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(Communicated by J. Pečarić)

Abstract. In the present paper, separability properties of convolution-differential equations with
unbounded operator coefficients in Banach valued Lp spaces are investigated. A coercive es-
timate for resolvent of corresponding realization operator, especially, its R -sectoriality is ob-
tained. Finally, these results applied to establish maximal regularity of Cauchy problem for the
abstract parabolic convolution equations and integro-differential equations on infinite dimension
state spaces.

1. Introduction, notations and background

In recent years, maximal regularity of differential operator equations, especially
parabolic and elliptic type have been studied extensively e. g. in [1–3], [8–10], [14],
[17–21], [25] and the references therein. Moreover, convolution-differential equations
(CDEs) have been studied in [2], [12–13], [15–16], [22–23] (for comprehensive refer-
ences see [15]). However, the convolution-differential operator equations (CDOEs) is
relatively less investigated subject. In [2] the parabolic type CDEs with bounded op-
erator coefficient was investigated. The main aim of the present paper, is to establish
maximal regularity of CDOE

l

∑
k=0

ak ∗ dku
dtk

+A∗ u = f (t)

in E -valued Lp space, where A = A(t) is a possible unbounded operator in a Banach
space E, ak = ak(t) are complex valued functions on R = (−∞,∞) . Particularly, we
prove that the corresponding realization operator is a generator of analytic semigroup.

Suppose Ω is a measurable subset in Rn and Lp (Ω;E) denotes the space of all
strongly measurable E -valued functions that are defined on Ω with the norm

‖ f‖Lp(Ω;E) =
(∫

‖ f (x)‖p
E dx

) 1
p

, 1 � p < ∞ ,

‖ f‖L∞(Ω;E) = ess sup
x∈Ω

[‖ f (x)‖E ] .
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Let C be the set of complex numbers and

Sϕ = {λ ; λ ∈ C, |argλ | � ϕ} , 0 � ϕ < π .

A closed linear operator A = A(t) , t ∈ R is said to be uniformly sectorial in a
Banach space E , if D(A(t)) is dense in E and does not depend on t and there is a
positive constant M so that∥∥∥(A(t)+λ I)−1

∥∥∥
B(E)

� M |λ |−1

for every t ∈ R and λ ∈ Sϕ ,ϕ ∈ [0 , π) , where I is an identity operator in E and B(E)
is the space of all bounded linear operators in E. Sometimes instead of A+λ I we will
write A+λ and denote it by Aλ .

Let E
(
Aθ) denote the space D

(
Aθ) with graphical norm

‖u‖E(Aθ ) =
(
‖u‖p +

∥∥∥Aθu
∥∥∥p) 1

p
, 1 � p < ∞, −∞< θ < ∞.

C (Ω;E) and C(m) (Ω;E) will denote the spaces of E -valued bounded, continuous and
m-times continuously differentiable functions on Ω , respectively.

S = S (Rn;E) denotes a Schwartz class i.e. the space of E -valued rapidly decreas-
ing smooth functions on Rn, equipped with its usual topology generated by seminorms.
Let S� (Rn;E) denote the space of all continuous linear operators L : S → E, equipped
with the bounded convergence topology. Recall S (Rn;E) is norm dense in Lp (Rn;E)
when 1 � p < ∞.

Let α = (α1,α2, ...,αn) , where αi are integers. An E -valued generalized function
Dα f is called a generalized derivative in the sense of Schwartz distributions of the
function f ∈ S

�

(Rn,E) , if the equality

〈Dα f ,ϕ〉 = (−1)|α | 〈 f ,Dαϕ〉
holds for all ϕ ∈ S.

Let Fu = û and F−1u = ǔ denote the Fourier and inverse Fourier transformations
of u , respectively. It is known that

F (Dα
x f ) = (iξ1)

α1 ...(iξn)
αn f̂ , Dα

ξ (F ( f )) = F
[
(−ixn)

α1 ...(−ixn)
αn f

]
for all f ∈ S� (Rn;E) .

Let E1 and E2 be two Banach spaces. A function Ψ ∈ L∞ (Rn;B(E1,E2)) is
called a multiplier from Lp (Rn;E1) to Lp (Rn;E2) for p ∈ (1,∞) if the map u → Tu =
F−1Ψ(ξ )Fu, u ∈ S (Rn;E1) are well defined and extends to a bounded linear operator

T : Lp (Rn;E1) → Lp (Rn;E2) .

The space of all Fourier multipliers from Lp (Rn;E1) to Lp (Rn;E2) will be denoted by
Mp

p (E1,E2) .
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Let Th =
{
Ψh ∈ Mp

p (E1,E2) ,h ∈ P0
}

where P0 is a space containing our parame-
ters (generally, it will be some sectors in the complex domain, through this paper). We
say that Th is a uniformly bounded collection of multipliers (UBM) if there exists a
positive constant M independent on h ∈ P0 such that

∥∥F−1ΨhFu
∥∥

Lp(Rn;E2)
� M‖u‖Lp(Rn;E1)

for all h ∈ P0 and u ∈ S (Rn;E1) .
A Banach space E is called a UMD-space [6–7] if the Hilbert operator (H f ) (x) =

lim
ε→0

∫
|x−y|>ε

f (y)
x−y dy is bounded in Lp (R,E) , p ∈ (1,∞) (see. e.g. [9]). UMD spaces

include e.g. Lp , lp spaces and Lorentz spaces Lpq, p , q ∈ (1,∞) .
A set K ⊂ B(E1,E2) is called R-bounded (see [9], [11], [24]) if there is a constant

C > 0 such that for all T1,T2, ...,Tm ∈ K and u1,u2, ...,um ∈ E1, m ∈ N

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)Tju j

∥∥∥∥∥
E2

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E1

dy,

where
{
r j
}

is a sequence of independent symmetric {−1,1}-valued random variables
on [0,1] . The smallest C for which the above estimate holds is called a R-bound of the
collection K and denoted by R(K) .

A set Th ⊂ B(E1,E2) depending on parameter h ∈ Q is called uniformly R-
bounded with respect to h if there is a constant C, independent of h ∈ Q, such that
for all T1(h),T2(h), ...,Tm(h) ∈ Th and u1,u2, ...,um ∈ E1, m ∈ N

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)Tj (h)u j

∥∥∥∥∥
E2

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E1

dy

that implies
sup
h∈Q

R(Th) � C.

DEFINITION 1. A Banach space E is said to be a space satisfying a multiplier
condition if, for any Ψ ∈ L∞ (R;B(E)) , the R-boundedness of the set{

|ξ |k DkΨ(ξ ) : ξ ∈ R\ 0, {0,1} , k = 0,1
}

implies that Ψ is a Fourier multiplier, i.e. Ψ ∈ Mp
p (E) for any p ∈ (1,∞) .

REMARK 1. Note that, if E is UMD space then by virtue of [9], [11], [24] the
space E satisfies the multiplier condition.

DEFINITION 2. A sectorial operator A is said to be an R-sectorial in a Banach
space E if there exists ϕ ∈ [0 , π) such that the set

LA =
{

A(A+ ξ )−1 : ξ ∈ Sϕ
}
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is R-bounded.
An operator A(t) is said to be an uniform R-sectorial in a Banach space E if

sup
t

R
({

A(t) (A(t)+ ξ )−1 : ξ ∈ Sϕ
})

� M.

Note that, in Hilbert spaces every norm bounded set is R-bounded. Therefore, in
Hilbert spaces all sectorial operators are R-sectorial (see e.g. [9]).

DEFINITION 3. Let A = A(t) , t ∈ R be closed linear operator in E with domain
definition D(A) independent of t. Let u ∈ S′ (R;E (A)) . Then, the Fourier transforma-
tion of A(t) is defined as

〈Âu,ϕ〉 = 〈Au, ϕ̂〉, u ∈ D(A), ϕ ∈ S (R) .

(For details see [2, p. 7]).

DEFINITION 4. Let A = A(t) , t ∈ R be closed linear operator in E with domain
definition D(A) independent of t . Then it is differentiable if for all u ∈ E (A) the
following equality holds(

d
dt

A

)
u = A′(t)u = lim

h→0

‖A(t +h)u−A(t)u‖E

h
.

DEFINITION 5. Let A = A(t) , t ∈ R be closed linear operator in E with domain
definition D(A) independent of t and u ∈ S (R;E(A)) . Then we define:

(A∗ u)(t) =
∫
R

A(t− y)u(y)dy.

For the case u ∈ S′(R;E(A)) see [2, p. 10-11].
Let E0 and E be two Banach spaces, where E0 is continuously and densely em-

bedded into E. Let l be a positive integer. Wl
p (R;E0,E) denotes the space of all func-

tions u ∈ Lp (R;E0) possess the generalized derivatives Dlu ∈ Lp (R;E) with the norm

‖u‖Wl
p(R;E0,E) = ‖u‖Lp(R;E0) +

∥∥∥Dlu
∥∥∥

Lp(R;E)
< ∞.

2. Convolution-differential operator equations

Consider the CDOE

( L+λ )u =
l

∑
k=0

ak ∗ dku
dtk

+Aλ ∗ u = f (t), t ∈ R (1)

in Lp (R;E) , where Aλ = A+λ , A = A(t) is a possible unbounded operator in a Banach
space E, ak = ak(t) are complex valued functions.
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CONDITION 2.1.. Let Â(ξ ) be uniformly sectorial operator in a Banach space E
with ϕ ∈ [0,π) . Suppose ak ∈ S′(R) and âk be continuous complex valued functions.
Moreover:

(i) there exist M > 0 and m ∈ {0,1, . . . , l} such that

|âk(ξ )| � M |âm(ξ )| for all k = 0,1 . . . , l and ξ ∈ R.

(ii)

L(ξ ) =
l

∑
k=0

âk(ξ )(iξ )k ∈ S (ϕ1) , and λ ∈ S (ϕ2) ,

so that ϕ1 +ϕ2 < π and
L(ξ )+λ ∈ Sϕ .

(iii) there is a positive constant C so that

|L(ξ )| � C |âm|
∣∣∣ξ l
∣∣∣ , ξ ∈ R\{0} . (2)

Through this section d
dξ Â(ξ ) will be denoted as Â′(ξ ).

First let us prove the uniformly boundedness of operator functions

σ0 (ξ ,λ ) = λ
[
Â(ξ )+λ +L(ξ )

]−1

σ1 (ξ ,λ ) = Â(ξ )
[
Â(ξ )+λ +L(ξ )

]−1

and

σ2 (ξ ,λ ) =
l

∑
k=0

|λ |1− k
l âk(ξ )(iξ )k [Â(ξ )+λ +L(ξ )

]−1
.

LEMMA 2.1. If Condition 2.1 holds, then the operators σi (ξ ,λ ) , i = 0,1,2 are
uniformly bounded.

Proof. Let us note that, for the sake of simplicity we shall not change constants in
every step. By virtue of [8, Lemma 2.3] for L(ξ ) ∈ Sϕ1 , λ ∈ Sϕ and ϕ1 +ϕ < π there
is a positive constant C such that

|λ +L(ξ )| � C (|λ |+ |L(ξ )|) . (3)

In view of uniformly sectoriality of operator Â(ξ ) and by (3) we have the uniform
estimate

‖σ0 (ξ ,λ )‖B(E) � M |λ | [1+ |λ |+ |L(ξ )|]−1 � M.

Moreover, by using the resolvent properties of sectorial operators we obtain

‖σ1 (ξ ,λ )‖B(E) =
∥∥∥I− (λ +L(ξ ))

[
Â(ξ )+λ +L(ξ )

]−1
∥∥∥

B(E)

� 1+ |λ +L(ξ )|
∥∥∥[Â(ξ )+λ +L(ξ )

]−1
∥∥∥

B(E)

� 1+M |λ +L(ξ )|(1+ |λ +L(ξ )|)−1 � 1+M.
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Next, let us consider σ2. It is clear to see that

‖σ2 (ξ ,λ )‖B(E) � C
l

∑
k=0

|âk| |λ |
(
|ξ | |λ |− 1

l

)k |λ +L(ξ )|−1

×|λ +L(ξ )|
∥∥∥[Â(ξ )+λ +L(ξ )

]−1
∥∥∥

B(E)
.

Then setting y =
(
|λ |− 1

l |ξ |
)

in the following well known inequality

yk � C
(
1+ yl

)
, yk � 0, k � l

due to sectoriality of A we have

‖σ2 (ξ ,λ )‖B(E) � C
l

∑
k=0

|âk|
[
|λ |+ |ξ |l

]
[|λ +L(ξ )|]−1 .

Due to boundedness of
l
∑

k=0
|âk| , by using the estimates (2) and (3) we get

‖σ2 (ξ ,λ )‖B(E) � C. �

LEMMA 2.2. Suppose Condition 2.1 holds and Â(ξ ) is an uniformly R-sectorial
operator. Then, the following sets

S0 (ξ ,λ ) =
{
λ
[
Â(ξ )+λ +L(ξ )

]−1
; ξ ∈ R\ {0}

}
,

S1 (ξ ,λ ) =
{

Â(ξ )
[
Â(ξ )+λ +L(ξ )

]−1
; ξ ∈ R\ {0}

}
,

S2 (ξ ,λ ) =

{
l

∑
k=0

|λ |1− k
l âk(ξ )(iξ )k

[
Â(ξ )+λ +L(ξ )

]−1
; ξ ∈ R\ {0}

}

are uniformly R-bounded.

Proof. Due to R-sectoriality of A we obtain that S1 (ξ ,λ ) is R bounded. Let

σ (ξ ,λ ) = [λ +L(ξ )]
[
Â(ξ )+λ +L(ξ )

]−1
.

Since,

I− [λ +L(ξ )]
[
Â(ξ )+λ +L(ξ )

]−1 = Â
[
Â(ξ )+λ +L(ξ )

]−1
,

it clearly follows from R-boundedness of S1 (λ ,ξ ) that the set

S (ξ ,λ ) = {σ (ξ ,λ ) ; ξ ∈ R\ {0}}
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is R-bounded. Moreover, by Condition 2.1 and by estimate (3) there is a positive
constant M so that

|λ | |λ +L(ξ )|−1 � M.

So, due to R-boundedness of S (ξ ,λ ) and by virtue of Kahane’s contraction prin-
ciple for collection of R-bounded operators [9, Lemma 3.5] we obtain the R-boundedness
of set S0 (ξ ,λ ) . Therefore, by Lemma 2.1 we obtain the uniformly R-boundedness of
σ0 (ξ ,λ ) , σ1 (ξ ,λ ) . I.e.

sup
λ

R{S0 (ξ ,λ )} � M0, sup
λ

R{S1 (ξ ,λ )} � M1. (4)

Thanks to R-boundedness of the set S (ξ ,λ ) for all ξ1,ξ2, ...,ξm ∈ R , σ (ξ1,λ ) ,
σ (ξ2,λ ) , ..., σ (ξm,λ ) , u1,u2, ...,um ∈ E , m ∈ N we have

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)σ (ξ j,λ )u j

∥∥∥∥∥
E

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E

dy, (5)

where
{
r j
}

is a sequence of independent symmetric {−1,1}-valued random variables
on [0,1] . Moreover,

σ2 (ξ ,λ ) =
l

∑
k=0

|λ |1− k
l âk(ξ )(iξ )k [λ +L(ξ )]−1σ (λ ,ξ ) . (6)

Then by virtue of (4) , (6) and in view of Kahane’s contraction principle, we get
from (5)

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)σ2 (ξ j,λ )u j

∥∥∥∥∥
E

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)σ (ξ j,λ )u j

∥∥∥∥∥
E

dy.

Thanks to R-boundedness of the set S1 (ξ ,λ ) we get from above

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)σ2 (ξ j,λ )u j

∥∥∥∥∥
E

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

σ1 (ξ j,λ )r j (y)u j

∥∥∥∥∥
E

dy (7)

� C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E

dy.

The estimate (7) implies the R-boundedness of set S2 (ξ ,λ ) . Moreover, from
Lemma 2.1 and (7) we obtain

sup
λ

R{S2 (ξ ,λ )} � C. (8)

Namely, the estimates (4), (8) imply that the sets S0 (ξ ,λ ) , S1 (ξ ,λ ) , S2 (ξ ,λ ) are
R-bounded and it’s R-bounds are independent on λ . �
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LEMMA 2.3. Let all conditions of Lemma 2.2 be hold and

âk ∈C(1) (R) , k = 0,1, ..., l, Â′ (ξ ) Â−1 (ξ ) ∈C (R;B(E)) .

Suppose, there are positive constants C1 and C2 such that

R
({

ξ Â′ (ξ )
(
Â+ ξ

)−1
: ξ ∈ Sϕ

})
� C1, (9)

∣∣∣∣ξ d
dξ

âk(ξ )
∣∣∣∣� C2. (10)

Then, the following sets

G0 (ξ ,λ ) =
{
ξ

d
dξ

(
λ
[
Â(ξ )+λ +L(ξ )

]−1
)

; ξ ∈ R\ {0}
}

,

G1 (ξ ,λ ) =
{
ξ

d
dξ

(
Â(ξ )

[
Â(ξ )+λ +L(ξ )

]−1
)

; ξ ∈ R\ {0}
}

,

G2 (ξ ,λ ) =

{
ξ

d
dξ

l

∑
k=0

|λ |1− k
l âk(ξ )(iξ )k [Â(ξ )+λ +L(ξ ))

]−1
; ξ ∈ R\ {0}

}
,

are uniformly R-bounded i.e.

sup
λ

R{Gi (ξ ,λ )} � Mi, i = 0,1,2.

Proof. It is easy to see that

ξ
d
dξ

[Â(ξ )B(ξ ,λ )] = ξ Â′(ξ )B(ξ ,λ )−Â(ξ )B(ξ ,λ )[ξ Â′(ξ )B(ξ ,λ )+D(ξ ,λ )B(ξ ,λ )],

where

B(ξ ,λ ) =
[
Â(ξ )+λ +L(ξ )

]−1
,

D(ξ ,λ ) =
l

∑
k=0

|λ |1− k
l

(
ξ

dâk

dξ
(iξ )k + kâk(ξ )(iξ )k

)
.

Due to R-sectoriality of Â and by condition (9) we get that the sets{
Â(ξ )B(ξ ,λ ) ; ξ ∈ R\ {0}} ,

{
ξ Â′ (ξ )B(ξ ,λ ) ; ξ ∈ R\ {0}}

are R-bounded. Moreover, it is clear that

D(ξ ,λ )B(ξ ,λ ) = D(ξ ,λ ) |λ +L(ξ )|−1 |λ +L(ξ )|B(ξ ,λ ) .

By condition (10) and in view of Condition 2.1we obtain that∣∣∣D(ξ ,λ ) |λ +L(ξ )|−1
∣∣∣� M.
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Then by Kahane’s contraction principle we have the R-boundedness of set

{D(ξ ,λ )B(ξ ,λ ) ; ξ ∈ R\ {0}} .

Then by virtue of additional and product properties of R-bounded operators (see
e.g [9], Proposition 3.4) we obtain R-boundedness of G1 (ξ ,λ ) . In a similar way the
R-boundedness of G0 (ξ ,λ ) is derived. Moreover, it is clear that

ξ
d
dξ

l

∑
k=0

|λ |1−
k
l

k â(ξ )(iξ )k B(ξ ,λ )

=
l

∑
k=0

|λ |1− k
l

{[
ξ dâk

dξ (iξ )k + kâk(ξ )(iξ )k
]
B(ξ ,λ )

+âk(ξ )(iξ )k

[
ξ Â′ (ξ )+

l

∑
k=0

(
dâk

dξ
(iξ )k + ikâk(ξ )(iξ )k−1

)]
(−1)[B(ξ ,λ )]2

}

= D(ξ ,λ )B(ξ ,λ )+

[
l

∑
k=0

|λ |1−
k
l

k â(ξ )(iξ )k B(ξ ,λ )

]

×[Â′ (ξ )B(ξ ,λ )+D(ξ ,λ )B(ξ ,λ )
]
.

By using the R-boundedness of set {D(ξ ,λ )B(ξ ,λ ) ; ξ ∈ R\ {0}} , by virtue of
additional and product properties of R-bounded operators in a similar way we obtain
the R-boundedness of the set G2 (ξ ,λ ) . �

Then from Lemma 2.2 and Lemma 2.3 we obtain

RESULT 2.1. Let all conditions of Lemma 2.3 are satisfied and E is a Banach
space satisfying the multiplier condition. Then, operator-functions σi (ξ ,λ ) , i = 0,1,2
are uniformly bounded collections of multipliers in Lp (R;E) .

By Lemma 2.2, Lemma 2.3 and by virtue [24, Theorem 3.4] we obtain

RESULT 2.2. Let all conditions of Lemma 2.3 are satisfied and E is an UMD
space. Then, operator-functions σi (ξ ,λ ) are uniformly bounded collections of multi-
pliers in Lp (R;E) .

THEOREM 2.1. Let E be a Banach space satisfying the multiplier condition and
Â(ξ ) is uniformly R-sectorial in E. Suppose, the Condition 2.1 and (9)–(10) hold.
Then for each f ∈ Lp (R;E) , p∈ (1,∞) the problem (1) has a unique solution and the
following coercive uniform estimate holds

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗ dku
dtk

∥∥∥∥
Lp(R;E)

+‖A∗ u‖Lp(R;E) + |λ |‖u‖Lp(R;E) � C‖ f‖Lp(R;E) (11)

for λ ∈ S (ϕ) , ϕ ∈ [0,π).

Proof. By applying the Fourier transform to equation (1) we obtain[
Â(ξ )+L(ξ )+λ )

]
û(ξ ) = f ˆ (ξ ) .
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Since L(ξ )∈ S(ϕ1) for all ξ ∈R and Â is sectorial , the operator Â(ξ )+L(ξ )+λ
is invertible in E . So we obtain that the solution of the equation (1) can be represented
in the form

u(t) = F−1 [Â(ξ )+ (λ +L(ξ ))
]−1

f ˆ.

Then there are positive numbers C1 and C2 such that

C1 |λ |‖u‖Lp(R;E) �
∥∥F−1 [σ0 (ξ ,λ ) f ˆ]∥∥

Lp(R;E) � C2 |λ |‖u‖Lp(R;E) ,

C1 ‖A∗ u‖Lp(R;E) �
∥∥F−1 [σ1 (ξ ,λ ) f ˆ]∥∥

Lp(R;E) � C2 ‖A∗ u‖Lp(R;E) ,

C1
∥∥F−1 [σ2 (ξ ,λ ) f ˆ]∥∥

Lp(R;E) �
l

∑
k=0

|λ |1− k
l

∥∥∥∥âk ∗ dku
dxk

∥∥∥∥
Lp(R;E)

� C2
∥∥F−1 [σ2 (ξ ,λ ) f ˆ]∥∥

Lp(R;E) ,

where σi (ξ ,λ ) , i = 0,1,2 are operator functions defined in Lemma 2.1 . By Result
2.1 operator-functions σi (ξ ,λ ) are uniformly bounded collections of multipliers in
Lp (R;E) . It implies that for f ∈ Lp (R;E) ,

|λ |‖u‖Lp(R;E) � C0 ‖ f‖Lp(R;E) ,‖A∗ u‖Lp(R;E) � C1 ‖ f‖Lp(R;E) ,

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗ dku
dtk

∥∥∥∥
Lp(R;E)

� C2 ‖ f‖Lp(R;E) .

I.e. we obtain that for all f ∈ Lp (R;E) , there is a unique solution of the equation (1)
in the form u(x) = F−1 [A+λ +L(ξ )]−1 f ˆ and the estimate (11) holds .

Let Q denote the operator in F = Lp (R;E) generated by problem (1) i. e.

Qu =
l

∑
k=0

ak ∗ dku
dtk

+Aλ ∗ u. �

From Theorem 2.1 and Result 2.2 we have

RESULT 2.3. Let conditions of Theorem 3.1 hold for the Banach spaces E ∈
UMD . Then the assertion of Theorem 3.1 is valid.

RESULT 2.4. Assume all conditions of the Theorem 2.1 hold. Then, for all λ ∈
S (ϕ) the resolvent of operator Q exist and the following sharp estimate holds

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗
[

dk

dxk (Q+λ )−1
]∥∥∥∥

B(F)
+
∥∥∥A∗ (Q+λ )−1

∥∥∥
B(F)

+
∥∥∥A∗ (Q+λ )−1

∥∥∥
B(F)

+
∥∥∥|λ |(Q+λ )−1

∥∥∥
B(F)

� C.

REMARK 2.1. The Result 2.4 particularly, implies that the operator Q is sectorial
in Lp (R;E) . I.e. if Â is uniformly R-sectorial for ϕ ∈ (π2 ,π

)
. Then (see e.g. [22,

§1.14.5] the operator Q is a generator of analytic semigroup in Lp (R;E) .
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REMARK 2.2. Note that (2) (in Condition 2.1) is not required if we consider our
problem without spectral parameter. In this case we will have the following estimate

l

∑
k=0

∥∥∥∥ak ∗ dku
dtk

∥∥∥∥
Lp(R;E)

+‖A∗ u‖Lp(R;E) � C2 ‖ f‖Lp(R;E) .

3. The Cauchy problem for parabolic CDOE

In this section, we shall consider the following Cauchy problem for convolution
parabolic equation

∂u
∂ t

(t,x)+Ou = f (t,x) , u(0,x) = 0, (12)

where

Ou =
l

∑
k=0

ak ∗ ∂
ku

∂xk +A∗ u.

Note that A = A(x) is a possible unbounded operator in E and ak = ak (x) are complex-
valued functions. Applying Theorem 2.1 we establish in this section the maximal reg-
ularity of the problem (12). First we show O is an R-sectorial in X = Lp (R;E) .

THEOREM 3.1. Suppose Condition 2.1 holds, E is an UMD space and the oper-
ator Â(ξ ) is uniformly R-sectorial in E for ϕ with 0 � ϕ < π −ϕ1 . Then operator
O is R-sectorial in Lp (R;E) .

Proof. From the Result 2.4 we obtain that the operator O is sectorial in Lp (R;E) .
We have to prove the R-boundedness of the set

σ (ξ ,λ ) =
{
λ (O+λ )−1 : λ ∈ Sϕ

}
.

From the proof of Theorem 2.1 we have

λ (O+λ )−1 f = F−1Φ(ξ ,λ ) f̂ , f ∈ Lp (Rn;E) ,

where
Φ(ξ ,λ ) = λ

(
Â(ξ )+L(ξ )+λ

)−1
.

By definition of R-boundedness, it is enough to show that the operator function λ [Â(ξ )
+L(ξ )+λ ]−1 (depended on variable λ and parameter ξ ) is UBM in Lp (R;E) . In a
similar manner as in Lemma 2.3 one can easily show that Φ(ξ ,λ ) is UBM in Lp (R;E) .
Then, by definition of R-boundedness we have

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)λ j (O+λ j)−1 f j

∥∥∥∥∥
X

dy =
1∫

0

∥∥∥∥∥
m

∑
j=1

r j (y)F−1Φ(ξ ,λ j) f̂ j

∥∥∥∥∥
X

dy

=
1∫

0

∥∥∥∥∥F−1
m

∑
j=1

r j (y)Φ(ξ ,λ j) f̂ j

∥∥∥∥∥
X

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y) f j

∥∥∥∥∥
X

dy
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for all ξ ∈ R , λ1,λ2...λm ∈ Sϕ , f1, f2, ..., fm ∈ X , m ∈ N , where
{
r j
}

is a sequence
of independent symmetric {−1,1}-valued random variables on [0,1] . Hence, the set
σ (ξ ,λ ) is R-bounded.

Let E be a Banach space. For R2
+ , p =(p, p1) , Y = Lp

(
R2

+;E
)

will be denote
the space of all p-summable E -valued functions with mixed norm (see e.g. [6, §4] for
complex-valued case), i.e. the space of all measurable E -valued functions f defined
on R2

+ , for which

‖ f‖Lp(R2
+;E) =

⎛
⎜⎝∫

R

⎛
⎝∫

R+

‖ f (x,t)‖p
E dx

⎞
⎠

p1
p

dt

⎞
⎟⎠

1
p1

< ∞.

Let E0 and E be two Banach spaces, where E0 is continuously and densely em-
bedded into E. Suppose, l is an integer and W 1,l

p
(
R2

+;E0,E
)

denotes the space of all
functions u ∈ Y possess the generalized derivatives Dtu, Dk

xu ∈Y, with the norm

‖u‖
W 1,l

p (R2
+;E0,E) = ‖u‖Y +‖Dtu‖Y +

n

∑
k=1

∥∥∥Dk
xu
∥∥∥

Y
. �

Now we are ready to state the main result of this section.

THEOREM 3.2. Assume the Condition 2.1 holds for ϕ ∈ (π2 ,π
)
, s > 0 , E ∈UMD

and the operator Â(ξ ) is uniformly R-sectorial in E. Then for all f ∈ Y the equation
(12) has a unique solution u ∈W 1

p (R+;E (O) ,E) satisfying

‖Dtu‖Y +
l

∑
k=0

∥∥∥aα ∗Dk
xu
∥∥∥

Y
+‖A∗ u‖Y � C‖ f‖Y .

Proof. It is clear to see that

Y = Lp1 (R+;X) .

Therefore, the problem (12) can be expressed as

du
dt

+Ou(t) = f (t) , u(0) = 0, t ∈ R+. (13)

By virtue of [1, Theorem 4.5.2], X ∈UMD implies E ∈UMD , for p ∈ (1,∞) . Then
due to R-sectoriality of O with ϕ ∈ (π2 ,π

)
, by virtue of [1, Proposition 8.10] we obtain

that for f ∈ Lp1 (R+;X) the equation (13) has a unique solution u∈W 1
p1

(R+;D(O) ,X)
satisfying

‖Dtu‖Lp1 (R+;X) +‖Ou‖Lp1 (R+;X) � C‖ f‖Lp1 (R+;X) .

In view of Theorem 2.1 from the above estimate we get the assertion. �
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4. Boundary value problems for integro-differential equations

Let Ω̃ = R×Ω , where Ω ⊂ Rμ is an open connected set with compact C2m -
boundary ∂Ω . Consider the BVP for integro-differential equation

(L+λ )u =
l

∑
k=0

ak ∗ ∂
ku
∂ tk

+ ∑
|α |�2m

(
bαaαDα

y +λ
)∗ u = f (t,y) , t ∈ R, y ∈Ω, (14)

Bju = ∑
|β |�mj

b jβ (y)Dβ
y u(t,y) = 0, y ∈ ∂Ω, j = 1,2, ...,m (15)

where

Dj = −i
∂
∂y j

, y = (y1, ...,yμ), bα = bα (t) , aα = aα (y) ,

α = (α1,α2, ..., αn) , ak = ak (t) , u = u(t,y) .

If Ω̃ = R×Ω , p =(p1, p) , Lp
(
Ω̃
)

will be denote the space of all p-summable
scalar-valued functions with mixed norm (see e.g. [5]), i.e. the space of all measurable
functions f defined on Ω̃ , for which

‖ f‖Lp(Ω̃) =

⎛
⎜⎝∫

R

⎛
⎝∫

Ω

| f (t,y)|p1 dt

⎞
⎠

p
p1

dy

⎞
⎟⎠

1
p

< ∞.

Analogously, Wm
p
(
Ω̃
)

denotes the Sobolev space with corresponding mixed norm [5].
Let Q denote the operator generated by BVP (14)–(15). Let

F = B
(
Lp
(
Ω̃
))

.

THEOREM 4.1. Let the following conditions be satisfied;

(1) aα ∈C
(
Ω
)

for each |α| = 2m and aα ∈ [L∞ +Lrk

]
(Ω) for each |α| = k <

2m with rk � p1 , p1 ∈ (1,∞) and 2m− k > l
rk

, να ∈ L∞;

(2) b jβ ∈C2m−mj (∂Ω) for each j , β , m j < 2m, p ∈ (1,∞) ;

(3) for y ∈Ω , ξ ∈ Rμ , λ with arg λ = π , |ξ |+ |λ | 
= 0 let

λ + ∑
|α |=2m

aα (y)ξα 
= 0;

(4) for each y0 ∈ ∂Ω local BVP in local coordinates corresponding to y0

λ + ∑
|α |=2m

aα (y0)Dαϑ (y) = 0,

Bj0ϑ = ∑
|β |=mj

b jβ (y0)Dβϑ (y) = h j, j = 1,2, ...,m
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has a unique solution ϑ ∈C0 (R+) for all h = (h1,h2, ...,hm) ∈ Rm and for ξ � ∈ Rμ−1

with |ξ �|+ |λ | 
= 0;
(5) âk , b̂α ∈ C(1) (R) , the Condition 2.1 satisfied for âk = âk (ξ ) and there are

positive constants Ci , i = 1 , 2 so that∣∣∣∣ξ d
dξ

âk(ξ )
∣∣∣∣� C1,

∣∣∣∣ξ d
dξ

b̂α(ξ )
∣∣∣∣� C2.

Then for all f ∈ Lp
(
Ω̃
)

the problem (14)− (15) has a unique solution and the
following coercive uniform estimate for λ ∈ S (ϕ) , ϕ ∈ [0,π) holds

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗ ∂
ku
∂ tk

∥∥∥∥
Lp(Ω̃)

+‖|λ |u‖Lp(Ω̃) + ∑
|α |�2m

‖bαaαDα ∗ u‖Lp(Ω̃) � C‖ f‖Lp(Ω̃) .

Proof. Let E = Lp1 (Ω) . By virtue of [6], Lp1 (Ω) is UMD space for p1 ∈ (1,∞) .
Consider the operator A defined by

D(A) = W 2m
p1

(Ω;Bju = 0) , A(x)u = ∑
|α |�2m

bα (t)aα (y)Dαu(y) .

It is easy to see that Â(ξ ) and d
dξ Â(ξ ) are operators in Lp1 (Ω) defined by

D
(
Â
)

= D

(
d
dξ

Â

)
= W 2m

p1
(Ω;Bju = 0) , (16)

Â(ξ )u = ∑
|α |�2m

b̂α (ξ )aα (y)Dαu(y) ,

d
dξ

Â(ξ )u = ∑
|α |�2m

d
dξ

b̂α (ξ )aα (y)Dαu(y) .

Therefore, the Fourier transformation of problem (14)–(15) can be rewritten in the form
of (1) , where u(t) = u(t, .) , f (t) = f (t, .) are functions with values in E = Lp1 (Ω) .
In view of condition (1)–(5) and by virtue of [4] the following problems for f ∈ Lp1 (Ω)
and for |λ | → ∞ ,

λu(y)+ ∑
|β |�2m

b̂α (ξ )aβ (y)Dβu(y) = f (y) , (17)

Bju = ∑
|β |�mj

b jβ (y)Dβu(y) = 0, j = 1,2, ...,m

λu(y)+ ∑
|β |�2m

d
dξ

b̂α (ξ )aβ (y)Dβu(y) = f (y) , (18)

Bju = ∑
|β |�mj

b jβ (y)Dβu(y) = 0, j = 1,2, ...,m
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has unique solutions belong to W 2m
p1

(Ω) and the coercive estimates hold

‖u‖W 2m
p1

(Ω) � C
∥∥Âu
∥∥

Lp1 (Ω) , ‖u‖W 2m
p1

(Ω) � C

∥∥∥∥ d
dξ

Âu

∥∥∥∥
Lp1 (Ω)

(19)

for solutions of the problems (17) and (18), respectively. In view of condition (5) from
(16) and (19) we obtain∥∥∥∥ d

dξ
Â(ξ )u

∥∥∥∥
Lp1 (Ω)

� C‖u‖W 2m
p1

(Ω) � C
∥∥Âu
∥∥

Lp1 (Ω) ,

∥∥∥∥ξ d
dξ

Â(ξ )u

∥∥∥∥
Lp1 (Ω)

� C‖u‖W2m
p1

(Ω) � C
∥∥Âu
∥∥

Lp1 (Ω) .

That is âk and Â(ξ ) are hold (9)–(10) conditions. Moreover, by virtue of [9, Theo-
rem 8.2] the operator Â, generated by (16), is uniformly R-sectorial in Lp1 . I.e. all
conditions of Theorem 2.1 hold and we obtain the assertion. �

5. Infinite systems of integro-differential equations

Consider the following infinity system

l

∑
k=0

ak ∗ dkum

dtk
+

∞

∑
j=1

(d j +λ )∗ u j (t) = fm (t) , t ∈ Rn, m = 1,2, ...,∞. (20)

CONDITION 5.1. There are positive constants C1 and C2 so that for
{
d j (t)

}∞
1 ∈

lq for all t ∈ R and some t0 ∈ R,

C1
∣∣d j (t0)

∣∣� ∣∣d j (t)
∣∣� C2

∣∣d j (t0)
∣∣ .

Suppose âk , d̂m ∈C(1) (R) and there are positive constants Mi , i = 1, 2 so that∣∣∣∣ξ d
dξ

âα(ξ )
∣∣∣∣� M1,

∣∣∣∣ξ d
dξ

d̂m(ξ )
∣∣∣∣� M2.

Let

D(t) = {dm(t)} , dm > 0, u = {um} , D∗ u = {dm ∗ um} , m = 1,2, ...∞,

lq(D) =

⎧⎨
⎩u : u ∈ lq,‖u‖lq(D) = ‖D∗ u‖lq =

(
∞

∑
m=1

|dm ∗ um|q
) 1

q

< ∞

⎫⎬
⎭ , 1 < q < ∞.

Let Q be the differential operator in Lp (R; lq) generated by problem (20) . Let

B = B(Lp (R; lq)) .
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THEOREM 5.1. Suppose the Condition 5.1 satisfied.
Then:
(a) for f (t) = { fm (t)}∞1 ∈ Lp (R; lq (D)) , λ ∈ S (ϕ) , ϕ ∈ [0,π) the problem (20)

has a unique solution and the coercive uniform estimate

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗ dku
dtk

∥∥∥∥
Lp(R;lq)

+‖D∗ u‖Lp(R;lq) + |λ |‖u‖Lp(R;lq) � C‖ f‖Lp(R;lq) (21)

holds for the solution of the problem (20) .
(b) For λ ∈ S (ϕ) , ϕ ∈ [0,π) there exists a resolvent (Q+λ )−1 of operator Q

and

l

∑
k=0

|λ |1− k
l

∥∥∥∥ak ∗
[

dk

dtk
(Q+λ )−1

]∥∥∥∥
B
+
∥∥∥D∗ (Q+λ )−1

∥∥∥
B
+
∥∥∥|λ |(Q+λ )−1

∥∥∥
B

� C.

(22)

Proof. Really, let E = lq, A be infinite matrices, such that

A = [dm (t)δ jm] , m, j = 1,2, ...∞.

Then

Â(ξ ) =
[
d̂m (ξ )δ jm

]
,

d
dξ

Â(ξ ) =
[

d
dξ

d̂m (ξ )δ jm

]
, m, j = 1,2, ...∞.

It is clear to see that (9)–(10) condition are hold for âk (ξ ) , Â(ξ ) and the operator
A is uniformly R-sectorial in lq . Therefore, by virtue of Theorem 2.1 and Result 2.2
we obtain that, the problem (20) for all f ∈ Lp (R; lq) , λ ∈ S (ϕ) , ϕ ∈ (0,π) and
sufficiently large |λ | has a unique solution u and estimates (21), (22) are hold. �

REMARK 5.1. There are a lot of sectorial operators in concrete Banach spaces.
Therefore, putting concrete Banach spaces instead of E and concrete sectorial differ-
ential, pseudo differential operators, or finite, infinite matrices, etc. instead of operator
A on (1), we can obtain the maximal regularity of different class of convolution equa-
tions or system of equations by virtue of Theorem 2.1.
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