣∣bk − λ
p+ k+λ

ak

∣∣∣∣� δ1. (3.8)

Using (3.6) and (3.8), we deduce that
∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
bk

�
∞

∑
k=p

k(1−B)λ (a)p+k

p(A−B)(p+ k+λ )(c)p+k
ak +

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k

∣∣∣∣bk − λ
p+ k+λ

ak

∣∣∣∣
� λ a

(2p+a)(2p+λ )
+ δ1 = 1,

which in view of Lemma 2.1 implies that g ∈ ∑+
p
(a,c,A,B) .

To show that the result is the best possible, we consider the functions f ,g defined
in U∗ by

f (z) = z−p +
(A−B)(c)2p

(1−B)(a+1)2p
zp

and

g(z) = z−p +
{

λ (A−B)(c)2p

(2p+λ )(1−B)(a+1)2p
+

(A−B)(c)2pδ ′

(1−B)(a)2p

}
zp (δ ′ > δ1).

It is easily seen that f ∈ ∑+
p
(a + 1,c,A,B) and g ∈ T+

δ ′ (Fλ ( f )) . But, g /∈
∑+

p
(a,c,A,B) . This evidently completes the proof of Theorem 3.2. �
Substituting a = c = 1, A = 1− (2α/p) and B = −1 in Theorem 3.2, we get



ON CERTAIN SUBCLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS 355

COROLLARY 3.2. If f , given by (1.7) satisfies the condition (2.4) and g defined
by (3.7) satisfies the inequality

∞

∑
k=p

k

∣∣∣∣bk − λ
p+λ + k

ak

∣∣∣∣� 2p(2p+λ +1)(p−α)
(2p+1)(2p+λ )

(0 � α < p; λ > 0),

then g ∈ ∑+
p (α) . The result is the best possible.

For the subsets A ,B of ∑+
p , we denote

A ⊗B = { f ∗ g : f ∈ A and g ∈ B}.

Making use of this notation, we now prove Theorem 3.3 below.

THEOREM 3.3. If a � c > 0 , then

(i) T+
δ2

(z−p)⊗T+
δ2

(z−p) ⊂ ∑+
p
(a,c,A,B)

(
δ2 =

√
(1−B)(a)2p

(A−B)(c)2p

)
and

(ii) T+
δ3

(z−p)⊗N+
δ3

(z−p) ⊂ ∑+
p
(a,c,A,B) (δ3 =

√
p) .

The result in (i) and (ii) are the best possible.

Proof. Let f be given by (1.7) and g be defined by (3.7). Assuming that f ,g ∈
T+
δ2

(z−p) , it follows from (3.1) that

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
ak � δ2 and

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
bk � δ2.

Since a � c > 0, {k (a)p+k}/(c)p+k is an increasing function of k , so that the first
inequality give

ak � δ2(A−B)(c)2p

(1−B)(a)2p
(k � p).

Thus

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
akbk � δ 2

2
(A−B)(c)2p

(1−B)(a)2p
= 1,

which in view of Lemma 2.1 implies that ( f ∗ g) ∈ ∑+
p
(a,c,A,B) .

In order to show that the result in (i) is the best possible, we consider the functions
f and g defined by

f (z) = g(z) = z−p +

√
(A−B)(c)2p

(1−B)(a)2p
zp (z ∈ U

∗).
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Clearly, f ,g ∈ T+
δ2

(z−p) and ( f ∗ g) ∈ ∑+
p
(a,c,A,B) . This proves the assertion (i).

Next, we assume that δ3 =
√

p, f ∈ T+
δ3

(z−p) and g ∈ N+
δ3

(z−p) . Then, by (3.1)
and (3.2), we have

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
ak � δ3 and

∞

∑
k=p

kbk � δ3.

Thus, bk � δ3/p for k � p , and

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
akbk � δ 2

3

p
= 1.

The above inequality, again by virtue of Lemma 2.1 implies that ( f ∗g)∈∑+
p
(a,c,A,B) .

Considering the functions f and g defined in U∗ by

f (z) = z−p +
√

p(A−B)(c)2p

(1−B)(a)2p
zp and g(z) = z−p +

zp

√
p
,

we note that f ∈ T+
δ3

(z−p),g ∈ N+
δ3

(z−p) and ( f ∗g) ∈ ∑+
p
(a,c,A,B) . This proves that

the assertion (ii) is the best possible and the proof of Theorem 3.3 is completed. �

Putting a = c = 1, A = 1− (2α/p) (0 � α < p) and B = −1 in Theorem 3.3, we
obtain

COROLLARY 3.4. Let f be given by (1.7) and g be defined by (3.7). If

(i) ∑∞
k=p kak �

√
p(p−α) and ∑∞

k=p kbk �
√

p(p−α) , then ( f ∗ g) ∈ ∑+
p
(α) .

(ii) ∑∞
k=p kak � √

p(p−α) and ∑∞
k=p kbk � √

p, then ( f ∗ g) ∈ ∑+
p (α) .

The result in (i) and (ii) are the best possible.

4. Hadamard product

In this section, we consider the functions f j ∈ ∑+
p defined by

f j(z) = z−p +
∞

∑
k=p

ak, jz
k (ak, j � 0, j ∈ N; z ∈ U

∗).

THEOREM 4.1. If a � c > 0,−1 � B < Aj � 1(−1 � B < 0) ( j = 1,2, · · · ,n) and

f j ∈ ∑+
p
(a,c,Aj,B) , then the function ( f1 ∗ f2 ∗ · · · ∗ fn) ∈ ∑+

p
(a,c,ρ ,B) , where

ρ = B+
{

(c)2p

(1−B)(a)2p

}n−1 n

∏
j=1

(Aj −B).
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The result is the best possible.

Proof. For n = 1, we note that ρ = A1 . Let n = 2. Then by Lemma 2.1, we get

∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
ak, j � 1 ( j = 1,2),

which with the help of the Cauchy-Schwarz inequality yields

∞

∑
k=p

k(1−B)(a)p+k

p
√

(A1−B)(A2−B)(c)p+k

√
ak,1ak,2 � 1. (4.1)

We need to find the largest ρ such that

∞

∑
k=p

k(1−B)(a)p+k

p(ρ−B)(c)p+k
ak,1ak,2 � 1. (4.2)

In view of (4.1) and (4.2), it is sufficient to show that

k(1−B)(a)p+k

p(ρ−B)(c)p+k
ak,1ak,2 � k(1−B)(a)p+k

p
√

(A1−B)(A2−B)(c)p+k

√
ak,1ak,2 (k � p)

that is,

√
ak,1ak,2 � ρ−B√

(A1 −B)(A2−B)
(k � p).

On the other hand, (4.1) implies that

√
ak,1ak,2 � p

√
(A1−B)(A2−B)(c)p+k

k(1−B)(a)p+k
(k � p).

Consequently, we need to find the largest ρ such that

p
√

(A1−B)(A2−B)(c)p+k

k(1−B)(a)p+k
� ρ−B√

(A1−B)(A2−B)
(k � p),

which is equivalent to

B+
p(A1−B)(A2−B)(c)p+k

k(1−B)(a)p+k
� ρ (k � p). (4.3)

Setting

φ(k) = B+
p(A1−B)(A2−B)(c)p+k

k(1−B)(a)p+k
(k � p),
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we observe that φ is a decreasing function of k , so that by putting k = p in (4.3), we
get

ρ = φ(p) = B+
(A1 −B)(A2−B)(c)2p

(1−B)(a)2p
.

This proves the result for n = 2. Now, suppose that the result is true for any positive
integer m . Then by using the above argument

( f1 ∗ f2 ∗ · · · ∗ fm ∗ fm+1) ∈ ∑+
p (a,c,ρ ′,B),

where

ρ ′ = B+
(ρ∗ −B)(Am+1−B)(c)2p

(1−B)(a)2p
and ρ∗ = B+

{
(c)2p

(1−B)(a)2p

}m−1 m

∏
j=1

(Aj −B).

A simple calculation yields

ρ ′ = B+
{

(c)2p

(1−B)(a)2p

}
(ρ−B)(Am+1−B) = B+

{
(c)2p

(1−B)(a)2p

}m m+1

∏
j=1

(Aj −B).

This proves the result for n = m+1.
By taking the functions f j defined in U∗ by

f j(z) = z−p +
(Aj −B)(c)2p

(1−B)(a)2p
zp ( j = 1,2, · · · ,n), (4.4)

it is easily seen that

( f1 ∗ f2 ∗ · · · ∗ fn)(z) = z−p +

{
n

∏
j=1

(Aj −B)(c)2p

(1−B)(a)2p

}
zp,

which shows that

(1−B)(c)2p

(ρ −B)(a)2p

n

∏
j=1

(Aj −B)(c)2p

(1−B)(a)2p
= 1.

This completes the proof of Theorem 4.1. �
Putting Aj = 1− (2α j/p) ( j = 1,2, · · · ,n) and B = −1 in Theorem 4.1, we get

COROLLARY 4.1. If a � c > 0 and f j ∈∑+
p
(a,c;α j) (0 �α j < p; j = 1,2, · · · ,n) ,

then the function ( f1 ∗ f2 ∗ · · · ∗ fn) ∈ ∑+
p (a,c;ν) , where

ν = p−
{

(c)2p

p(a)2p

}n−1 n

∏
j=1

(p−α j).

The result is the best possible.

In the special case when a = c = 1, Corollary 4.1 yields
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COROLLARY 4.2. If f j ∈ ∑+
p
(α j) (0 � α j < p; j = 1,2, · · · ,n) , then the function

( f1 ∗ f2 ∗ · · · ∗ fn) ∈ ∑+
p
(μ) , where

μ = p− ∏n
j=1(p−α j)

pn−1 .

The result is the best possible.

THEOREM 4.2. Let a � c > 0 and −1 � B < Aj � 1 (−1 � B < 0) ( j = 1,2) .
If f1 ∈ ∑+

p
(a + 1,c,A1,B) and f2 ∈ ∑+

p
(a,c,A2,B) , then the function ( f1 ∗ f2) ∈

∑+
p
(a,c,ρ ,B) , where

ρ = B+
(A1 −B)(A2−B)(c)2p

(1−B)(a+1)2p
.

The result is the best possible.

Proof. We need to find the largest ρ such that

∞

∑
k=p

k(1−B)(a)p+k

p(ρ−B)(c)p+k
ak,1ak,2 � 1.

From Lemma 2.1, we get

∞

∑
k=p

k(1−B)(a+1)p+k

p(A1−B)(c)p+k
ak,1 � 1 and

∞

∑
k=p

k(1−B)(a)p+k

p(A2−B)(c)p+k
ak,2 � 1,

which in view of the Cauchy-Schwarz inequality yields

∞

∑
k=p

k(1−B)
√

(a)p+k(a+1)p+k

p
√

(A1−B)(A2−B)(c)p+k

√
ak,1ak,2 � 1.

Now, by following the techniques used in the proof of Theorem 4.1 (for the case n = 2)
and using the fact that (c)p+k/{k(a+1)p+k} is a decreasing function of k , we get the
required result.

By taking the functions

f1(z) = z−p +
(A1 −B)(c)2p

(1−B)(a+1)2p
zp and f2(z) = z−p +

(A2 −B)(c)2p

(1−B)(a)2p
zp

defined in U∗ , it is easily seen that the result is the best possible. �

Letting Aj = 1− (2α j/p) (0 � α j < p; j = 1,2) and B = −1 in Theorem 4.2, we
obtain
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COROLLARY 4.3. Let a � c > 0 . If f1 ∈∑+
p
(a+1,c;α1) and f2 ∈∑+

p
(a,c;α2) ,

then the function ( f1 ∗ f2) ∈ ∑+
p
(a,c;σ) , where

σ = p− (p−α1)(p−α2)(c)2p

p(a+1)2p
.

The result is the best possible.

The proof of the following theorem is much akin to that of Theorem 4.2 and we
choose to omit the details.

THEOREM 4.3. If a � c > 0,−1 � B < Aj � 1 (−1 � B < 0; j = 1,2) and f j ∈
∑+

p
(a+1,c,Aj,B) , then the function ( f1 ∗ f2) ∈ ∑+

p
(a,c,τ,B), where

τ = B+
(A1−B)(A2−B)(a)2p(c)2p

(1−B)(a+1)2
2p

.

The result is the best possible for the functions f j defined in U∗ by

f j(z) = z−p +
(Aj −B)(c)2p

(1−B)(a+1)2p
zp ( j = 1,2).

Using Theorem 4.2 and Theorem 4.3, we deduce the following result.

THEOREM 4.4. If a � c > 0 and f j ∈ ∑+
p
(a + 1,c,Aj,B) (−1 � B < Aj �

1,−1 � B < 0; j = 1,2, · · · ,n) , then the function ( f1 ∗ f2 ∗ · · · ∗ fn) ∈ ∑+
p (a,c,κ ,B) ,

where

κ = B+

{
(a)2p(c)n−1

2p

(1−B)n−1(a+1)n
2p

}
n

∏
j=1

(Aj −B).

The result is the best possible for the functions f j defined in U∗ by

f j(z) = z−p +
(Aj −B)(c)2p

(1−B)(a+1)2p
zp ( j = 1,2, · · · ,n).

Setting a = c = 1, Aj = 1−(2α j/p) ( j = 1,2, · · · ,n) and B =−1 in Theorem 4.4,
we obtain

COROLLARY 4.4. If f j ∈ ∑+
p

satisfies

−ℜ[zp+1{(p+2) f ′j(z)+ z f ′′j (z)
}]

> α j (0 � α j < p, j = 1,2, · · · ,n; z ∈ U),

then the function ( f1 ∗ f2 ∗ · · · ∗ fn) ∈ ∑+
p (ξ ) , where

ξ = p− ∏n
j=1(p−α j)

pn−1(2p+1)n .

The result is the best possible.
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THEOREM 4.5. If a � c > 0, f j ∈ ∑+
p
(a,c,A,B) ( j = 1,2, · · · ,n) and

h(z) = z−p +
∞

∑
k=p

(
n

∑
j=1

a2
k, j

)
zk (z ∈ U

∗), (4.5)

then the function h ∈ ∑+
p
(a,c,κ,B) , where

κ = B+
n(A−B)2(c)2p

(1−B)(a)2p
.

The result is the best possible.

Proof. Since by Lemma 2.1,

∞

∑
k=p

{
k(1−B)(a)p+k

p(A−B)(c)p+k

}2

a2
k, j �

{
∞

∑
k=p

k(1−B)(a)p+k

p(A−B)(c)p+k
ak, j

}2

� 1

for j = 1,2, · · · ,n , we have

∞

∑
k=p

1
n

{
k(1−B)(a)p+k

p(A−B)(c)p+k

}2
(

n

∑
j=1

a2
k, j

)
� 1. (4.6)

We have to find the largest σ such that

∞

∑
k=p

{
k(1−B)(a)p+k

p(σ −B)(c)p+k

}( n

∑
j=1

a2
k, j

)
� 1.

In view of (4.6), we need to find the largest σ such that

k(1−B)(a)p+k

p(σ −B)(c)p+k
� 1

n

{
k(1−B)(a)p+k

p(A−B)(c)p+k

}2

which is equivalent to

B+
np(A−B)2(c)p+k

k(1−B)(a)p+k
� σ (k � p). (4.7)

Since (c)p+k/{k(a)p+k} is a decreasing function of k , putting k = p in (4.7), we get
the required result.

It can be easily verified that the result is the best possible for the functions f j ( j =
1,2, · · · ,n) , given by (4.4). This proves Theorem 4.5. �

Putting a = c = 1, A = 1− (2α/p) and B = −1 in Theorem 4.5, we obtain

COROLLARY 4.5. If f j ∈ ∑+
p
(α) (0 � α < p; j = 1,2, · · · ,n) and h is given by

(4.5), then the function h ∈ ∑+
p
(η) , where

η = p− n(p−α)2(c)2p

p(a)2p
.

The result is the best possible.
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