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Abstract. We consider the linear and nonlinear problem for partial functional differential equa-
tions

∂ 2u
∂x∂y

(x,y) = C(x,y)u(x,y)+P(x,y)u(x,y) a.e. in [0,a]× [0,b]

∂ 2u
∂x∂y

(x,y) = f (x,y,u(x,y) ,u(x,y)) a.e. in [0,a]× [0,b]

with Darboux condition

u(x,y) = ψ(x,y) on [−a0,a]× [−b0,b]\ (0,a]× (0,b]

where the Hale operator u(x,y) : [−a0,0]× [−b0,0] → Rn is defined by u(x,y)(s,t) = u(s+ x,t +
y) for (s,t) ∈ [−a0,0]× [−b0,0] . We give a few theorems about weak and strong inequalities
and the existence theorem for the nonlinear problem.

1. Introduction

Define I = [0,a]× [0,b] , D = [−a0,0]× [−b0,0] , I∗ = [−a0,a]× [−b0,b] , I0 =
I∗ \ I . We always assume that a,b > 0 and a0,b0 � 0. We denote by C(D,Rn) ,
L1(D,Rn) the space of continuous functions, Lebesgue integrable functions from D
into Rn , respectively. The norm | · | in Rn denotes the maximum norm. For vector-
functions the norm || · || is the maximum of the values |u(x,y)| taken over the interval
of definition of this function. Moreover ||u||0 = max{|u(x,y)| : (x,y) ∈ D} . Inequal-
ity x < y in Rn means that xi < yi for each i ∈ {1, . . . ,n} . Similarly for ”�”,”>”
and ”�”. The function f : I ×C(D,Rn)×Rn → Rn , f = f (x,y,ω ,η) is said to be
quasimonotonically nondecreasing with respect to η if each element fi(x,y,ω ,η) is
nondecreasing with respect to η j for i �= j . This function is said to be nondecreasing
with respect to functional argument ω if the inequality ω1(s,t) �ω2(s, t) for (s,t) ∈D
implies f (x,y,ω1,η) � f (x,y,ω2,η) . We note that in the case n = 1 the condition
quasimonotonicity is an empty condition.
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c© � � , Zagreb
Paper MIA-13-31

405



406 ADRIAN KARPOWICZ

We consider problems

∂ 2u
∂x∂y

(x,y) = C(x,y)u(x,y)+P(x,y)u(x,y) a.e. in I (1)

u(x,y) = ψ(x,y) on I0 (2)

where P(x,y) is a linear operator for every (x,y) ∈ I and C(x,y) is a square n× n
matrix.

∂ 2u
∂x∂y

(x,y) = f (x,y,u(x,y),u(x,y)) a.e. in I (3)

u(x,y) = ψ(x,y) on I0 (4)

where f : I×C(D,Rn)×Rn → Rn .

∂ 2u
∂x∂y

(x,y) = f (x,y,u(x,y)) a.e. in I (5)

u(x,y) = ψ(x,y) on I0 (6)

where f : I×C(D,Rn) → Rn .
Of course, the equation (3) can be written in the form (5) but the form of equa-

tion (3) sometimes is more useful, because we will assume different conditions for
arguments f with respect to u(x,y) and u(x,y) . For all problems the Hale operator
u(x,y) : D → Rn is defined by the formula u(x,y)(s,t) = u(s+ x,t + y) for (s,t) ∈ D and
ψ : D → Rn is a given continuous function. A solution of the problem is an abso-
lutely continuous function on I and continuous on I0 which satisfies equation almost
everywhere and initial condition everywhere. In theorems about inequalities it will be
assumed that a first order derivative in x is continuous with respect to y and a derivative
in y is continuous with respect to x .

In this paper the Darboux problem for system of the hyperbolic partial functional
differential equations will be considered. In the book of W. Walter [10] we can find
explanation why hyperbolic equations are similar to first-order ordinary differential
equations. In this book we can also find differences between hyperbolic and ordinary
equations . A main difference is it that for theorems about inequalities for the system
of ordinary differential equations we may assume only quasimonotonicity for the func-
tion f with respect to suitable argument while for system of the hyperbolic equations
quasimonotonicity isn’t enough and monotonicity is assumed even if the function f sat-
isfies the Lipschitz condition. In this paper in some theorems only quasimonotonicity
is assumed but then we will need an extra condition.

Theorems about classical solutions for ordinary differential scalar inequalities or
systems of inequalities can be found in [3], [4], [7], [10] while for hyperbolic scalar
inequalities or systems of inequalities in [5], [10]. Theorems about classical solutions
for functional differential ordinary scalar inequalities or systems of inequalities are con-
sidered in [5] while hyperbolic scaler inequalities or systems of inequalities in [1], [2].
Solutions in the sense of Carathéodory for ordinary differential scalar inequalities or
systems of inequalities can be found in [4], [8] and for ordinary functional differential
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systems of equations in [9]. Theorems of existence for the ordinary functional dif-
ferential equations can be found in [9] and for the hyperbolic functional differential
equations in [6].

Theorems about differential inequalities usually are proved in the following way:
at first a theorem about strong inequalities is proved by to take the smallest point where
there is equality next to use assumptions we get a contradiction. Next a theorem about
weak inequalities is proved in the following way. We take some function which is a
solution suitable problem. We multiply this function by ε . We subtract this function
from the first function in question and we add this function to the second function in
question. Using the theorem about strong inequalities and puting ε → 0 we get weak
inequalities. In the theorem about weak inequalities the Lipschitz condition is assumed
or a more general condition with the Perron function.

In this paper we will prove theorems for the hyperbolic functional differential
equations and inequalities similarly to the proof for the ordinary functional differen-
tial equations and inequalities in the paper of W. Walter [9]. The theorem about weak
inequalities will be proved by to multiplying the function in question by choosing suit-
able function and for this modified function we will prove the weak inequalities whence
we will get the weak inequalities for the function in question. We will use the Schauder
fixed point theorem in the theorem of existence. We will also study strongly monotone
flows. M. Hirsch considered in [3] strongly monotone flows generated by autonomous
systems u′(t) = f (u(t)) . W. Walter generalized this theory in [8] to the case where f
depends also on t , satisfied Carathédory hypotheses and is only locally Lipschitz con-
tinuous with respect to u and in [9] to the case functional differential equations. We
will develop this theory for hyperbolic equations.

2. Weak inequalities

In this section we will consider weak inequalities for problems (1), (2) and (3),
(4). We will assume only quasimonotonicity with respect to a suitable variable.

THEOREM 1. (nonnegativity) Suppose that P(x,y) is a linear map from C(D,Rn)
into Rn which is positive in the sense that u(s,t) � 0 on [x−a0,x]× [y−b0,y] implies
P(x,y)u(x,y) � 0 . C(x,y) = (ci j(x,y)) is an essentially nonnegative n× n matrix i.e.
ci j(x,y) � 0 a.e. in I for i �= j . There exists a function l(x,y) ∈ L1(I,R) such that

l(x,y) �
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

|P(x,y)u(x,y)| � l(x,y)||u||0 and |ci j(x,y)| � l(x,y) a.e. in I

cii(x,y) � −l(x,y)+
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz a.e. in I

A function u(x,y) is absolutely continuous, ∂u
∂x (x,y) is continuous with respect to y,

∂u
∂y (x,y) is continuous with respect to x . Furthermore

∂ 2u
∂x∂y

(x,y) � C(x,y)u(x,y)+P(x,y)u(x,y) a.e. in I (7)
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u(x,y) � 0 on I0,
∂u
∂x

(x,0) � 0 and
∂u
∂y

(0,y) � 0

Then
u(x,y) � 0 on I

Proof
Let v(x,y) = eH(x,y)u(x,y) , where

H(x,y) =
∫ x

−a0

∫ y

−b0

h(z1,z2)dz2dz1 for (x,y) ∈ I∗

h(x,y) =
{

l(x,y) for (x,y) ∈ I
0 for (x,y) ∈ I0

Then

∂ 2v
∂x∂y

(x,y) = eH(x,y)
{

l(x,y)u(x,y)+
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz u(x,y)

+
∫ x

0
l(z,y)dz

∂u
∂x

(x,y)+
∫ y

0
l(x,z)dz

∂u
∂y

(x,y)+
∂ 2u
∂x∂y

(x,y)
}

(8)

Since
∂u
∂x

(x,y) = e−H(x,y)
{
∂v
∂x

(x,y)−
∫ y

0
l(x,z)dz v(x,y)

}
(9)

∂u
∂y

(x,y) = e−H(x,y)
{
∂v
∂y

(x,y)−
∫ x

0
l(z,y)dz v(x,y)

}
(10)

we see that

∂ 2v
∂x∂y

(x,y) =
[
l(x,y)−

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

]
v(x,y)+

+
∫ x

0
l(z,y)dz

∂v
∂x

(x,y)+
∫ y

0
l(x,z)dz

∂v
∂y

(x,y)+ eH(x,y) ∂ 2u
∂x∂y

(x,y) (11)

From (7) we get

∂ 2v
∂x∂y

(x,y) � C̃(x,y)v(x,y)+
∫ x

0
l(z,y)dz

∂v
∂x

(x,y)

+
∫ y

0
l(x,z)dz

∂v
∂y

(x,y)+Q(x,y)(e−Hv)(x,y) (12)

where

C̃(x,y) = C(x,y)+
[
l(x,y)−

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

]
In

Q(x,y)w = eH(x,y)P(x,y)w

( In is the unit matrix)
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We note that c̃(x,y) � 0 and the operator Q is linear and positive.
Define the function ρ : I∗ → R by the formula ρ(x,y) = e(n+2)H(x,y)+x+y and the

function r : I∗ → Rn , r(x,y) = (ρ(x,y), ...,ρ(x,y)) . Then

∂ 2r
∂x∂y

(x,y) = (n+2)l(x,y)r(x,y)+ (n+2)2
∫ x

0
l(z,x)dz

∫ y

0
l(x,z)dz r(x,y)

+(n+2)
∫ x

0
l(z,y)dz r(x,y)+ (n+2)

∫ y

0
l(x,z)dz r(x,y)+ r(x,y)

Q(x,y)(e−Hr)(x,y) = eH(x,y)P(x,y)(e−Hr)(x,y)

Using a suitable estimate for matrix elements C̃(x,y) and estimate for P(x,y) we get

0 � C̃(x,y)r(x,y) � (n+1)l(x,y)r(x,y)

∫ x

0
l(z,y)dz

∂ r
∂x

(x,y) = (n+2)
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)+

∫ x

0
l(z,y)dz r(x,y)

∫ y

0
l(x,z)dz

∂ r
∂y

(x,y) = (n+2)
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)+

∫ y

0
l(x,z)dz r(x,y)

∣∣Q(x,y)(e−Hr)(x,y)
∣∣ � eH(x,y)l(x,y)||e(n+1)H(x,y)||0 � l(x,y)r(x,y)

Thus

C̃(x,y)r(x,y)+
∫ x

0
l(z,y)dz

∂ r
∂x

(x,y)+
∫ y

0
l(x,z)dz

∂ r
∂y

(x,y)+Q(x,y)(e−Hr)(x,y)

� (n+2)l(x,y)r(x,y)+2(n+2)
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)

+
∫ x

0
l(z,y)dz r(x,y)+

∫ y

0
l(x,z)dz r(x,y) � ∂ 2r

∂x∂y
(x,y)

Define vε(x,y) = v(x,y)+ εr(x,y) . From the linearity of operator Q we have

∂ 2vε
∂x∂y

(x,y) � C̃(x,y)vε (x,y)+
∫ x

0
l(z,y)dz

∂vε
∂x

(x,y)

+
∫ y

0
l(x,z)dz

∂vε
∂y

(x,y)+Q(x,y)(e−Hvε)(x,y) (13)

Since vε(x,y) = v(x,y)+ εr(x,y) , we have

∂vε
∂x

(x,y) = eH(x,y) ∂u
∂x

(x,y)+
∫ y

0
l(x,z)dz eH(x,y)u(x,y)

+ε
[
(n+2)

∫ y

0
l(x,z)dz+1

]
r(x,y)

∂vε
∂y

(x,y) = eH(x,y) ∂u
∂y

(x,y)+
∫ x

0
l(z,y)dz eH(x,y)u(x,y)

+ε
[
(n+2)

∫ x

0
l(z,y)dz+1

]
r(x,y)
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We notice that

vε(x,y) > 0 for (x,y) ∈ I0 and
∂vε
∂x

(x,0) > 0,
∂vε
∂y

(0,y) > 0 for (x,y) ∈ I

Since vε(x,y) is continuous and ∂vε
∂x (x,y) is continuous with respect to y and ∂vε

∂y (x,y)
is continuous with respect to x thus there exists c > 0 and the set Ic = I∗ \ (c,a]× (c,b]
such that

vε(x,y) > 0 for (x,y) ∈ Ic

∂vε
∂x

(x,y) > 0 for (x,y) ∈ [0,a]× [0,c]

∂vε
∂y

(x,y) > 0 for (x,y) ∈ [0,c]× [0,a]

Consequently,

∂vε
∂x

(x,y) > 0 and
∂vε
∂y

(x,y) > 0 for (x,y) ∈ [0,c]× [0,c]

Thus all elements on the right side (13) are nonnegative on [0,c]× [0,c] therefore
∂ 2vε
∂x∂y (x,y) � 0 on [0,c]× [0,c] . Integrating this inequality with respect to y we get

that the function ∂vε
∂x (x,y) is nondecreasing with respect to y . Similarly, we get that

the function ∂vε
∂y (x,y) is nondecreasing with respect to x on [0,c]× [0,c] . Furthermore

∂vε
∂x (x,y) is continuous with respect to y and ∂vε

∂y (x,y) is continuous with respect to

x . Therefore ∂vε
∂x (x,y) and ∂vε

∂y (x,y) continue positive on the set Ic \ (I∗ \ I) . Repeat-

ing this reasoning for the set Ic we get that vε(x,y) , ∂vε
∂x (x,y) , ∂vε

∂y (x,y) are positive

on all I thus ∂ 2vε
∂x∂y (x,y) � 0 on I whence we get that the function ∂vε

∂x (x,y) is nonde-

creasing with respect to y and the function ∂vε
∂y (x,y) is nondecreasing with respect to

x . Therefore vε(x,y) is nondecreasing with respect to x and y . Since vε(x,y) > 0 on
I0 , we have vε(x,y) > 0 on I . Letting ε → 0+ we get v(x,y) � 0 and consequently
u(x,y) = e−H(x,y)v(x,y) � 0 on I .

REMARK 1. Since vε(x,y) > 0, ∂vε
∂x (x,y) > 0 and ∂vε

∂y (x,y) > 0 on I , we have

v(x,y) � 0 on I and ∂v
∂x (x,y) � 0, ∂v

∂y (x,y) � 0 a.e. on I . Furthermore v(x,y) is
absolutely continuous therefore it is nondecreasing with respect to x and y . Since
u(x,y) = e−H(x,y)v(x,y) , v(x,y) � 0 on I0 and v(x,y) is nondecreasing with respect to
x and y hence there are two disjoint index sets α and β such that α ∪β = {1, ...,n}
and ui(x,y) > 0 on I∗ \ I0 for i ∈ α and u j(x,y) = 0 on Aj , u j(x,y) > 0 on Bj for
j ∈ β where Aj and Bj are disjoint sets such that Aj ∪Bj = I and the set Aj is such
that if for a point belongs to boundary different to I \ I◦ , where I◦ is interior of a set I ,
we lead two half line which the first half line is perpendicular to 0X and the second half
line is perpendicular to 0Y in the positive direction then the area belongs to I between
this two half line on the right hand is contained in the Bj .
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REMARK 2. From the proof of theorem 1 we obtain

∂u
∂x

(x,y)+
∫ y

0
l(x,z)dz u(x,y) � 0 a.e. in I

∂u
∂y

(x,y)+
∫ x

0
l(z,y)dz u(x,y) � 0 a.e. in I

We note that the function l(x,y) ∈ L1(I,R+) from the theorem 1 satisfying

l(x,y) �
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz (14)

Suppose that l(x,y) = f (x)g(y) , where f ∈ L1([0,a],R+) , g ∈ L1([0,b],R+) . Then

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz = l(x,y)

∫ x

0
f (z)dz

∫ y

0
g(z)dz

In order that condition (14) could be fulfilled sufficient that

∫ a

0
f (z)dz

∫ b

0
g(z)dz � 1 (15)

We notice that we can choose such fast decreasing functions f and g in order that
the condition (15) could be fulfilled for every a and b for example it is sufficient that
f (x) � αe−αx and f (y) � βe−β y for α,β > 0. If we want in order that functions
f ,g to have big values then we must choose small enough a and b for example if
f (x) = αex and g(y) = βey then be enough a+b � ln

(
1+ 1

αβ
)

for α,β > 0.

For arbitrary function l̃ ∈ L1(I,R+) we can choose

p = ess inf

{
l̃(x,y)∫ x

0 l̃(z,y)dz
∫ y
0 l̃(x,z)dz

: (x,y) ∈ (0,a]× (0,b]
}

> 0

so that the function l(x,y) = pl̃(x,y) fulfil condition (14 ).
Now we give examples of functions satisfying (14).

EXAMPLE 1.

1. l(x,y) = e−x−y

2. l(x,y) = 1
ea+b−ea−eb+1

ex+y

3. l(x,y) = (α+1)(β+1)
aα+1bβ+1 xαyβ for α,β > −1

4. l(x,y) = 4(a+b)
ab(a+2b)(2a+b)(x+ y)

Of course, we assume that a,b > 0. We notice that for an arbitrary big rectangle [0,a]×
[0,b] we can always choose such a small function l(x,y) in order to satisfy condition
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(14) and for an arbitrary big function l(x,y) we can choose such a small rectangle
[0,a]× [0,b] in order that condition (14) is satisfied.

Now we give example which demonstrates that in general we can’t get nonnega-
tivity first order partial derivatives of solution by assumption of theorem 1. Furthermore
weak inequalities with remark 2 will be changed to equalities.

EXAMPLE 2.

∂ 2u
∂x∂y

(x,y) = 4
[
(xy)3 − xy

]
u(x,y) in [0,1]× [0,1] (16)

u(x,0) = 1 u(0,y) = 1 (17)

The solution of the problem (16), (17) is the function u(x,y) = e−x2y2
. We show that

the solution of our problem fulfil assumption theorem 1 with l(x,y) = 4xy . We note
that ∫ x

0
l(z,y)dz

∫ y

0
l(x,y)dz = 4(xy)3

thus

l(x,y) �
∫ x

0
l(z,y)dz

∫ y

0
l(x,y)dz for (x,y) ∈ [0,1]× [0,1]

From the problem (16), (17) we have c11 = 4
[
(xy)3 − xy

]
. We notice

|c11| = 4|xy||(xy)2−1|� 4|xy| = l(x,y)

since
|(xy)2 −1|� 1 for 0 � x,y � 1

and

c11 = −4xy+4(xy)3 � −l(x,y)+
∫ x

0
l(z,y)dz

∫ y

0
l(x,y)dz

Furthermore

∂u
∂x

(x,y) = −2xy2e−x2y2
,

∂u
∂y

(x,y) = −2x2ye−x2y2

thus
∂u
∂x

(0,y) =
∂u
∂x

(x,0) =
∂u
∂y

(0,y) =
∂u
∂y

(x,0) = 0

and
∂u
∂x

(x,y) < 0 ,
∂u
∂y

(x,y) < 0 on Ĩ

where
Ĩ = [0,1]× [0,1]\ ({0}× [0,1]∪ [0,1]×{0})

Moreover
∂u
∂x

(x,y)+
∫ y

0
l(x,z)dz u(x,y) = 0

∂u
∂y

(x,y)+
∫ x

0
l(z,y)dz u(x,y) = 0

Now we give a theorem about inequalities for the problem (3), (4).
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THEOREM 2. (weak inequalities) Suppose that for all A > 0 there exists a func-
tion l(x,y) ∈ L1(I,R+) such that

l(x,y) �
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

| f (x,y,ω ,η)− f (x,y,ω ,η)| � l(x,y)(||ω−ω ||0 + |η−η |) (18)

f (x,y,ω ,η)− f (x,y,ω ,η) �
[
− l(x,y)+

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

]
(η−η) (19)

for ||ω ||0, ||ω ||0, |η |, |η | � A and η � η . f (x,y,ω ,η) is nondecreasing with respect
to ω and quasimonotone nondecreasing with respect to η . w(x,y),v(x,y) are absolute
continuous and ∂w

∂x (x,y) , ∂v
∂x (x,y) are continuouswith respect to y and ∂w

∂y (x,y) , ∂v
∂y (x,y)

are continuous x . Furthermore

∂ 2v
∂x∂y

(x,y) � f (x,y,v(x,y),v(x,y)) and

∂ 2w
∂x∂y

(x,y) � f (x,y,w(x,y) ,w(x,y)) a.e. in I (20)

v(x,y) � w(x,y) on I0,
∂v
∂x

(x,0) � ∂w
∂x

(x,0),
∂v
∂y

(0,y) � ∂w
∂y

(0,y)

Then
v(x,y) � w(x,y) on I

Proof. Let |v(x,y)|, |w(x,y)| � A− 1 and l(x,y) be the function in (18) corre-
sponding to A . Let

V (x,y) = eH(x,y)v(x,y), W (x,y) = eH(x,y)w(x,y)

Then

∂ 2V
∂x∂y

(x,y) � eH(x,y) f (x,y,v(x,y),v(x,y))+eH(x,y)
[
l(x,y)+

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

]
v(x,y)

+eH(x,y)
∫ x

0
l(z,y)dz

∂v
∂x

(x,y)+ eH(x,y)
∫ y

0
l(x,z)dz

∂v
∂y

(x,y)

Note that
∂v
∂x

(x,y) = e−H(x,y)
(
∂V
∂x

(x,y)−
∫ y

0
l(x,z)dz V (x,y)

)

∂v
∂y

(x,y) = e−H(x,y)
(
∂V
∂y

(x,y)−
∫ x

0
l(z,y)dz V (x,y)

)

Thus
∂ 2V
∂x∂y

(x,y) � eH(x,y)(Gv)(x,y)
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where

(Gu)(x,y) = g(x,y,u(x,y),u(x,y),
∂U
∂x

(x,y),
∂U
∂y

(x,y))

g(x,y,ω ,η ,σ ,δ ) = f (x,y,ω ,η)+ l1(x,y)η + e−H(x,y)l2(x,y)σ + e−H(x,y)l3(x,y)δ

l1(x,y) = l(x,y)−
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

l2(x,y) =
∫ x

0
l(z,y)dz, l3(x,y) =

∫ y

0
l(x,z)dz

In much the same way as above we get

∂ 2W
∂x∂y

(x,y) � eH(x,y)(Gw)(x,y)

We claim that g(x,y,ω ,η ,σ ,δ ) is nondecreasing with respect to ω ,η ,σ and δ . In-
deed, if ω � ω , η � η , σ � σ , δ � δ and η = (ηi,η∗) , η = (η i,η

∗) , then using
assumptions about monotonicity, quasimonotonicity and the condition (19) we get

fi(x,y,ω ,η)+ l1(x,y)ηi + l2(x,y)σi + l3(x,y)δi

� fi(x,y,ω ,ηi,η∗)+ l1(x,y)ηi + l2(x,y)σ i + l3(x,y)δ i

� fi(x,y,ω ,η i,η
∗)+ l1(x,y)η i + l2(x,y)σ i + l3(x,y)δ i

Define the function ρ : I∗ → R by the formula ρ(x,y) = e3H(x,y)+x+y and functions
r,R : I∗ → Rn by r(x,y) = (ρ(x,y), ...,ρ(x,y)), R(x,y) = eH(x,y)r(x,y) . Then functions
wε(x,y) = w(x,y)+ εr(x,y), Wε(x,y) = W (x,y)+ εR(x,y) fulfil

∂ 2Wε
∂x∂y

(x,y) � eH(x,y)(Gw)(x,y)+ εeH(x,y)
{

4l(x,y)r(x,y)

+16
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)+4

∫ x

0
l(z,y)dz r(x,y)

+4
∫ y

0
l(x,z)dz r(x,y)+ r(x,y)

}

Furthermore we can choose ε > 0 in order that |wε(x,y)| � A and therefore

|Gwε(x,y) − Gw(x,y)|
=

∣∣∣∣ f (x,y,(wε )(x,y),wε (x,y))− f (x,y,w(x,y),w(x,y))+ εl1(x,y)r(x,y)

+εe−H(x,y)l2(x,y)
∂R
∂x

(x,y)+ εe−H(x,y)l3(x,y)
∂R
∂y

(x,y)
∣∣∣∣

� l(x,y)
(||εr||0 + |εr|)+ εl1(x,y)ρ(x,y)

+e−H(x,y)εl2(x,y)
∣∣∣∣∂R
∂x

(x,y)
∣∣∣∣+ e−H(x,y)εl3(x,y)

∣∣∣∣∂R
∂y

(x,y)
∣∣∣∣
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� 2εl(x,y)ρ(x,y)+ εl1(x,y)ρ(x,y)
+εl2(x,y)(4l3(x,y)+1)ρ(x,y)+ εl3(x,y)(l2(x,y)+1)ρ(x,y)

= 3εl(x,y)ρ(x,y)+7ε
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz ρ(x,y)

+ε
∫ x

0
l(z,y)dz ρ(x,y)+ ε

∫ y

0
l(x,z)dz ρ(x,y)

Thus

eH(x,y)(Gwε )(x,y)

� eH(x,y)(Gw)(x,y)+ εeH(x,y)
{

3l(x,y)r(x,y)+7
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)

+
∫ x

0
l(z,y)dz r(x,y)+

∫ y

0
l(x,z)dz r(x,y)

}

� εeH(x,y)
{

4l(x,y)r(x,y)+16
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz r(x,y)

+4
∫ x

0
l(z,y)dz r(x,y)+4

∫ y

0
l(x,z)dz r(x,y)+ r(x,y)

}

� ∂ 2Wε
∂x∂y

(x,y)

Consequently
∂ 2Wε

∂x∂y
(x,y) � eH(x,y)(Gwε )(x,y)

We notice that
wε (x,y) > w(x,y) � v(x,y) on I0

∂wε

∂x
(x,0) >

∂w
∂x

(x,0) � ∂v
∂x

(x,0)

∂wε
∂y

(0,y) >
∂w
∂y

(0,y) � ∂v
∂y

(0,y)

Therefore there exists c > 0 and the set Ic = I∗ \ (c,a]× (c,b] such that

wε(x,y) > v(x,y) on Ic (21)

∂wε

∂x
(x,y) >

∂v
∂x

(x,y) on [0,a]× [0,c] (22)

∂wε
∂y

(x,y) >
∂v
∂y

(x,y) on [0,c]× [0,b] (23)

From (21) and (22) we have that

∂Wε
∂x

(x,y) >
∂V
∂x

(x,y) on [0,a]× [0,c]
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From (21) and (23) we get that

∂Wε
∂y

(x,y) >
∂V
∂y

(x,y) on [0,c]× [0,b]

From monotonicity G we have

∂ 2Wε
∂x∂y

(x,y) � eH(x,y)(Gwε )(x,y) � eH(x,y)(Gv)(x,y) � ∂ 2V
∂x∂y

(x,y)

on [0,c]× [0,c] . Thus

∂ 2

∂x∂y
(Wε −V )(x,y) � 0 on [0,c]× [0,c] (24)

Similarly to the proof of theorem 1 from continuous functions ∂w
∂x (x,y) , ∂v

∂x (x,y) ,
∂ r
∂x (x,y)

with respect to y and ∂w
∂y (x,y) , ∂v

∂y (x,y) ,
∂ r
∂y (x,y) with respect to x and from the in-

equality (24) we get that ∂
∂x (Wε −V )(x,y) is nondecreasing with respect to y and

∂
∂y (Wε−V )(x,y) is nondecreasingwith respect to x on [0,c]× [0,c] . Therefore ∂

∂x (Wε−
V )(x,y) and ∂

∂y (Wε −V )(x,y) continue positive on Ic \ (I∗ \ I) . We may repeat this

reasoning for the set Ic and we get that (Wε −V)(x,y) , ∂
∂x (Wε −V )(x,y) and ∂

∂y (Wε −
V )(x,y) continue positive on all I . Therefore Wε (x,y) >V (x,y) . Letting ε → 0 we get
W (x,y) � V (x,y) on I . This proves the theorem. �

REMARK 3. Analysis similar to that in the remark 1 shows that there are two
disjoint index sets α and β such that α∪β = {1, ...,n} and for i∈α wi(x,y) > vi(x,y)
on I∗ \ I0 and for j ∈ β wj(x,y) = v j(x,y) on Aj and wj(x,y) > v j(x,y) on Bj , where
Aj and Bj are the same sets as in the remark 1.

REMARK 4. From the proof of theorem 2 we obtain

∂v
∂x

(x,y)+
∫ y

0
l(x,z)dz v(x,y) � ∂w

∂x
(x,y)+

∫ y

0
l(x,z)dz w(x,y) a.e. on I

∂v
∂y

(x,y)+
∫ x

0
l(z,y)dz v(x,y) � ∂w

∂y
(x,y)+

∫ x

0
l(z,y)dz w(x,y) a.e. on I

For the Darboux problem for hyperbolic partial differential equations it is possible
that thesis of theorem 2 isn’t true in spite of inequality (20) and assumption (18) are
fulfilled. It can be showed by two problems from the book of W. Walter [10].

EXAMPLE 3. The solution of the problem

∂ 2v
∂x∂y

(x,y) = −v(x,y), v(x,0) = 0, v(0,y) = 0

is the function v(x,y) = 0.
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And the solution of the problem

∂ 2w
∂x∂y

(x,y) = −w(x,y)+ δ , w(x,0) = σ(x), w(0,y) = τ(y)

is the function

w(x,y) = σ(0)E2(−xy)+
∫ x

0
σ ′(ξ )E2(−(x− ξ )y)dξ

+
∫ y

0
τ ′(ξ )E2(−x(y− ξ ))dξ + δ (1−E2(−xy))

where σ(0) = τ(0) , σ ′(x) > 0, τ ′(y) > 0, δ > 0 and E2(t) = ∑n
i=0

ti

(i!)2 . Moreover

we know that E2(t) > 0 for t � −1, |E2(t)| � 1 for t � 0 and E2(t) < −0,1 for
−6,8 < t <−1,8. Hence, it follows easily that there are σ(x) > 0, τ(y) > 0 and δ > 0
such that there is a point (x0,y0) that w(x0,y0) < 0. We also note that w(x,y) > 0 for
(x,y) ∈ [0,1]× [0,1] . If in the theorem 2 we put f (x,y,ω ,η) = −η+ 1

2δ then

∂ 2v
∂x∂y

(x,y) < f (x,y,v(x,y)) and
∂ 2w
∂x∂y

(x,y) > f (x,y,w(x,y))

v(x,y) < w(x,y) on I0,
∂v
∂x

(x,0) <
∂w
∂x

(x,0),
∂v
∂y

(0,y) <
∂w
∂y

(0,y)

Let (x,y) ∈ [0, 1
2 ]× [0, 1

2 ] and l(x,y) = 2 then it is easily seen that assumptions of
theorem 2 are satisfied therefore we get that v(x,y) � w(x,y) on [0, 1

2 ]× [0, 1
2 ] .

3. Existence

Now, we deal with an existence theorem for Darboux problem (5), (6). In this
section we suppose that c = max{3||ψ(x,y)||,1} . We first prove a lemma.

LEMMA 1. If r(x,y) = ce2H(x,y) then

r(x,y) � c+
∫ x

0

∫ y

0

{
l(s,t)+

[
l(s,t)+2

∫ s

0
l(z,t)dz

∫ t

0
l(s,z)dz

]
r(s, t)

}
dtds (25)

Proof. Integrating by parts we get

2
∫ x

0

∫ y

0

∫ s

0
l(z,t)dz

∫ t

0
l(s,z)dz r(s,t)dtds

=
∫ x

0

∫ y

0
l(s,z)dz r(s,y)ds−

∫ x

0

∫ y

0
l(s,t)r(s, t)dtds (26)

From (26) and integrating by substitution we get

∫ x

0

∫ y

0

[
l(s, t)+2

∫ s

0
l(z,t)dz

∫ t

0
l(s,z)dz

]
r(s,t)dtds =

1
2
r(x,y)− 1

2
c
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Therefore an equivalent formulation of (25) is:

r(x,y) � c+2H(x,y) (27)

From ex � 1+ x and c � 1 it follows (27) which completes the proof. �

THEOREM 3. (existence) Suppose that f (x,y,ω) is such that if u(x,y) ∈C(D,Rn)
then f (x,y,u(x,y)) ∈ L1(I,Rn) . Furthermore uniform convergence ωn →ω in C(I∗,Rn)
implies f (x,y,(ωn)(x,y)) → f (x,y,(ω)(x,y)) a.e. in I . There is a function l(x,y) ∈
L1(I,R) such that

| f (x,y,ω)| � l(x,y)
{
1+ ||ω ||0

}
(28)

Then the problem (5), (6) has a solution existing in I . Furthermore every solution
satisfies the estimate |u(x,y)| � ce2H(x,y) .

Proof. The problem (5), (6) is equivalent to the fixed point equation u = Su , where
the operator S is defined by (

Su
)
(x,y) = ψ(x,y) on I0

(
Su

)
(x,y) = ψ(x,0)+ψ(0,y)−ψ(0,0)+

∫ x

0

∫ y

0
f (s,t,u(s,t))dtds on I

Let u be a solution of problem (5), (6) and ρ(x,y) = max{|u(x+ s,y+ t)| : (s,t) ∈ D} .
Then ρ(x,y) � c on I0 and

ρ(x,y) � c+
∫ x

0

∫ y

0
l(s,t)

{
1+ρ(s,t)

}
dtds on I (29)

Let r(x,y) = ce2H(x,y) . Then from the lemma 1 we have

r(x,y) � c+
∫ x

0

∫ y

0
l(s,t)

{
1+ r(s,t)

}
dtds on I (30)

(29) and (30) imply ρ(x,y) � r(x,y) on I∗ .
Let M = {φ(x,y) ∈C(I∗,Rn) : |φ(x,y)| � r(x,y)} . Then M is the convex subset

Banach space. It is obvious that the image Sφ is bounded by r(x,y) for φ ∈ M . Let
φn → φ uniformly on I∗ then

| f (x,y,(φn)(x,y))− f (x,y,φ(x,y))| � 2l(x,y){1+ r(x,y)}
| f (x,y,(φn)(x,y))− f (x,y,φ(x,y))| → 0 a.e. in I

By Lebesgue’s theorem on dominated convergence∣∣(Sφn
)
(x,y)− (

Sφ
)
(x,y)

∣∣ → 0

and that is mean that the operator S is continuous. Furthermore the set S(M) is
uniformly bounded and equicontinuous, because if ζ (x,y) =

(
Sφ

)
(x,y) , where φ ∈

M then
∣∣ ∂ζ
∂x (x,y)

∣∣ � d +
∫ y
0 l(x,z){1 + r(x,z)}dz and

∣∣ ∂ζ
∂y (x,y)

∣∣ � d +
∫ x
0 l(z,y){1 +

r(z,y)}dz for d = max
{∣∣∣∣ ∂ψ

∂x (x,0)
∣∣∣∣, ∣∣∣∣ ∂ψ∂y (0,y)

∣∣∣∣} . Therefore the set S(M) is relative
compact. Using the Schauder’s fixed point theorem we get existence of solution of the
problem (5), (6). �
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4. Weak inequalities for first order partial derivatives

From example 2 we know that in the thesis of theorem 1 we can not get ∂u
∂x (x,y) �

0 and ∂u
∂y (x,y) � 0 on I . In order to get ∂u

∂x (x,y) � 0 and ∂u
∂y (x,y) � 0 on I it is

necessary to put some restrictions on C(x,y) and f (x,y,u(x,y),u(x,y)) .

THEOREM 4. Suppose that P(x,y) is a linear map from C(D,Rn) into Rn which
is positive in the sense that u(s,t)� 0 on [x−a0,x]× [y−b0,y] implies P(x,y)u(x,y) � 0 .
C(x,y) = (ci j(x,y)) is an n×n matrix which elements are nonnegative i.e. ci j(x,y) �
0 a.e. in I . There exists a function l(x,y) ∈ L1(I,R) such that

|P(x,y)u(x,y)| � l(x,y)||u||0 and ci j(x,y) � l(x,y) a.e. in I

u(x,y) is absolute continuous, ∂u
∂x (x,y) is continuous with respect to y, ∂u

∂x (x,y) is con-
tinuous with respect to x . Furthermore

∂ 2u
∂x∂y

(x,y) � C(x,y)u(x,y)+P(x,y)u(x,y) a.e. in I

u(x,y) � 0 on I0,
∂u
∂x

(x,0) � 0,
∂u
∂y

(0,y) � 0

Then

u(x,y) � 0,
∂u
∂x

(x,y) � 0,
∂u
∂y

(x,y) � 0 on I

Proof. Define v(x,y) = eH(x,y) ∂u
∂x (x,y) , where H(x,y) as in the first proof. Then

∂v
∂y

(x,y) �
∫ x

0
l(z,y)dz v(x,y)+ eH(x,y){C(x,y)u(x,y)+P(x,y)u(x,y)

}
(31)

Define ρ(x,y)= e(n+2)H(x,y)+x , r(x,y)= (ρ(x,y), ...,ρ(x,y)) and p(x,y)= eH(x,y) ∂ r
∂x (x,y) .

Then

p(x,y) = eH(x,y)
{

(n+2)
∫ y

0
l(x,z)dz+1

}
r(x,y)

∂ p
∂y

(x,y) = eH(x,y)
{

(n+2)l(x,y)+ (n+2)(n+3)
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

+(n+3)
∫ x

0
l(z,y)dz

}
r(x,y)

We note that

0 � C(x,y)r(x,y) � nl(x,y)e(n+2)H(x,y) and
∣∣P(x,y)r(x,y)

∣∣ � l(x,y)e(n+2)H(x,y)

Hence

∂ p
∂y

(x,y) �
∫ x

0
l(z,y)p(x,y)+ eH(x,y){C(x,y)r(x,y)+P(x,y)r(x,y)

}
(32)
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Define qε(x,y) = u(x,y)+ εr(x,y) and vε(x,y) = eH(x,y) ∂qε
∂x (x,y) = v(x,y)+ ε p(x,y) .

Then from (31), (32) and from linearity of P(x,y) we have

∂vε
∂y

(x,y) �
∫ x

0
l(z,y)dz vε(x,y)+ eH(x,y){C(x,y)qε (x,y)+P(x,y)(qε)(x,y)

}
(33)

We note that qε(x,y) > 0 on I0 and vε(x,0) > 0. Therefore there exists c > 0 and
the set Ic = [0,a]× [0,c] such that qε(x,y) > 0 and vε(x,y) > 0 on Ic . From (33) we
get ∂vε

∂y (x,y) � 0 on Ic . Therefore vε(x,y) is nondecreasing with respect to y on Ic

and qε(x,y) is nondecreasing with respect to x on this set. Therefore ∂vε
∂y (x,y) � 0

on I . This gives vε(x,y) > 0 on I . Letting ε → 0 we get v(x,y) � 0 it implies
∂u
∂x (x,y) � 0 on I . The same reasoning applies to the function v(x,y) = eH(x,y) ∂u

∂y (x,y)

gives ∂u
∂y (x,y) � 0 on I . Of course ∂u

∂x (x,y) � 0, ∂u
∂y (x,y) � 0 on I and u(x,y) � 0 on

I0 implies u(x,y) � 0 on I . �

THEOREM 5. Suppose that for all A > 0 there exists a function l(x,y) ∈ L1(I,R)
such that

| f (x,y,ω)− f (x,y,ω)| � l(x,y)||ω−ω||0 (34)

for ||ω ||0, ||ω ||0 � A. f (x,y,ω) is nondecreasing with respect to ω . w(x,y) , v(x,y)
are absolutely continuous, ∂v

∂x (x,y) ,
∂w
∂x (x,y) are continuous with respect to y and

∂v
∂y (x,y) ,

∂w
∂y (x,y) are continuous with respect to x . Furthermore

∂ 2v
∂x∂y

(x,y) � f (x,y,v(x,y)) and
∂ 2w
∂x∂y

(x,y) � f (x,y,w(x,y)) a.e. in I

v(x,y) � w(x,y) on I0,
∂v
∂x

(x,0) � ∂w
∂x

(x,0),
∂v
∂y

(0,y) � ∂w
∂y

(0,y)

Then

v(x,y) � w(x,y),
∂v
∂x

(x,y) � ∂w
∂x

(x,y),
∂v
∂y

(x,y) � ∂w
∂y

(x,y) on I

Proof. Let |v(x,y)|, |w(x,y)| � A− 1 and l(x,y) be the function in (34) corre-
sponding to A and

V (x,y) = eH(x,y) ∂v
∂x

(x,y), W (x,y) = eH(x,y) ∂w
∂x

(x,y)

where H(x,y) as in the first proof. Then

∂V
∂y

(x,y) � eH(x,y)(Gv)(x,y)

∂W
∂y

(x,y) � eH(x,y)(Gw)(x,y)
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where
(Gu)(x,y) = g(x,y,u(x,y),U(x,y))

g(x,y,ω ,σ) = f (x,y,ω)+ e−H(x,y)
∫ x

0
l(z,y)dz σ

It is easily seen that g(x,y,ω ,σ) is nondecreasing with respect to ω and σ .
Define ρ : I∗ →R , ρ(x,y)= eH(x,y)+x and r,R : I∗ →Rn , r(x,y)= (ρ(x,y), ...,ρ(x,y)) ,

R(x,y)= eH(x,y) ∂ r
∂x (x,y) . Then wε (x,y)= w(x,y)+εr(x,y) , Wε(x,y)=W (x,y)+εR(x,y)

satisfy

∂Wε
∂y

(x,y) � eH(x,y)(Gw)(x,y)+ εeH(x,y)
{

l(x,y)+2
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz

}
r(x,y)

Furthermore we can choose such small ε > 0 in order that |wε (x,y)| � A so

|Gwε (x,y)−Gw(x,y)| =
∣∣∣∣ f (x,y,(w+ εr)(x,y))− f (x,y,w(x,y))

+εe−H(x,y)
∫ x

0
l(z,y)dz R(x,y)

∣∣∣∣
� εl(x,y)ρ(x,y)+ ε

∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz ρ(x,y)

+ε
∫ x

0
l(z,y)dz ρ(x,y)

Therefore

eH(x,y)(Gwε )(x,y) � eH(x,y)(Gw)(x,y)+ εeH(x,y)
{

l(x,y)

+
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz+

∫ x

0
l(z,y)dz

}
r(x,y)

� ∂Wε
∂y

(x,y)

Hence
∂Wε
∂y

(x,y) � eH(x,y)(Gwε )(x,y)

We note that
wε (x,y) > w(x,y) � v(x,y) on I0

∂wε
∂x

(x,0) >
∂w
∂x

(x,0) � ∂v
∂x

(x,0)

There exists c > 0 and the set Ic = [0,a]× [0,c] such that

wε(x,y) > v(x,y) on Ic

∂wε
∂x

(x,y) >
∂v
∂x

(x,y) on Ic
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From monotonicity G we have

∂Wε

∂y
(x,y) � eH(x,y)(Gwε )(x,y) � eH(x,y)(Gv)(x,y) � ∂V

∂y
(x,y) on Ic

Hence
∂
∂y

(Wε −V)(x,y) � 0 on Ic

Therefore the function (Wε −V )(x,y) is nondecreasing with respect to y on Ic . It
is easily seen that (wε − v)(x,y) is nondecreasing with respect to x on Ic . Analysis
similar to that in the before proofs shows ∂

∂y (Wε−V )(x,y) � 0 on I . Hence ∂wε
∂x (x,y)−

∂v
∂x (x,y) > 0. Similarly, we get ∂wε

∂y (x,y)− ∂v
∂y (x,y) > 0 on I . Letting ε → 0 we get

∂w
∂x

(x,y) � ∂v
∂x

(x,y) on I

∂w
∂y

(x,y) � ∂v
∂y

(x,y) on I

It is easy to check that
w(x,y) � v(x,y) on I �

REMARK 5. We note that we did not use the condition

l(x,y) �
∫ x

0
l(z,y)dz

∫ y

0
l(x,z)dz (35)

in theorems 4 and 5. However we need to assume that elements of matrix C(x,y) are
nonnegative and the function f (x,y,ω ,η) is nondecreasing with respect to ω and η .
Example 3 shows that the theorem 5 is false if we drop the assumption of monotonicity.
We see that it is necessary the extra condition if there is no monotonicity. In this paper
there is the condition (35) which in some way define area where the inequality v(x,y) �
w(x,y) holds.

5. Strong inequalities

In the last section we will be concerned with strong inequalities. At first we present
some definitions.

A measurable set A ⊂ [0, p] is called dense at 0+ if the set A∩ (0,ε) has positive
measure for every ε > 0. In farthest part of this paper we are considering two kind of
sets A in the sense that if it is said about u(x,0) then we put p = a and if it is said
about u(0,y) then p = b . A measurable set B ⊂ I is called dense at (0+,0+) if the
set B∩ (0,ε)× (0,ε) has a positive measure for every ε > 0. Let g(x,y) and h(x,y)
are functions from I into Rn . We write g(x,0) < h(x,0) at 0+ if the set {x ∈ [0,a] :
g(x,0) < h(x,0)} is dense at 0+ . Similarly, we define g(0,y) < h(0,y) at 0+ and
g(x,y) < h(x,y) at (0+,0+) .



THE DARBOUX PROBLEM FOR HYPERBOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS. . . 423

The matrix C(x,y) is called irreducible at (0+,0+) if for every pair (α,β ) of
disjoint nonempty index set with α ∪β = {1, ...,n} there are indices i ∈ α , j ∈ β such
that ci j(x,y) > 0 at (0+,0+) .

We write P(x,y) in matrix form Pi j(x,y) , where Pi j(x,y) is a positive linear oper-
ator which acts on functions u ∈C(D,R1) . P(x,y) is called irreducible at (0+,0+) if
for every pair (α,β ) of disjoint nonempty index set with α ∪β = {1, ...,n} there are
indices i ∈ α , j ∈ β such that Pi j(x,y)u(x,y) > 0 at (0+,0+) for all u ∈C(I∗,R1) such
that u(x,y) > 0 for (x,y) ∈ I∗ \ I0 .

Now, we present a theorem about strong inequality u(x,y) > 0 on I∗ \ I0 . Write
Ĩ = I∗ \ I0 .

THEOREM 6. (positivity) In theorem 1 the assertion u(x,y) > 0 for (x,y) ∈ Ĩ
holds under each of the following conditions:

(I) u(x,0) > 0 at 0+ or u(0,y) > 0 at 0+

(II) ∂ 2u
∂x∂y (x,y) > C(x,y)u(x,y)+P(x,y)u(x,y) at (0+,0+)

(III) u(x,0) �= 0 or u(0,y) �= 0 at 0+ and C(x,y) is irreducible at (0+,0+)
(IV) u(x,0) �= 0 or u(0,y) �= 0 at 0+ and P(x,y) is irreducible at (0+,0+)

Proof.
(I) We suppose that u(x,0) > 0 at 0+ . We conclude from the proof of theorem

1 and the remark 1 that u(x,y) = e−H(x,y)v(x,y) where v(x,y) is nondecreasing with
respect to y hence that u(x,y) > 0 in {0+}× [0,b] and finally that the set β is empty.
The same reasoning applies to the case u(0,y) > 0 at 0+ .

(II) The assumption (II) and the inequality (7) imply ∂ 2u
∂x∂y (x,y) > 0 in (0+,0+) .

Therefore u(x,y) is increasing in (0+,0+) with respect to x and y . Hence u(x,y) > 0
on some square (0,c]× (0,c] . From the remark 1 we have that the set β is empty.

(III) Suppose that the set β is nonempty and we notice that the set α is also
nonempty, because u(x,0) �= 0 or u(0,y) �= 0 at 0+ implies that there exists k such that
uk(x,y) > 0 on Ĩ . Due to irreducibility there exists an element c jk(x,y) where j ∈ β ,
k ∈ α such that c jk(x,y) > 0 at (0+,0+) . Due to u(x,y) � 0 on I∗ and uk(x,y) > 0

on Ĩ we have
∂ 2u j
∂x∂y (x,y) � c jk(x,y)uk(x,y) > 0 at (0+,0+) and finally that u j(x,y) is

increasing with respect to x and y at (0+,0+) . It is contradictory to j ∈ β .
(IV) Similarly to the proof of (IV) if there are j ∈ β and k ∈ α then we get that

∂ 2u j
∂x∂y (x,y) � Pjk(x,y)uk(x,y) > 0 in (0+,0+) . It is contradictory to j ∈ β . �

Now we give a example which demonstrates that even though a initial function is
equal zero on the set I \ Ĩ then it is possible that a solution of problem is positive on the
set Ĩ . Furthermore ∂u

∂x (x,y) will not be continuous with respect to x and ∂u
∂y (x,y) will

not be continuous with respect to y .

EXAMPLE 4.

∂ 2u
∂x∂y

(x,y) = u(x−1,y−1) a.e. on I = [0,1]× [0,1]
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u(x,y) = u0(x,y) =
{

x2y2 for (x,y) ∈ [−1,0]× [−1,0]
0 for (x,y) ∈ [−1,0]× (0,1]∪ (0,1]× [−1,0]

We note that the initial function is continuous and ∂u0
∂x (x,y) , ∂u0

∂y (x,y) are continuous.

It is easy to check that the solution of the problem is u(x,y) = 1
9xy(x2 − 3x+ 3)(y2 −

3y + 3) . Hence u(x,y) > 0 on Ĩ . Moreover the left-hand derivative ∂u
∂x (0

−,y) = 0

and the right-hand derivative ∂u
∂x (0

+,y) = 1
3y(y2 − 3y + 3) . Therefore the derivative

isn’t continuous at zero with respect to x . It is easy to check that this derivative is
continuous with respect to y . Similarly, the derivative ∂u

∂y (x,y) isn’t continuous with
respect to y and is continuous with respect to x .

Now we will discuss the nonlinear problem (3), (4). At first we give a few nota-
tions. Let α and β denotes sets from the remark 3 then vα(x,y) is the vector func-
tion consist of this elements v(x,y) =

(
v1(x,y), . . . ,vn(x,y)

)
for which i ∈ α . Anal-

ogously it is understood wα (x,y) , fα (x,y,ω ,η) , vβ (x,y) , wβ (x,y) and fβ (x,y,ω ,η) .
ei = (0, . . . ,0,1,0, . . . ,0) with 1 standing on i-th place.

The function f (x,y,ω ,η) is called irreducible if for every pair (α,β ) of disjoint
nonempty index sets such that α ∪β = {1, ...,n} there are indices i ∈ α, j ∈ β such
that for some c > 0 and for (x,y) ∈ (0,c]× (0,c] we have

f j(x,y,ω ,η) < f j(x,y,ω +θ(x,y)ei,η +θ (x,y)ei) (36)

where θ (x,y) is the function C(I∗,R1) equal zero on I0 and positive on Ĩ .

THEOREM 7. (strong inequalities) In theorem 2 the assertion v(x,y) < w(x,y) for
(x,y) ∈ Ĩ holds under each of the following conditions:

(I) v(x,0) < w(x,0) at 0+ or v(0,y) < w(0,y) at 0+

(II) f (x,y,v(x,y) ,v(x,y)) < f (x,y,w(x,y) ,w(x,y)) at (0+,0+)
(III) v(x,0) �= w(x,0) or v(0,y) �= w(0,y) at 0+ and the function f (x,y,ω ,η) is

inrreducible

Proof. Proofs of (I) and (II) are similar to proofs of theorem 6.
(III) We note that v(x,0) �= w(x,0) or v(0,y) �= w(0,y) at 0+ imply there is k such

that vk(x,y) < wk(x,y) on Ĩ . Therefore the set α is nonempty. We suppose that the set
β also is nonempty. From quasimonotonicity and monotonicity with respect to suitable
arguments we have

fβ (x,y,v(x,y),vα(x,y),vβ (x,y)) � fβ (x,y,w(x,y),wα (x,y),vβ (x,y))
= fβ (x,y,w(x,y),wα (x,y),wβ (x,y))

Furthermore from the inequality (20) we get

fβ (x,y,w(x,y),wα(x,y),wβ (x,y)) � fβ (x,y,v(x,y),vα(x,y),vβ (x,y))

Therefore
fβ (x,y,v(x,y),v(x,y)) = fβ (x,y,w(x,y),w(x,y)) at (0+,0+) (37)
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From irreducible f (x,y,ω ,η) for θ (x,y) = wk(x,y)− vk(x,y) we have

fβ (x,y,v(x,y),v(x,y)) < fβ (x,y,v∗(x,y),wk(x,y),v
∗(x,y),wk(x,y))

� fβ (x,y,w(x,y),w(x,y)) at (0+,0+) (38)

The equality (37) and the inequality (38) give a contradiction. �

REMARK 6. We note that in the case delay equation ∂ 2u
∂x∂y (x,y) = f (x,y,u(x −

a0,y− b0)) condition (III) is useful, because the inequality f (x,y,v(x− a0,y− b0)) <
f (x,y,w(x−a0,y−b0)) at (0+,0+) contains only given values and may by true. Whe-
reas condition (IV) f j(x,y,v(x−a0,y−b0)) < f j(x,y,v(x−a0,y−b0)+θ (x−a0,y−
b0)ei) is false for (x,y)∈ I\(a0,a]×(b0,b] because θ (x,y)= 0 on I0 . We note that can
change condition (IV). Namely, if (IV’) v(−a0,−b0) < w(−a0,−b0) and the function
f (x,y,ω ,η) is irreducible then for θ (x,y) = w(x,y)− v(x,y) we have f j(x,y,v(x−
a0,y−b0)) < f j(x,y,v(x−a0,y−b0)+θ (x−a0,y−b0)ei) in some square [0,c]× [0,c]
if f (x,y,η) is increasing with respect to ηi .
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[2] T. CZŁAPIŃSKI, Interative Methods for Darboux Problem for Partial Functional Diffrential Equa-
tions, J. of Inequal. & Appl., 4 (1998), 141–161.

[3] M. HIRSCH, System of Diffrential Equations that are Competitive or Cooperative, II: convergence
almost everywhere, SIAM J. Math. Anal., 16 (1985), 423–439.

[4] V. LAKSHMIKANTHAM AND S. LEELA, Differential and Integral Inequalities, Vol. I, Academic Press,
New York, 1969.

[5] V. LAKSHMIKANTHAM AND S. LEELA, Differential and Integral Inequalities, Vol. II, Academic
Press, New York, 1969.

[6] A. PELCZAR, Some functional differential equations, Disser. Math., 100 (1973), 3–74.
[7] J. SZARSKI, Differential Inequalities, Warszawa, 1967.
[8] W. WALTER, On strongly monotone flows, Ann. Pol. Math., 66 (1997), 269–274.
[9] W. WALTER, Ordinary Functional Differential Equations and Inequalities in the Sense of
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