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NEW BOUNDS FOR SOLUTIONS OF A SINGULAR

INTEGRO–DIFFERENTIAL INEQUALITY
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Abstract. New bounds for solutions of an integro-differential inequality with weakly singular
kernel are established using a weighted version of the Hardy-Littlewood-Sobolev inequality.
Besides, some applications to real world problems are presented.

1. Introduction and Preliminaries

We would like to give in this work one more application of the famous Hardy-
Littlewood-Sobolev inequality. We first establish bounds for the solutions of some
integro-differential inequality with weakly singular kernel and then give some imme-
diate applications to real world problems. The inequality we intend to look at is the
following

ϕ ′(t)+a(t)ϕ (t) � b(t)+ c(t)
∫ t

0
(t− s)−αF(s)ϕm(s)ds, (1)

where ϕ(t) is a nonnegative continuously differentiable function and a(t) , b(t) , c(t)
and F(t) are continuous functions on (0,∞).

We recall that the reader can encounter in the literature a great deal of results
coping with the following inequality

ψ(t) � a(t)+b(t)
∫ t

0
(t− s)β−1sγ−1F(s)ψm(s)ds, β > 0, γ > 0, (2)

where m > 1, the linear case (m = 1) can be found, for instance, in [6]. To overcome
the problem of singularity Medved’ [11, 12] used the decomposition

∫ t

0
(t − s)β−1sγ−1F(s)Ψ(s)mds

�
(∫ t

0
(t− s)2(β−1)e2εsds

)1/2(∫ t

0
s2(γ−1)F(s)2e−2εsΨ(s)2mds

)1/2

(3)
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and Lemma 1.2 below. On the other hand, Kirane and Tatar improved the previous
results in [7] by using the decomposition

∫ t

0
(t − s)β−1sγ−1F(s)Ψ(s)mds

�
(∫ t

0
(t − s)2(β−1)s2(γ−1)e−2sds

)1/2(∫ t

0
F(s)2e2sΨ(s)2mds

)1/2

(4)

and Lemma 1.1 (see also [17, 18]).
Furthermore, we can cite the work done by the present authors in [10] dealing with

the integro-differential problem{ du
dt

+Au = f (t,u(t))+
∫ t
0 g(t,s,u(s),

∫ s
0 K(s,τ,u(τ))dτ, t ∈ I = [0,T ]

u(0) = u0 ∈ X ,

and where again an exponential decay result was proved using in a crucial manner the
integral inequality given in Lemma 1.1. The global existence is proved, in a more
general setting in [9] for a problem with non-local conditions of the form

u(0)+h(t1, ...,tp,u) = u0

and with delays in the arguments of the solution u. Namely, the problem treated there
was { du

dt
+Au = F

(
t,u(σ1(t)) ,

∫ t
0 g(t,s,u(σ2(s)) ,

∫ s
0 K (s,τ,u(σ3(τ)))dτ)ds

)
u(0)+h(t1, ...,tp,u(.)) = u0 ∈ X .

LEMMA 1. If λ , ν, ω > 0, then for any t > 0 we have

t1−ν
∫ t

0
(t− s)ν−1sλ−1e−ωsds � C,

for some positive constant C independent of t given by

C = max
{
1,21−ν}Γ(λ )(1+λ/ν)ω−λ .

(see [13]).

LEMMA 2. Let α ∈ [0,1) and β ∈R. There exists a positive constant C =C(α,β )
such that ∫ t

0
s−αeβ sds �

⎧⎨
⎩

Ceβ t , i f β > 0
C(t +1), i f β = 0
C, i f β < 0.

LEMMA 3. Let a(t) , b(t) , K(t) , ψ(t) be nonnegative, continuous functions in
the interval I = (0,T ) (0 < T �∞), Φ : (0,∞) → R be a continuous, nonnegative and
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nondecreasing function, Φ(0) = 0, Φ(u) > 0 for u > 0 , and let A(t) = max0�s�t a(s) ,
B(t) = max0�s�t b(s). If

ψ(t) � a(t)+b(t)
∫ t

0
K(s)Φ(ψ(s))ds, t ∈ I,

then

ψ(t) � W−1
[
W (A(t))+B(t)

∫ t

0
K(s)ds

]
, t ∈ (0,T1),

where

W (v) =
∫ v

v0

dσ
Φ(σ)

,

for all v � v0 > 0 , W−1 being the inverse function of W and T1 > 0 is such that

W (A(t))+B(t)
∫ t

0
K(s)ds ∈ D(W−1), ∀t ∈ (0,T1).

The proof of this lemma may be found in [1] for instance (see also [1, 14]).

2. The main result

In this section we intend to give an appropriate bound for the solutions ϕ(t) of
the integro-differential inequality (1). In order to avoid the use of the standard desin-
gularization, we need the following weighted Hardy-Littlewood-Sobolev Lemma (see
[8])

LEMMA 4. Let p > 1, l > 1/p−1, t−l f (t)∈ Lp(0,∞), 0 � k �α < 1/p; α > 0,
if k = 0; and q = 1/(1/p+ k−α), then∥∥∥s−(k+l) fα

∥∥∥
q
� K

∥∥∥s−l f (s)
∥∥∥

p
,

for some K depending only on a, k , l , p and q. Here

fα (t) =
1

Γ(α)

∫ t

0
(t− s)−α f (s)ds.

Note that fα(t) is the (Riemann-Liouville) fractional integral of order 1−α. Our
main result is the following estimate,

THEOREM 1. Let p > 1, l > 1/p− 1, 0 � k � α < 1/p; α > 0, if k = 0; q =
1/(1/p+ k−α) and q′ its conjugate exponent. Assume that a(t) is a continuous
functions in (0,∞) and that b(t) , c(t) and F(t) are nonnegative continuous functions
in (0,∞) such that

c(t)tk+l exp

(∫ t

0
a(s)ds

)
∈ Lq′ (0,∞) and t−lF(t) ∈ Lp (0,∞) .
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If ϕ(t) is a nonnegative continuously differentiable function in (0,∞) satisfying
the integro-differential inequality (1), then

ϕ (t) �
(

C0(t)1−pm +(1− pm)D0(t)
∫ t

0
s−plF p (s)ds

)1/(1−pm)

, (5)

for all t ∈ (0,T1) provided that

C0(t)1−pm +(1− pm)D0(t)
∫ t

0
s−plF p (s)ds > 0,

for all t ∈ (0,T1) , where

C0(t) = max
0�σ�t

{
E− (σ)

(
ϕ (0)+

∫ σ

0
b(s)E+ (s)ds

)

+
1
q′

KΓ(α)E− (σ)
(∫ σ

0

∣∣∣sk+lc(s)E+ (s)
∣∣∣q′ ds

)1/q′}

and

D0(t) = max
0�σ�t

{
1
p
KΓ(α)E− (σ)

(∫ σ

0

∣∣∣sk+lc(s)E+ (s)
∣∣∣q′ ds

)1/q′
}

,

with

E+ (t) = exp

(∫ t

0
a(s)ds

)
, E− (t) = exp

(
−
∫ t

0
a(s)ds

)
and K a positive constant.

Proof. Multiplying both sides of (1) by E+ (t) = exp
(∫ t

0 a(s)ds
)

we obtain[
E+ (t)ϕ (t)

]′
= a(t)E+ (t)ϕ (t)+E+ (t)ϕ

′
(t)

� b(t)E+ (t)+ c(t)E+ (t)
t∫

0

(t− s)−α F (s)ϕm (s)ds.

Next, integrating both sides from 0 to t , we find

E+ (t)ϕ (t)−ϕ (0) �
t∫

0

b(s)E+ (s)ds+
t∫

0

c(s)E+ (s)
s∫

0

(s− z)−α F (z)ϕm (z)dzds.

Setting E− (t) = exp
(−∫ t

0 a(s)ds
)
, we see that

ϕ (t) � E− (t)

⎧⎨
⎩ϕ (0)+

t∫
0

b(s)E+ (s)ds

⎫⎬
⎭+E− (t)

⎧⎨
⎩

t∫
0

c(s)E+ (s)

×
s∫

0

(s− z)−α F (z)ϕm (z)dzds

⎫⎬
⎭ ,
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which we can rewrite as

ϕ (t) � A(t)+E− (t)
t∫

0

B(s)
s∫

0

(s− z)−α F (z)ϕm (z)dzds,

where A(t) = E− (t)
{
ϕ (0)+

t∫
0

b(s)E+ (s)ds

}
and B(t) = c(t)E+ (t) . On the other

hand, thanks to Hölder Inequality we find

ϕ (t) � A(t)+E− (t)
t∫

0

B(s)sk+l s−(k+l)
s∫

0

(s− z)−α F (z)ϕm (z)dzds

� A(t)+E− (t)

⎛
⎝ t∫

0

∣∣∣B(s) sk+l
∣∣∣q′ ds

⎞
⎠

1/q′

×
⎛
⎝ t∫

0

∣∣∣∣∣∣s−(k+l)
s∫

0

(s− z)−α F (z)ϕm (z)dz

∣∣∣∣∣∣
q

ds

⎞
⎠

1/q

.

Now, since s−lF(s) ∈ Lp (0,∞) , it follows that s−lF(s)ϕm (s)∈ Lp (0, t) , for every
t > 0, then applying Hardy-Littlewood Inequality for f (z) = F (z)ϕm (z) , and next
Young’s Inequality we get

ϕ (t) � A(t)+KΓ(α)E− (t)

⎛
⎝ t∫

0

∣∣∣B(s) sk+l
∣∣∣q′ ds

⎞
⎠

1/q′⎛
⎝ t∫

0

(
s−lF (s)ϕm (s)

)p
ds

⎞
⎠

1/p

� A(t)+KΓ(α)E− (t)

⎛
⎝ t∫

0

∣∣∣B(s) sk+l
∣∣∣q′ ds

⎞
⎠

1/q′⎛
⎝ 1

q′
+

1
p

t∫
0

(
s−lF (s)

)p
ϕmp (s)ds

⎞
⎠ .

Denoting

C (t) = A(t)+
1
q′

KΓ(α)E− (t)

⎛
⎝ t∫

0

∣∣∣B(s)sk+l
∣∣∣q′ ds

⎞
⎠

1/q′

,

and

D(t) =
1
p
KΓ(α)E− (t)

⎛
⎝ t∫

0

∣∣∣B(s) sk+l
∣∣∣q′ ds

⎞
⎠

1/q′

,

we obtain the Gronwall’s type Inequality

ϕ (t) � C (t)+D(t)
t∫

0

(
s−lF (s)

)p
ϕmp (s)ds.
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Finally, applying Lemma 3 with Φ(x) = xpm , we get at once

W (v) =
v∫

v0

x−pmdx =
1

1− pm

(
v1−pm− v1−pm

0

)

with v � v0 > 0 and

W−1 (z) =
(
v1−pm
0 +(1− pm)z

)1/(1−pm)

for all z � 0.
Next, defining

C0(t) = max
0�s�t

C(s), D0(t) = max
0�s�t

D(s)

we obtain

ϕ (t) �

⎧⎨
⎩C0(t)1−pm +(1− pm)D0(t)

t∫
0

s−plF p (s)ds

⎫⎬
⎭

1/(1−pm)

,

for all t ∈ (0,T1) provided that

C0(t)1−pm +(1− pm)D0(t)
t∫

0

s−plF p (s)ds > 0,

for all t ∈ (0,T1).

REMARK 1. Of course one can use the usual desingularization as in Medved [11,
12] or in Kirane and Tatar [7, 17, 18], then we integrate both sides. In doing so, we get
crude bounds involving polynomials in t (and therefore unbounded terms) instead of
constants. It is also possible to rewrite (1) in the form

ϕ ′(t)+a+(t)ϕ (t) � a− (t)ϕ (t)+b(t)+ c(t)
∫ t

0
(t− s)−αF(s)ϕm(s)ds.

If ϕ ′(t) � ϕ ′(t) + a+ (t)ϕ (t) , then we lose the term a+ (t)ϕ (t) unless a(t) is non-
positive in which case the term a(t)ϕ (t) can be shifted to the right hand side of the
inequality.

3. Application

Let us consider the following weighted Cauchy-type problem:{
Dα [u′(t)+a(t)u(t)

]
= f (t,u), t > 0,

t1−α
[
u′(t)+a(t)u(t)

] |t=0 = b ∈ R,
(6)
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where f is a continuous function in two variables satisfying

| f (t,u)| � F(t)um(t), m > 1

for some continuous function F(t) .
Here α is a real number such that 0 < α < 1.

DEFINITION 1. If f (x) ∈ L1(a,b), the integral

(Iα f )(x) :=
1

Γ(α)

∫ x

a

f (t)
(x− t)1−α dt, x > a

where α > 0, is called the Riemann-Liouville fractional integral of order α.

DEFINITION 2. The expression

(Dα f )(x) :=
1

Γ(1−α)
d
dx

∫ x

a

f (t)
(x− t)α

dt

is called the Riemann-Liouville fractional derivative of order α when the right hand
side is pointwise defined on (a,b).

We refer the interested reader to [15, 16] for more on fractional calculus.
Let us define the space

C0
r ([0,h]) :=

{
v ∈C0((0,h]) : lim

t→0+
trv(t) exists and is finite

}
.

Here C0((0,h]) is the usual space of continuous functions on (0,h]. It turns out that the
space C0

r ([0,h]) endowed with the norm

‖v‖r := max
0�t�h

tr |v(t)|

is a Banach space. Next, we define the space

Cα
1−α([0,h]) :=

{
v ∈C0

1−α([0,h]) : there exist c ∈ R and v∗ ∈C0
1−α([0,h])

such that v(t) = ctα−1 + Iαv∗(t)
}
.

The space (Cα
1−α [0,h],‖ · ‖1−α ,α), where

‖v‖1−α ,α := ‖v‖1−α +‖Dαv‖1−α and α > 1/2,

is also a Banach space. We refer to [3, 4, 5] for these facts and also for the question of
local existence of solutions.

We can conclude by Theorem 2.1 that any local solution u satisfying

u′ ∈ (Cα
1−α [0,h],‖ · ‖1−α ,α)
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is bounded by a function like that of the right hand side of the estimate (5) within the
stated interval. Indeed, this follows from the fact that we can then write

u′(t)+a(t)u(t) � |b|tα−1 +
1

Γ(α)

∫ t

0
(t− s)α−1F(s)um(s)ds.

This inequality is of the form (1) with α−1 instead of −α (note that both are between
−1 and 0).

One can also notice that if

D0(∞)
∫ ∞

0
s−plF p (s)ds <

C0(∞)1−pm

pm−1

then the condition

C0(t)1−pm +(1− pm)D0(t)
∫ t

0
s−plF p (s)ds > 0

holds for all t > 0 and therefore solutions exists globally in time.
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