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MINIMAX INEQUALITY FOR THE PREDICTION RISK

L. GAJEK AND V. LIPIŃSKA

(Communicated by J. Pečarić)

Abstract. This is a continuation of the article “Sharp inequality for the Bayes prediction risk”
(2007) . But, instead of the Bayes prediction problem, the minimax one is considered in this
paper. The lower bound for the minimax prediction risk is derived by using the information
inequality. Moreover it is shown that a predictor δ (X) for which the lower bound is attained is
a minimax one. Sufficient conditions for the admissibility of predictors are also given.

1. Introduction

Assume that X is an observable random variable (or vector) with the conditional
probability density function f (·|θ ) , indexed by a parameter θ ∈ Θ , relative to some
σ -finite measure μ and Θ⊆R is an open interval (θ ,θ ) . Let Y be a random variable.
We want to predict its value using the function δ (X) . This function will be called
predictor of Y . Assume also that (X,Y ) is a random vector with the joint (conditional)
distribution f (x,y|θ ) indexed by a parameter θ ∈ Θ .

It is worth mentioning that the model we are dealing with in this paper admits also
another interpretation: Y may be an unobservable quantity depending statistically on
X which can be observed. Thus, knowing X , we try to evaluate Y by a function δ (X) .
In this interpretation a crucial assumption is that X and Y are somehow statistically
dependent though they may have completely different distributions.

Let
R(δ ,θ ) = Eθ

{
[Y − δ (X)]2m(θ )

}
be the risk function of the predictor δ with a positive weight function m(θ ) , where the
expectation is taken over both X and Y .

We want to obtain a predictor δ ∗ for which

sup
θ∈Θ

R(δ ∗,θ ) = inf
δ

sup
θ∈Θ

R(δ ,θ ). (1)

In that case the predictor δ ∗ will be called minimax.
To prove a predictor is minimax one can construct a sequence of priors that asymp-

totically minimizes the corresponding Bayes risk. In this paper we develop an alterna-
tive approach. Instead of looking for such a sequence of priors, which usually is a
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problem difficult in itself, we provide a lower limit of the minimax prediction risk,
which is easy to compute (see Trybuła (2000) and (2003)).

Gajek (1987) and (1988) obtained the lower bound for the minimax estimation
risk. In Section 3 we have obtained, using Cramér–Rao inequality, similar lower bound
for the minimax prediction risk. In Section 4 we will show that the lower bound can
be useful in proving minimaxity of the predictors (Theorem 4.1). Theorem 4.2 gives an
admissible bound for the class of regular predictors (in the sense of the assumption A1)
and can be easily adapted for proving admissibility (Theorem 4.3). Some examples of
showing the minimaxity and admissibility of predictors are given.

2. Assumptions

Let EθY 2 < ∞ , g(X,θ ) = Eθ [Y |X] be the conditional expectation of Y given X
(and given θ ), b(θ )= Eθ [δ (X)−Y ] be the bias of δ , φ ′(θ ) =Eθ [(∂/∂θ )g(X,θ )] and
φ be a real function defined on Θ such that d

dθ φ(θ ) = φ ′(θ ) . Let I(θ ) be the Fisher in-

formation that X contains about parameter θ defined by I(θ )= Eθ [(∂/∂θ ) log f (X|θ )]2

< ∞ and V (θ ) = 1/I(θ ) .
Let us make the following assumption (the same assumption is made in [10]):

A1 For all θ ∈ Θ such that R(θ ,δ ) < ∞ , the function b(θ ) is differentiable at θ
and

b′(θ )+φ ′(θ ) = Eθ

{
[δ (X)−b(θ )−g(X,θ )]

∂
∂θ

log f (X|θ )
}

.

It is easy to show that

Eθ [Y − δ (X)]2 = Eθ [Y −g(X,θ )]2 +Eθ [δ (X)−b(θ )−g(X,θ )]2 +b2(θ ). (2)

For simplicity let us use the notation

R1(δ ,θ ) = Eθ [δ (X)−b(θ )−g(X,θ )]2m(θ )+b2(θ )m(θ ). (3)

Using (2) and (3) we can rewrite the risk function as follows

R(δ ,θ ) = Eθ [Y −g(X,θ )]2m(θ )+R1(δ ,θ ).

After using A1, (2) and Cauchy–Schwarz inequality we have

Eθ [Y − δ (X)]2 � Eθ [Y −g(X,θ )]2

+
1

I(θ )
E2
θ

{
[δ (X)−b(θ )−g(X,θ )]

∂
∂θ

log f (X|θ )
}

+b2(θ )

= Eθ [Y −g(X,θ )]2 +V(θ )[b′(θ )+φ ′(θ )]2 +b2(θ ), (4)

where the right side of (4) depends on the predictor δ through the bias b(θ ) . In the
next section we present a lower bound for the right side of (4) not depending on the
predictor δ .
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3. Lower bounds

First of all we present two lemmas (see [4]) which will be useful to prove the main
results.

Let a , b and y be real functions defined on an open interval J ⊂ R , such that
b(x) > a(x) > 0 for all x ∈ J , and y is differentiable on J . We will call x∗ ∈ R∪
{−∞,∞} a point adherent to J if x∗ /∈ J and there is a sequence {xn} ⊆ J such that
xn → x∗ .

Consider the following differential inequality:

a(x)
b(x)

� y2(x)
x2 +a(x)

[1+ y′(x)]2

b(x)−a(x)
. (5)

LEMMA 3.1. Suppose that the real function y ∈ C1(J) satisfies (5) on the inter-
val of reals J and x∗ is a point adherent to J . If x∗ ∈ {−∞,0,∞} and there exists
limx→x∗ a(x)/b(x) then there exists a sequence {xn} in J such that xn → x∗ and

lim
n→∞

y′(xn) = lim
n→∞

y(xn)
xn

= − lim
n→∞

a(xn)
b(xn)

, (6)

lim
n→∞

a(xn)
b(xn)

= lim
n→∞

{
y2(xn)

x2
n

+
a(xn)

b(xn)−a(xn)
[
1+ y′(xn)

]2
}

. (7)

If, additionally, there exist lim
x→x∗

b(x) = ∞ and lim
x→x∗

y(x) = 0 then

lim
n→∞

a(xn) = lim
n→∞

{
y2(xn)

x2
n

b(xn)+a(xn)[1+ y′(xn)]2
}

. (8)

LEMMA 3.2. Suppose that the real function y ∈ C1(J) satisfies (5) on the inter-
val J = (x,x) . If J = (−∞,0) or J = (0,+∞) and there exist limx→x a(x)/b(x) =
limx→x a(x)/b(x) , then

a(x)
b(x)

=
y2(x)
x2 +

a(x)
b(x)−a(x)

[1+ y′(x)]2 for all x ∈ J. (9)

THEOREM 3.1. Suppose that the parameter space Θ contains a subset Θ∗ on
which φ is a diffeomorphism, the assumption A1 holds and θ ∗ is a point adherent
to Θ∗ such that lim

θ→θ∗
φ(θ ) exists and is equal to 0 or ±∞ . If there exists a function

r(θ ) such that 0 < r(θ ) < φ2(θ )m(θ ) on Θ∗ and the limits lim
θ→θ∗

φ2(θ )m(θ ) and

lim
θ→θ∗

r(θ ) <∞ exist, and

1 < lim
θ→θ∗

[
φ2(θ )m(θ )

r(θ )
−1

][
φ ′(θ )
φ(θ )

]2

I−1(θ ) < ∞, (10)
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then there exists no regular (in the sense of assumption A1) predictor δ (X) such that

limsup
θ→θ∗

R1(δ ,θ ) < lim
θ→θ∗

r(θ ).

Proof. Let us notice that if limθ→θ∗ r(θ ) = 0, the assertion holds.
Suppose now that limθ→θ∗ r(θ ) 	= 0 and there exists δ (X) such that

limsup
θ→θ∗

R1(δ ,θ ) < lim
θ→θ∗

r(θ ).

Then there exists ε0 > 0 and a set Θ0 ⊆Θ∗ such that

R1(δ ,θ ) � r(θ )− ε0 (11)

for every θ ∈ Θ0 , and θ ∗ is adherent to Θ0 . Moreover, after taking into account (4),
the following inequality

R1(δ ,θ ) � b2(θ )m(θ )+V(θ )[b′(θ )+φ ′(θ )]2m(θ ) (12)

holds on the set Θ0 . From (10) it follows that there exists a set Θ1 such that θ ∗ is
adherent to Θ1 and [

φ2(θ )m(θ )
r(θ )

−1

][
φ ′(θ )
φ(θ )

]2

I−1(θ ) � 1 (13)

for every θ ∈Θ1 . By (11)–(13) for every θ ∈ Θ0∩Θ1 the following inequality holds:

r(θ )− ε0 � b2(θ )m(θ )+ [b′(θ )+φ ′(θ )]2V (θ )m(θ )

= b2(θ )m(θ )+
[

db
dφ

φ ′(θ )+φ ′(θ )
]2

m(θ )
1

I(θ )

� b2(θ )m(θ )+
r(θ )

φ2(θ )m(θ )− r(θ )

[
db
dφ

+1

]2

φ2(θ )m(θ ). (14)

Dividing (14) by φ2(θ )m(θ ) , we obtain

r(θ )− ε0
φ2(θ )m(θ )

� b2(θ )
φ2(θ )

+
r(θ )

φ2(θ )m(θ )− r(θ )

[
db
dφ

+1

]2

. (15)

Thus

r(θ )
φ2(θ )m(θ )

� b2(θ )
φ2(θ )

+
r(θ )

φ2(θ )m(θ )− r(θ )

[
db
dφ

+1

]2

(16)

for every θ ∈ Θ0 ∩Θ1 . Since φ is diffeomorphism on Θ∗ ⊇ Θ0 ∩Θ1 and the limits
limθ→θ∗ φ2(θ )m(θ ) and limθ→θ∗ r(θ ) < ∞ exist, by Lemma 3.1 (7) there exists a se-
quence {θn} such that θn ∈ Θ0 ∩Θ1 for all n , θn → θ ∗ (n → ∞) and the equality in
(16) holds in the sense of the limit of the sequence {θn} . So we can write

lim
θ→θ∗

r(θ )
φ2(θ )m(θ )

= lim
θ→θ∗

{
b2(θ )
φ2(θ )

+
r(θ )

φ2(θ )m(θ )− r(θ )

[
db
dφ

+1

]2
}

.
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Using this limit in (15) we have

lim
θ→θ∗

r(θ )
φ2(θ )m(θ )

− lim
θ→θ∗

ε0
φ2(θ )m(θ )

� lim
θ→θ∗

{
b2(θ )
φ2(θ )

+
r(θ )

φ2(θ )m(θ )− r(θ )

[
db
dφ

+1

]2
}

.

Observe that this contradicts (15) in the case limθ→θ∗ φ2(θ )m(θ ) < ∞ .
Assume now that limθ→θ∗ φ2(θ )m(θ ) = ∞ .
From (14) we have

r(θ )− ε0 � b2(θ )m(θ )+
r(θ )

1− r(θ)
φ2(θ)m(θ)

(
db
dφ

+1

)2

. (17)

Because 0 < limθ→θ∗ r(θ ) < ∞ we obtain limθ→θ∗
r(θ)

φ2(θ)m(θ) = 0. After taking into

account (16) and using Lemma 3.1 (6) we obtain

lim
θ→θ∗

db
dφ

(θ ) = lim
θ→θ∗

b(θ )
φ(θ )

= − lim
θ→θ∗

r(θ )
φ2(θ )m(θ )

.

Consequently limθ→θ∗
db
dφ (θ ) = 0. From (17) we have

lim
θ→θ∗

r(θ )− ε0 � lim
θ→θ∗

b2(θ )m(θ )+ lim
θ→θ∗

r(θ )

1− r(θ)
φ2(θ)m(θ)

(
db
dφ

+1

)2

and finally −ε0 � limθ→θ∗ b2(θ )m(θ ) . It obviously leads to a contradiction.
The best lower bound for the upper limit in Theorem 3.1 is given in the following

THEOREM 3.2. Suppose that the parameter space Θ contains a subset Θ∗ on
which φ is a diffeomorphism, the assumption A1 holds and θ ∗ is a point adher-
ent to Θ∗ such that limθ→θ∗ φ(θ ) exists and is equal to 0 or ±∞ . If there exists
limθ→θ∗ φ2(θ )m(θ ) and

lim
θ→θ∗

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

< ∞

then for every predictor δ (X) the following inequality holds:

limsup
θ→θ∗

R1(δ ,θ ) � lim
θ→θ∗

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

. (18)

Proof. Consider the function

rk(θ ) =
φ2(θ )m(θ )

k−1
(

φ(θ)
φ ′(θ)

)2
I(θ )+1

for any k (0 < k < 1).
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Obviously k−1 [φ(θ )/φ ′(θ )]2 I(θ )+1 > 1 and consequently 0 < rk(θ ) < φ2(θ )m(θ ) .
It is easy to show that limθ→θ∗ rk(θ ) < ∞ . Moreover, we can check that

lim
θ→θ∗

{[
φ2(θ )m(θ )

rk(θ )
−1

](
φ ′(θ )
φ(θ )

)2

I−1(θ )

}
= k−1 ∈ (0,∞).

We have shown the assumptions of Theorem 3.1 are satisfied and therefore

limsup
θ→θ∗

R1(δ ,θ ) � lim
θ→θ∗

rk(θ ) (19)

for every regular predictor δ (X) and for every k (0 < k < 1) . Since

rk(θ ) =
kφ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+ k

� kφ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

, (20)

from (19) and (20) it follows that

limsup
θ→θ∗

R1(δ ,θ ) � lim
θ→θ∗

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

.

This completes the proof.

4. Applications

4.1. Minimaxity

The inequality (18) can be useful in proving minimaxity. The following result is
an immediate consequence of Theorem 3.2 and the definition of a minimax predictor.

THEOREM 4.1. Suppose that the assumptions of Theorem 3.2 are satisfied and
δ ∗(X) is a predictor such that

sup
θ∈Θ

R(δ ∗,θ ) = liminf
θ→θ∗

⎡
⎢⎣Eθ [Y −g(X,θ )]2m(θ )+

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

⎤
⎥⎦ . (21)

Then δ ∗ is minimax.

Proof. Let us notice that from (21) and Theorem 3.2 we have

inf
δ

sup
θ∈Θ

R(δ ,θ ) � inf
δ

limsup
θ→θ∗

R(δ ,θ )

� liminf
θ→θ∗

⎡
⎢⎣Eθ [Y −g(X,θ )]2m(θ )+

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

⎤
⎥⎦

= sup
θ∈Θ

R(δ ∗,θ ). (22)
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From the definition of supremum

inf
δ

sup
θ∈Θ

R(δ ,θ ) � sup
θ∈Θ

R(δ ∗,θ )

and consequently
inf
δ

sup
θ∈Θ

R(δ ,θ ) = sup
θ∈Θ

R(δ ∗,θ ).

Obviously the right side of (21) is independent of δ . Moreover it is easy to check if
equality in (21) is achieved. Consequently Theorem 4.1 may be very useful in proving
minimaxity of a predictor δ .

If we reduce the class of predictors to the unbiased ones, we get from (4) an anal-
ogous inequality with φ2m/[(φ/φ ′)2I] instead of φ2m/[(φ/φ ′)2I +1] . The quantities
differ by exactly +1 in the denominators, providing bounds on the minimax prediction
risk within the class of unbiased or all (possibly biased) predictors, respectively. What
is interesting, the difference does not depend on the class of distributions but on the
class of predictors only.

EXAMPLE 4.1. Let X and Y be random variables with the joint (conditional)
density function given as follows:

f (x,y|θ ) =
1

2π
√

1−ρ2
exp

{
− 1

2(1−ρ2)
[
(x−θ )2−2ρ(x−θ )(y−θ )+ (y−θ )2]}

for ρ ∈ (−1,1) . Then the marginal and conditional density functions (given θ ) are de-

fined, respectively, as follows f (x|θ )= 1√
2π exp

{
− (x−θ)2

2

}
, f (y|θ )= 1√

2π exp
{
− (y−θ)2

2

}
and f (y|x,θ ) = 1√

2π
√

1−ρ2
exp

{
− [y−θ−ρ(x−θ)]2

2(1−ρ2)

}
.

It is easy to see that g(X ,θ ) = θ+ρ(X−θ ) . Moreover Eθ [Y −g(X ,θ )]2 = 1−ρ2

and φ ′(θ ) = 1−ρ . Thus φ(θ ) = (1−ρ)θ + c , for some c ∈ R . Obviously I(θ ) = 1.

Let m(θ )= 1. Then limθ→±∞
φ2(θ)m(θ)[(
φ (θ )
φ ′(θ )

)2
I(θ)+1

] = (1−ρ)2 , limθ→±∞ φ2(θ )m(θ )=

+∞ and limθ→±∞ φ(θ ) = ±∞ . Finally, the limit on the right side of (21) is equal to
2(1−ρ) (for θ ∗ ∈ {−∞,+∞} ).

Assume now that δ (X) = aX . Then

R(δ ,θ ) = Eθ [Y − δ (X)]2 = a2−2aρ+1+θ 2(a2−2a+1).

We can see at once that for a = 1

sup
Θ

R(δ ,θ ) = 2(1−ρ).

Consequently (21) is satisfied. Thus δ (X) = X is a minimax predictor of Y .

EXAMPLE 4.2. Let X = (X1, . . . ,Xn) be a random vector with the density func-

tions f (xi|θ ) = 1√
2πσ exp

{
− (xi−θ)2

2σ2

}
for every i ∈ {1, . . . ,n} , xi ∈ R and θ > 0 and
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let Y be a random variable with the same density function as Xi . Assume that the
random variables Xi and Y are conditionally independent (given θ ). Let m(θ ) = 1.
In this example g(X,θ ) = θ . Moreover Eθ [Y − g(X,θ )]2m(θ ) = σ2 , φ ′(θ ) = 1 and

φ(θ ) = θ +c for some c∈R . In this case I(θ ) = n
σ2 , so limθ→+∞

φ2(θ)(
φ (θ )
φ ′(θ )

)2
I(θ)+1

= σ2

n ,

limθ→+∞ φ2(θ )m(θ ) = +∞ and limθ→+∞ φ(θ ) = +∞ . Thus the right side of (21) is

equal to σ2

n +σ2 .
Let δ (X) = α∑n

i=1 Xi +β . Then

R(δ ,θ ) = θ 2(nα−1)2 +θ (2nβα−2β )+β 2 +α2nσ2 +σ2.

Let α = 1
n and β = 0. Then

sup
Θ

R(δ ,θ ) =
σ2

n
+σ2.

Finally we conclude that δ ∗(X) = 1
n ∑

n
i=1 Xi is a minimax predictor of Y .

EXAMPLE 4.3. Let X = (X1, . . . ,Xn) be a random vector with the density func-
tions f (xi|θ ) = θ exp(−xiθ ) for every i ∈ {1, . . . ,n} , for all xi � 0 and θ > 0 and
let Y be a random variable with the same density function as Xi . Assume that the
random variables Xi and Y are conditionally independent (given θ ). Let m(θ ) =
θ 2 . It is easy to show that g(X,θ ) = 1/θ and I(θ ) = n/θ 2 . Moreover Eθ [Y −
g(X,θ )]2m(θ ) = 1, φ ′(θ ) = −1/θ 2 and φ(θ ) = 1/θ + c for some c ∈ R . In this case

limθ→0+ φ2(θ )m(θ )= 1, limθ→0+ φ(θ )= +∞ . Consequently limθ→0+
φ2(θ)m(θ)[(
φ (θ )
φ ′(θ )

)2
I(θ)+1

]
= 1

1+n . We have shown the assumptions of Theorem 4.1 are satisfied.

Thus the right side of (21) is equal to 1+ 1
n+1 .

Let δ (X) = a
n

∑
i=1

Xi +b . Then

R(δ ,θ ) = θ 2b2−2θb(1−na)+ (n+n2)a2−2an+2.

Let a = 1
n+1 and b = 0. Thus

sup
Θ

R(δ ,θ ) = 1+
1

1+n
.

So δ (X) =
1

n+1

n

∑
i=1

Xi is a minimax predictor of Y .
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4.2. Admissibility

THEOREM 4.2. Suppose that φ is a diffeomorphism on Θ = (θ ,θ ) , assumption
A1 holds on Θ , and φ(Θ) = (−∞,0) or φ(Θ) = (0,+∞) . Assume that the limits below
exist and the following equality holds

lim
θ→θ

[(
φ(θ )
φ ′(θ )

)2

I(θ )+1

]−1

= lim
θ→θ

[(
φ(θ )
φ ′(θ )

)2

I(θ )+1

]−1

.

Then there exists no regular (in the sense of the assumption A1) predictor δ (X) such
that

R1(δ ,θ ) � φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

(23)

for every θ ∈ Θ with the sharp inequality holding for some θ ∈ Θ .

Proof. Suppose that there exists predictor δ (X) such that (23) holds for every
θ ∈ Θ and the sharp inequality holds for some θ1 ∈Θ . Hence, by the (4), we have

φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

� R1(δ ,θ ) � b2(θ )m(θ )+V(θ )[b′(θ )+φ ′(θ )]2m(θ ).

Thus, dividing both sides of this inequality by φ2(θ )m(θ ) , we obtain

1(
φ(θ)
φ ′(θ)

)2
I(θ )+1

� b2(θ )
φ2(θ )

+V(θ )
[b′(θ )+φ ′(θ )]2

φ2(θ )
. (24)

Since φ is diffeomorphism on Θ , from (24) we obtain

a(φ)
b(φ)

� b2(φ)
φ2 +a(φ)

[1+ db
dφ ]2

b(φ)−a(φ)
, (25)

where a(φ) ≡ 1 and b(φ(θ )) =
(

φ(θ)
φ ′(θ)

)2
I(θ )+ 1. By the assumptions there exist,

and are equal to each other, both limits of a(φ)/b(φ) at the endpoints of the interval
φ(Θ) . Thus, by Lemma 3.2, the equality holds in (25) for every φ ∈ φ(Θ) but this is a
contradiction to (23) for φ1 = φ(θ1) .

The following result is the consequence of Theorem 4.1 and the definition of ad-
missible predictors.

THEOREM 4.3. Suppose that the assumptions of Theorem 3.2 are fulfilled and
δ (X) is a predictor such that

R(δ ,θ ) = Eθ [Y −g(X,θ )]2m(θ )+
φ2(θ )m(θ )(
φ(θ)
φ ′(θ)

)2
I(θ )+1

. (26)

Then δ is admissible.
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EXAMPLE 4.4. Let us take into account the model described in Example 4.3. Let

c = 0. Then φ2(θ)m(θ)[(
φ (θ )
φ ′(θ )

)2
I(θ)+1

] = 1
1+n . Let δ (X) = 1

n+1 ∑
n
i=1 Xi . For this predictor all the

assumptions of Theorem 4.3 are satisfied. Finally, the predictor δ (X) =
1

n+1

n

∑
i=1

Xi is

an admissible one.

EXAMPLE 4.5. Let us take into account the model described in Example 4.3 with
the parameter space Θ= (0,μ−1

0 ) , where μ0 > 0. Obviously for the predictor δ (X) =
a∑n

i=1 Xi +b we have R(δ ,θ ) = θ 2b2−2θb(1−na)+(n+n2)a2−2an+2. Moreover,
for this predictor the right side of (21) is equal to 1+ 1

n+1 . First of all we try to obtain
such coefficients a and b for which

sup
Θ

R(δ ,θ ) = 1+
1

1+n
.

In order for the risk of the prediction to have supremum equal to 1+ 1
1+n , the following

two conditions should be satisfied:{
R(δ ,θ = 0) = a2n(1+n)−2na+2� 1+ 1

n+1 ,

R(δ ,θ = μ−1
0 ) = b2μ−2

0 −2(1−na)μ−1
0 +a2n(1+n)−2na+2� 1+ 1

n+1 .

The first condition is satisfied only when a = 1
n+1 . For this value of a the second

condition is satisfied for b ∈ [
0, 2

n+1μ0
]
. For these values of a and b there are a lot of

corresponding minimax predictors of Y .
Finally, every element of the class

Ξ =

{
1

n+1

n

∑
i=1

Xi +b;b ∈
[
0;

2
n+1

μ0

]}

is a minimax predictor of Y within the class of all regular predictors.
Secondly we try to find an admissible predictor of Y within the class Ξ of linear

predictors. It is easy to see that for a = 1
n+1 and b = 0 the predictor δ (X) = 1

n+1 ∑
n
i=1 Xi

has a constant risk function. Because of that there are a lot of elements in the class Ξ
which dominate this predictor. So this predictor is not admissible.

Assume now that b 	= 0. Because the risk function is a trinomial, the following
additional condition should be satisfied:

θw =
1−na

b
� 1

μ0
,

where θw is the argmin of the risk function. After simple calculations we get b �
1

n+1μ0 . Hence we can conclude that every element of the class

Ξa =

{
1

n+1

n

∑
i=1

Xi +b;b ∈
[

1
n+1

μ0;
2

n+1
μ0

]}

is a minimax predictor of Y within the class of all regular predictors and an admissible
one within the class of linear predictors.
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