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Abstract. New criteria of L, — L, boundedness of Hardy-Steklov type operator (1.1) with both
increasing on (0,e°) boundary functions a(x) and b(x) are obtained for 1 < p < g < o and
0 <@g < p<ee, p>1. This result is applied for two-weighted L, — L, characterization of the
corresponding geometric Steklov operator (1.3) and other related problems.

1. Introduction

Let 0<p <eo, ||fllp: =(Jo \f(x)|pdx)1/p and L, denotes the Lebesgue space
of all measurable functions on R : = [0,0) such that |||, < eo.

Assume w(x) and v(y) be locally integrable and almost everywhere positive func-
tions (weights). We study the L, — L, boundedness of the Hardy-Steklov operator of
the form

b(x)
AP =w) [ IO (1)
where the boundaries a(x) and b(x) satisfy the following conditions:

(1)  a(x) and b(x) are differentiable and strictly increasing on (0,o); (1.2)
(i) a(0)=5b(0)=0, a(x) < b(x) for 0 < x < oo, a(ee) = b(e0) = oo ’

In the limiting cases a(x) = 0 or b(x) = e the operator ## is reduced to the
Hardy-type operators with variable upper or lower bound and this relation stands be-
hind of the so-called block-diagonal method for investigation of .7 by a suitable de-
composition into a sequence of Hardy-type operators with non-overlapping domains.
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450 VLADIMIR D. STEPANOV AND ELENA P. USHAKOVA

However, apart from the limiting cases some properties of .7 could be rather differ-
ent. For instance, 7 is a self-adjoint operator in L, for w =v and a(x) = b~ !(x) and
to find the spectrum of 7 in this case is an interesting problem.

We give two alternative pairs of criteria for the L, — L, boundedness of JZ (§
4). The first pair is a complete analog of Tomaselli-Muckenhoupt-Bradley and Mazya-
Rozin conditions for the Hardy-type operators in the cases 1 < p < g <o and 0 <
g < p <o, p>1, respectively. The second pair is new and allows to characterize the
weighted L, — L, boundedness of the geometric Steklov operator (§ 5)

b(x)

456 =ewp (o [ oef0d) =0 A

Both pairs of criteria involve a notion of the fairway - a curve between the graphs of
a(x) and b(x) with such an equilibrium property which allows to squeeze up discrete
portions produced by the block-diagonal method into one piece.

We demonstrate the block-diagonal method (§ 3) for an even more general opera-

tor
b(x)

HIC) =0 [ ey (14)

where the kernel k(x,y) > O satisfies the Oinarov-type condition of the form
k(x,y) = k(x,b(2)) +k(z,y), z<x, alx) <y<b(z). (L.5)

The same method works for a formally dual operator

b(x)

HJE) =) [ SOy (16)

alx

with the kernel k(y,x) > O satisfying
k(y,x) = k(y,z) + k(a(z),x), x<z, a(z) <y < b(x).

Howeyver, in both cases two-sided estimates of the norms have discrete forms, which are
rather inconvenient for further applications. When p < ¢ the forms can be refined up
to “continuous” ones, but with a double supremum. As for the case g < p is concerned
the attempts to find out the integral form of criteria, analogous to the Hardy-type case,
met some difficulties. Nevertheless, it gives a solution for the L, — L, boundedness of
#¢ narrowed on the cone of monotone functions (§ 6.2).

Our next observation is that L, — L, boundedness of J# is equivalent to the va-
lidity of the differential inequality

I1Fwlly <CIF' /v, (1.7)

restricted to a non-linear class of absolutely continuous function defined by the bor-
der functions a(x) and b(x), which in turn is closely related to the embedding of the
weighted Sobolev space to the weighted Lebesgue space to hold (§ 6.1), that is to
inequalities of the form

[Fwllg <C ([[Fulls+1F'/vlp) - (1.8)
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We start the paper with the Preliminaries (§ 2) contained auxiliary results and
conclude by the Bibliographical remarks.

Throughout of the paper products of the form 0o are taken to be equal to 0.
Relations A < B mean A < c¢B with some constants ¢ depending only on parameters
of summations and, possibly, on the constants of equivalence in the inequalities of the
type (1.5). We write A ~ B instead of A < B < A or A=cB. Z and N denote the
sets of all integers and all positive integers, respectively. g stands for a characteristic
function (indicator) of a subset E C R*. Also we make use of marks : = and =:
for introducing new quantities and denote p’ :=p/(p—1) for 0 < p <o, p#1 and
r:=pq/(p—q) for 0 < g < p <eo. In Section 5 we denote L, , the weighted Lebesgue
space with the norm || f||,.,: = || /v,

2. Preliminaries

2.1. Hardy and Hardy type operators

Here we collect some known results for Hardy operator
W) [ Fopedy, 0<e<x<d<e, @.1)
and Hardy type operator of the form
/kxy v(y)dy, 0<c<x<d< oo, (2.2)
with a non-negative kernel k(x,y) from Oinarov’s class O

DEFINITION 2.1. Let k(x,y) > 0, k(x,y) € & if there exists a constant D > 1
such that

D 'k(x,y) <k(x,2)+k(z,y) <Dk(x,y), 0<c<y<z<x<d<e  (23)

THEOREM 2.1. Let the operator H : L,(c,d) — Ly(c,d) be defined by (2.1).
@ If 1 <p<q<eo, then |[H| L, (cay-1,(ca) ¥ Am ~ AT, where

1 1
d q t P
Aw = sup ( / wq(x)dx>q ( / W (y)dy>’ , 2.4)
ce<t<d t c

Ar:= sup _’ o (y)dy qw%x)dx% _tvp’<y>dy L@
s (U /

(b)Let 0 < q < p <ee, p> 1. Then ||H||1,(c.a)-L,(c.a) = Bur = Bps, where

Bur = ( [ 1) wreoas] % [0’ ’ w%r)dt) s

= -
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Bps = ( [ I{f vp’<y>dy}qwq<x>dx} 'L’ [ o) w%t)dr) e

REMARK 2.1. Since HHHLp(c,d)HLq(c,d) = ”H*”Lq/(c,d)ﬁlz,,/(cvd) for 1 < p,q < oo,
where .,
H'g) =20 [ gwidx,  0<e<y<d<e, 2.8)
y

the above equivalences ought to be supplemented by

1
4 I -7
A} = ci?gd (/Id [/yd wq(x)dx] W (y)dy) </[d wq(x)dx> ) (2.9)

/ r

Big = /Cd th {/ydwq(x)dx}pl vpl(y)dy] ’ [[dwq(x)dx]p T

For the Hardy type operator we have the following.

=

(2.10)

THEOREM 2.2. Let the operator K : L,(c,d) — Ly(c,d) be defined by (2.2) with
k(x,y) € 0.
(@ If 1 <p < q<eo, then ||K||L,(c.a)-1,(ca) = Ao+ A1, where

; VI
A= sup ( / kq(x,t)wq(x)dx) ( / vl”(y)dy>” , @.11)
c<t<d t ¢
d 0/ v
avi= s ([wwar) ([wearow)”
c<t<d t <

(b) Let 1 < q < p <eo. Then ||K||p,(cdy—L,(ca) = Bo+ B, where

0= (/d Ulqu(x,z)wq(x)dx] 5 [/t vP’(y)dy] d vl”(z)dt> % , 2.13)
Bl = ( / ’ [ /[ dwq(x)dx} ' [ / Y (z,y)vp’(y)dy} / Wr)d;) % . (2.14)

Let b : [c,d] — [0,o) be a strictly increasing differentiable function and let K}, :
Ly(b(c),b(d)) — Ly(c,d) be an operator of the form

>

b(x)
Ky f(x) :=w(x) /b © k(x,y) f)v(y)dy, 0<c<x<d <o, (2.15)

where a non-negative kernel k(x,y) satisfies the following definition.
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DEFINITION 2.2. k(x,y) € O}, if there exists a constant D > 1 such that

<z<x<d Koo,

C X
2.16
b(c) <y < b(2). 2.16)

D™ 'k(x,y) <k(x,b(z)) +k(z,y) < Dk(x,y), {8

NN

COROLLARY 2.1. Let the operator K;, be an operator given by (2.15) with a
strictly increasing differentiable function b(x) > 0 and k(x,y) € 0.
@If1 <p<q<oo, then

Kb\l L (b(c) () Ly (e.d) R Ab0+Ab1, (2.17)

where

WA ON 7
Apo = sup (/ k?(x,b(2))w(x )dx) (/b v’ (y)dy) , (2.18)

e<t<d (c)

Ab,lzzciggdgd 9(x)d ) (/ k”ty)v”()dy) . (2.19)

b If1<g<p<oo, then
1Ko Il (b(c) () Ly (ed) = Bo.o+ Bt (2.20)

where

Byo = (/b?()d) [/,,dl(,) k‘l(x,t)wq(x)dx}; [/hz) ‘(y )dy] L/v ’(t)dz) _, (2.21)

xr
/

By = (/ [/ w (x dx] [ hz)j) kpl(t,y)vp,(y)dy} ! wq(t)dt> .22

Proof. By the substitution 7 = b~!(y) we see that the inequality

( / " Kof)? (x)dx) " C< bid () ) (2.23)

is equivalent to the inequality

=

(/ [/ k(x,7)f )dT] Wq(x)dx)%<C</cdfp(T)dT>p 2.24)

with 5(7) = v(b(7)) [/ (7)]"/7, k(x,7) = k(x,b(T)) € €. The result follows from The-
orem 2.2.
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REMARK 2.1. If k(x,y) = 1 the result of Corollary 2.1(b) is true for 0 < g < p <
oo, p>1.

Similar characterization is valid for the operator K, : L,(a(c),a(d)) — Ly(c,d)
with a lower variable limit of integration of the form

a(d)
Kuf (x) == W(x)/a | k(y.x)f(y)v(y)dy, 0<c<x<d<eo, (2.25)

with a non-negative strictly increasing differentiable function a(x) and a non-negative
kernel k(y,x) from Oinarov’s type class 0, defined as follows.

DEFINITION 2.3. k(y,x) € 0, if there exists a constant D > 1 such that

) 0<c<x<z<d <o
D 'k(y,x) <k(y,z)+k ,X) < Dk(y,x), ’ 2.26
(%) < k(v,2) + k(a(z),x) < Dk(y,x) {o <a(z) <y <a(d). (2:20)

COROLLARY 2.2. () If 1 < p < g < oo, then

1 Kallz, (ate).ald))—Ly(ed) = Aa0 +Aq,1, (2.27)

where

1

1
q (l(d) 2 ?
Aag = sup / K. wia ) ([ T mar)" @)
e<t<d a(t)
1
r L/ aa)
Agpi= sup / W9 (x)dx / K (v (v)dy ). (2.29)
e<t<d \Jc a(t)

®If1<g<p<oo, then

1 Kallz, (ate).ald))—Ly(e.d) = Bao + Ba,t, (2.30)

where

1
a@) [ pa'0) Q0 ra@) 7 ’
B = / / k2(t,x)wi (x)dx [/ vP (y)dy] vdr | , (231
a c t

d [ rt 5 a(d) , PL, ¥
By = (/ [/ wq(x)dx] [/(t() kP (y,e)vP (y)dy} wq(t)dt> . (2.32)

REMARK 2.2. Inthe case k(y,x) =1 the part (b) holds for 0 < g < p <eo, p> 1.
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In lemmas 2.1-2.4 we state norm estimates for certain Hardy type operators with
only one variable limit. Such estimates are given above in a less general form (see
corollaries 2.1-2.2 with k= 1), but the authors find it difficult to give precise references.
Therefore, we state these results here together with sketches of the proof for some of
them. We start from the case 1 < p < g < oo.

LEMMA 2.1. Let 1l <p<g<eooandlet 0 <c<d <o, 0K a< oo Suppose

y that the function b(x) is differentiable, strictly
increasing and such that a < b(x) < oo, x €
[c,d), and let

b(d)

b(x)
SF) =) [ 0oy, @33)

Then for the norm of S we have the following
two-sided estimates with coefficients of equiv-
alence depending on p and q only:

d s/ bl) /
q ’ 4
ISlhasan-syear = Asi= sop (([“wawas) ([ o) 2

ce<t<d

ISI 2, (ab(d) —Lg(ca)y = Db

1 b(x) q i
‘= sup (/ [/ vP (y)dy} wq(x)dx>
c<t<d c a

Proof. Ngcessity for both (2.34) and (2.35) follows from applying the test function
[ =0 s (v) to the inequality

(/Cd(Sf)q(x)dx> é <C ( ub(d) fp(y)dy) ’ . (2.36)

To prove sufficiency in (2.34) we note that the least possible constant C > 0 of the
inequality (2.36) coinciding with the operator norm C = |[S||1,,(ub(a))—Lqy(c,a) 1S €QUIV-
alent to the sum of the least possible constants C ~ C; + C; of the inequalities

/a b(C)f )v(y)dy ( / ‘ wq(X)dX> ’ <G ( ab(d) f7 (y)dy> : ;

([T romta] wiea) <o ([ rrom)".

which, in their turn, are equivalent to the following two inequalities:

=)
N
—
=
<
"g\
—
<
=
<
~_
|
i

) d g be) ’
[ s ([wiar) <e ([Crow) e
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d [ rbx) q i bd) 1
( / [ /b © f(y)v(y)dy] wq(x)dx) <c4< » fp(y)dy) , (238)

respectively, therefore, C ~ C3 + C4. From (2.37) by the reverse Holder inequality we
find

1

d i/ rblo) 7
G = (/ wq(x)dx) (/ vP (y)dy) <Ap
c a
and for (2.38) by Corollary 2.1 (a) for k(x,y) = 1 we have

L
7

d NECON b
Cy~ sup (/ wq(x)dx> (/ vP (y)dy) <Ay
et<d \Jt b(c)

and the sufficiency of (2.34) follows.
For an upper estimate in (2.35) we write the inequality

1
7

v ( / ra@ { /b :l(y) g(x)w(x)dx} ’ dv(y)> ’ <C ( / ’ g‘/(x)dx) ’,

dual to (2.36), where V(y) := [2v" (z)dz and by (y) = max {c,b~(y)} . Integrating
by parts and applying Holder’s inequality we find

/1
= () i) Ve 0w 0)a )

o (e onas ) ‘

( "
(L o] ona )

N
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<at ['( [ o) "y [— ([ stomionas) _] |

Furthermore, by Minkowskii’s inequality

Thus,

d qd 1
I<<Ab</ gq(x)dx) I»

and the proof of the upper bound C < A, is completed.
For the Hardy type operator with a lower variable limit of integration the similar

norm estimates can be obtained analogously.

LEMMA2.2. Let 1 <p<g<eooandlet 0 <c<d <o, 0<b< oo Suppose
that the function a(x) is differentiable, strictly
increasing and such that 0 < a(x) < b, x €
(c,d], and

a(d)

b
Tf(x) = i) [ S ONOI 39

ale) Then
1 1
' af b ’
HTHLP(G(C),IJ)—?Lq(Qd) %Aa = Sup (/ wq(x)dx) (/ vP (y)dy) ) (240)
e<r<d \Je a()
[ b, q i/ -5
TL (a(e) b) L (c.a) = Agi= su /[/ vP d]w”xdx) (/ vP d) .
ITletertcar = b= s (] [ oGty wrcenas) " ([ o7 oy

(2.41)
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Next two lemmas are concerned to the case 0 < g < p < oo, p > 1.

LEMMA 2.3. Let 0<g<p<oo, p>1, 1/r=1/q—1/p andlet 0 < c <d < oo,
0 < a < eo. Suppose that the function b(x) is differentiable, strictly increasing and such
that a < b(x) < oo, x € [c,d), and let the operator S be defined by (2.33). Then

d [ rd b 4
131ty ~ B5i= [ ([ wi0ar) " ([T 0ras) wrinar
d i b(c) »
~ (/ wq(x)dx> (/ vP (y)dy) (2.43)

d [ rd @ (o O
+ (/ wq(x)dx> d (/ vP (y)dy) =: By},
c t a

ISIZ, (@) —Lq(e)

~Bj— / ‘ ( / ’ [ / o (y)dyrwq (x)dx>% ( / N (y)dy)q;wq(t)dt (2.44)

% </d [/ab@ . (y)dy] B Wx) | (Lh(d) v Wy) % (2.45)
Lo o[- ([ 0m) ]

Proof. We start as in the proof of Lemma 2.1 and by the reverse Holder inequality

mi = dwﬂf(x)dx)'l’ (/ " vf”(y)dy)”l’ _c,

and by Corollary 2.1 (b) with taking into account Remark 2.1 we obtain

d T rd 5 ob) o
E;: = / [/ wq(x)dx] [/( vP (y)dy] wi(t)dt | = Cy,
¢ t b(c)
and we conclude that
C~Ey+E;

~ (/Cd {/tdwq(x)dx}; [(/ﬂb@ vp’(y)dy)

%Bb

~ =
+
N
—
= 2
=
.B\
=
S
—
~ =
| I
<
_Q
=
IS
~
~—
Sl
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For the proof of the equivalence (2.42) to the sum (2.43) suppose first that B} < eo.
Then

d
/ wi(x)dx <eo forany € (c,d| (2.46)
t

o= tm Sd ( /abm Vp,(y)dy)#d [_ ( /tdwq(X)dx> r
> lim ( /a o v”'(y)dy) 7 /5 K [_ (/t dwq(x)dx> ;]
i (/ah(S) Vp,(y)dy) 5 ( /d Wq(x)dx) 5. (2.47)

It implies by integration by parts that e > B ~ EI’). In the reverse direction let EI’) =:
I + 1, < o, then

o= (o) (o)
+f ( [ (y)dy) 74 l— ( [ wq<x>dx> ‘r’]
N /Cd ( /ab(t) vp'(y)dy)p—’/d l_ ( /tdwq(x)dx> %] -

Hence, B} < oo, therefore, by (2.46) — (2.47) we have B} ~ §1’).
To prove the second part of the lemma we put V,(¢): = fub(’) v (y)dy and let

Bjg: — / ‘ ( / "V e (x)dx) "4 (~ Va0 7) .

It was proved in [18, Theorem 3] that
Bb ~ Bps, if Va (d) = (248)

and, therefore,

Q
_

and
d r
By ~ (/ Vj(x)w%x)dx) ! [Va(d)]_’/p + Bpg, if  0<V,(d) <e. (2.49)

For the upper estimate C < B;, we assume that Bj, < e and suppose first V,(d) = oo.
Then by Holder’s inequality with the exponents r/g and p/g we have

= " f(y)V(y)dy>qwq(X)dx

-[(J " f(y)v(y)dy)qw‘f(x)v;f(x)vaq(x)dx
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d / rb(x) q d .
= [ ([ romoar) weawze ([ Wt tavis) ) ax=i o
c a X

d | s b(x) q
= [ | [ ([ rono) weviea] av
<o {([" rorma) vor M ([ wmsar) v ') favaco
(/ [/ 1) dy] v P(s)dVa(s)> " B
Hence, by using the estimate (2.34) from Lemma 2.1 we find
b(d) b
7 < B ( o)’
Therefore, in view of (2.48) the inequality C < B, holds. If V,(d) < e, then

Vo) = Vo9(d +q/ )79V (s)

and analogously we find that

X q
J=Jo+V4(d) / ’ ( / o f(y)v(y)dy) WA (X)W (xX)dx = o+ J1.

From the above estimate for Jy and (2.49) it follows that

o [P b
Jo < B (/ f”(y)dy)

To estimate J; let {x;}rez be such a sequence that f:((:_‘)k)f(y)v(y)dy =2k k<N
Then

/U fOIv)dy+ :)xf()(}’)dyrwq(x)qu(x)dx

(/" f(y)v(y)dy) [ v

Xt 1 b(x) q
+ 2/ (/ f(Y)V(Y)dY) wl (x)V i (x)dx =: J11 +J12.
k<N /%% b(c)

By applying Holder’s inequality and (2.49) we find that

q

¢ ’ , © ;
ns ([ o) e [Cwveas<viasy ([ o)

c
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For the second term J; » we have by Holder’s inequality with the exponents /g and
p/a

Jip <Y 200D / W VI (x)dx

k<N Xk

<o 3 ([ somon) [* v

k<N \’b(xe—1)

q 4
b(x) v blxe) vkt
<o 3 ([ o) ([ o) [
k<N \/D(xk—1) b(xk—1) X
q N\ 4
b(d) i T X+1 g\’
< ([ o) [ S vator ([T wiwviedx
b(c) k<N X

< ( bf:)d) fp(y)dy>% (/Cd (/ct Wq(x)vj(x)dx) ’ wQ(z)[Va(t)]‘”pr’dt)

fr (y)dy> % :

q
r

< VI(d)B] ( A

By combining the above estimates we obtain the upper bound C < By,

For the lower estimate we suppose that C < e and note that in view of (2.42)
the inequality C >> B, holds. Under the condition V,(d) = oo let us prove first that
By, > B;,. We have

/C W)V () dx = / "Va(x)d (- / t wq(s)ds)
— V() / W) dx+ g / [ ( / ’ wq(s)ds) V(019 dVa(x).

Then

By~ Bps = vi(0) [ ([ wilois) (-

+/Cd{/: (/xtwq(s)ds> [Va(x)]q—ldva(x)}qd(—[Va(t)}—r/p> — I +DL.

Obviously,
/ d q
I < V(o)) ( / wq(s)ds)q < B
c

To estimate I, we write

/ct ( / W“<s>ds) [Va()]9~ aVi (x)

= / ’ { ( / ’ wq(s)ds> [V (x)]4~ 154/ 21’} V()] 4/2PdV, (x)
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< {/Lt (/xt wq(s)ds> 2 [Va(x)](q—1+q/2p)r/‘ldVa(x)} (/j [Va(x)}_l/dea(x)> )

< [Va(,)]q/zp (/Lt (/xt wq(s)ds) ‘ [Va(x)](‘f1+q/2p)’/‘1dVa(x)> '

By applying this estimate and the equivalence (2.42) and (2.43) we find that

pe { A ( [ wq<s>ds) % [Vu(x)](q_Hq/zp)’/qua(x)} Val0))27d (=[Vale)) 77

< /Cd </xdwq(s)ds> g [Va(x)] (@~ 1+9/2)r/a (/d[Va(t)]f/Zp—r/p—ldVa(t)) Vi (x)

X

q
r

< /Cd </deq(s)ds> % V()] aV,(x) < B},

Thus, since V,(d) = oo, we get that B) ~ I + L < B} < C". If 0 < V,(d) < o, it
follows from (2.36) with f(x) = v”'~1(x) that

C > [Vald)) /P ( / dwq(x)vg(x)dx> %' .

By combining this estimate and the previous one we find in view of (2.49) that B, < C.
Now (2.44) is proved. The equivalence (2.44) and (2.45) follows from (2.49).

LEMMA 2.4. Let0<g<p<oo, p>1, 1/r=1/q—1/p andlet 0 < c <d < oo,
0 < b < oo. Suppose that the function a(x) is differentiable, strictly increasing and such
that 0 < a(x) < b, x € (¢,d|, and let the operator T be defined by (2.39). Then

d [ /b o
”THZp(a(c),h)ﬂLq(c,d) ~ B, ::/C (/L w‘l(x)dx) (/H(I) wP (y)dy) wi(t)dr  (2.50)
d ‘_ri b / v
~ (/C wq(x)dx) (/a Y vP (y)dy) (2.51)
d t b , o
+/C (/C wq(x)dx) d l— (/a(t) VP (y)dy) ] ,

||TH2p(a((;)7h)*>Lq(C7d)
d/d[ b q Eow ¢
~ = y4 q p q
B, : / ( /, V N (y)dy} w (x)dx> (/ o (y)dy> wi(1)dr (2.52)
d b , q 5 b ) _’_r;
~ " O)dy| wi(x)d " (v)d 2.53
(/C [/G(X) v (y) )’} wi(x) x) (/a(c) v (y) y) (2.53)

+ Cd (/,d [/u; vp’(y)dyrwq(x)dx) d (/az) vp/(y)dy>p.

—~

_=

=
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2.2. Fairway-function and technical lemmas.

We start with the following definition.

DEFINITION 2.4. Given boundary functions a(x) and b(x), satisfying the condi-
tions (1.2), a number p € (1,°) and a weight function v(x) such that 0 < v(x) < e a.e.
x € RT and v (x) is locally integrable on RT, we define the fairway-function o (x)
such that a(x) < o(x) < b(x) and

ox) b(x)
/ vP (y)dy:/ v (y)dy for all xeR™. (2.54)
a(x) o(x)
It is possible to prove that the fairway—function is differentiable and strictly increasing.

LEMMA 2.5. Let the functions a(x) and b(x) satisfy the conditions (1.2) and
o(x) is the fairway-function. For any c € (0,) put ¢~ = o~ (a(c)) and let [/ "] be
the integral part of the number

b(x)

_..-—'—'_'_'_'_'_'_'_ o(x) h(c)

A e

I
i
T
\
-yt
|
|

A
S
N
T

[A7]
-

. , N
Let the point sequence {x; j-”:o, where j, = {[ [ 41, if A >[4
,

defined by:
(D) xp=c", xj,=c
Q) if [N )=0o0r &/ =[N"]|=1, then j,=1;

(3) if /'~ > 1, then the points x; for 1 < j < [N "] are taken so that

b(xj) b(xj-1)
/ ( v (y)dy =2 / ( v (v)dy. (2.55)
a(c) a(c)
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Then for any t € [xj,xj41], 0 < j < j, — 1, we have that

b(t Xj+1 ,
/ (v)dy ~ / (v)dy, (2.56)

and for all t € [¢™,¢]

b(r) b(c)
/() v (y)dy </ dyN/ (2.57)
a(t -

Moreover, if j, 22 and 0 < j < jp — 2 it holds that

b(xjs1) ;[P o
/() v (y)dy =2 /() v (y)dy for all le{l,...,j,—j—1}. (2.58)

Proof. Clearly
b()(j) , b(t) , b(XjH) ,
/ v (y)dy < / v (y)dy < / v (yv)dy (2.59)
alxjr1) a(r) a(x;)

is trivial for any 7 € [xj,x;.1], 0 < j < j, — 1. First we prove (2.56) for t = x;. From
the definition x;; 1 we have

b(xjr1) @ss5) [
/ v (y)dy "= / v (v)dy
a(x;) a(x;)

b(xj-) , b()(j) /
+2/( : v (y)dy < 3/( : v (y)dy. (2.60)
a(c a .xj

Now (2.59) and (2.60) yield (2.56) for ¢ = x;. If t = x;,1, then in view of Lemma’s
condition

b(xjr1) b(xjt1) b(xjr1)
/ v (y)dy > / v (y)dy = / ~ VP (y)dy
a(xjy1) H(C) c

/ (xj+1) / 1 o)
2/ dy+/ y=5/ y v (y)dy
b(xj+l / xj+l ,
n / / 2.61)
b(x;) “2
Thus, (2.61) and (2.59) imply (2.56) for ¢ = x;,1. For t € (x;,xj41) we write
b(t) b(x;) (2 55) l (xj+l / xj+l ,
Wiy [ 0y L
/a<t> (©) a(c) T2

1 xJJrI / x]+1 P (261 1 (xj+l) ,
5/ / yy>§/ v (y)dy
o (xj+1) a(xjy1) a(xj)
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and in view of (2.59) the proof of (2.56) for ¢ € (x;,x41) is completed.
The left inequality in (2.57) is obvious. Since f:(g) v (y)dy = f;((;,)) v (y)dy,
then

b(c) b(c) b(c™) b(c)
/( 5 v (y)dy = /( : v (y)dy+ /( : v (y)dy < 2/( : vVydy - (2.62)
and (2.57) follows. The relation (2.58) is a simple consequence of (2.55).

The proof of the next lemma is analogous.

LEMMA 2.6. Let the functions a(x) and b(x) satisfy the conditions (1.2) and
o(x) is the fairway-function. For any c € (0,) put ¢t = o~ (b(c)) and let [#*] be
the integral part of the number

b(x)
/ & oo
i e L, v 0
) ———— —4--——L--L A i=log ble) ’
! / v (y)dy
I | a(ct)
] i that is
P "
P (y)d
Lo v (v)dy
N a(c)
| e
: 0 <2l
RO ity L
, + ; + [+
Let the point sequence {xj}‘j’-"zo, where j, = {{ﬁ% ’+ L zj: §+ - LV% , be
defined by:
(1) xo=c¢, xj,=c";
Q) if [T =00r /T =[NT]=1 then j, =1,
(3) if A > 1 then the points xj for 1 < j < [A1] are taken so that
/b(c) p/( )d 1 /b(c) p/( )d (2 63)
Vv (y)dy = = W (y)dy. :
a(x;) 2 a(xj_1)

Then for any t € [xj,xj41], 0< j < jo— 1, we have (2.56), and for all t € [c,c™]

b(r) b(ct) b(c)
/ RECUE / R / o O (2.64)
alt alc alc
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Moreover, if j, > 2 and 0 < j < j, — 2 it holds that

b(c)
f/' (v)dy = / P (y)dy for all 1€ {1,....ju—j—1}. (2.65)
al(x;)

a(le

In conclusion of the section we provide two lemmas with a different kind of de-
composition than in the previous two lemmas.

LEMMA 2.7. Let the functions a(x) and b(x) satisfy the conditions (1.2) and
o(x) is the fairway-function.
For any d € (0,%0) put d- =
o~ '(a(d)), d* = o7 (b(d))
o) and let the point sequence
{xj}?:ﬂ-a be defined by:

b(x)

o(x)

bd) fm——————

(D) x_j,=d, xo=d";

(2) if (d¥)” <d, then ja = 1;

(3) if (dF)” >d, then j, > 1
and x;_1 = (x;)~, where

(xj))” >dand —j,+2 <
Jj<0.

a(d) f-‘r.— __T_T_'T,.F'

d

X3 X at

Then for any t € [xj,xj41], —ja < j < —1, we have (2.56). Moreover, if d <x~ <t <

x<dt,
b
/ @N/ @N/ (2.66)

Proof. We start with the proof of (2.66). Since f;((;,)) v (y)dy = fa(x) vP (y)dy
and d <x~ <t <x<d", then

o) bx) b(x7) b(x)
[ o [ oay= / oy [
a(t ll - alx

h
< 2/ 2/ (y)dy, (2.67)
a(x)

and the second equivalence in (2.66) is proved. On the other hand, in view of d < x~ <
t <x <d*' and Lemma’s condition we have that

b(t) b(d) o(d") ox) |,
A”WM@>A>W@M=/H W@@2A)WM@
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1 o @67 1 [blx)
[ ea. (2.68)

=3 vydy = 5
2 Ja(x) 4 Ja(x)

and now (2.66) is proved. Since d < x; = (xj11)” <t < xjp1 <dT, (2.56) follows
from (2.66).

LEMMA 2.8. Let the functions a(x) and b(x) satisfy the conditions (1.2) and

b o(x) is the fairway-function.
Wy m———————— T For any d € (0,00) put d- =
, N oM (ald)), d* = o=\ (b(a))
| and let the point sequence
i J'J {xj}:;bzo be given by:
1

(D) xo=d", x;,=d:
@) if (d)* = d, then j, = 1;

(3) if ()" < d, then j, > 1
and xj11 = (x;)", where
| (x))" <d and 0 < j <

aa) = _,:_1;:;,'7| Jb—2.
I b
1

d— x vy d

Then forany t € [xj,xj1], 0 < j < jp— 1, we have (2.56). Moreover, if d~ <x <t <
xt <d,

b) bt) blx)
/ o v (y)dy ~ / o v (y)dy ~ / o v (y)dy. (2.69)

3. Block-diagonal method

3.1. Key lemma.

We need the following assertion about a block-diagonal operator.

LEMMA 3.1. Let U = ||, Uy and V = || Vi be unions of non-overlapping mea-
surable sets and T = ¥ Ty, where T.: L, (Ux) — Ly (Vi) . Then

1Tz, w)—L,0v) = Sl}:PHTkHL,,(Uk)an(Vk)» 0<p<g<e (3.1)

and

1/r
1T, 0)—L,v) = <2Tk£p(Uk)HLq(Vk)> , 0<g<p<e, 1/r=1/q—1/p.
3
3.2)
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Proof. Let 0 < p < q <. Since |Tf|,v) = |Tifllz, v, for all k, the lower
estimate in (3.1) is trivial. For the upper bound, applying Jensen’s inequality, we write

1711 0y = ST,y < (s0plTl ) AR
k

< (supltle s ) 1910 (.3

Let 0 < g < p <ee. The upper bound in (3.2) follows similar to (3.3) by application
of Holder’s inequality. For the lower bound let 0 < A < 1 and the functions f; € L, (Ux)
are such that

ATl -, 1 fell, @) < NTkfiellz, wy)-
Because of homogeneity we can choose f; so that
”fk”Lp(Uk HTkHL (Up)—Lg(Vi)*

If we put f =Yy xv, fx, thenin view of r/g=r/p+1

- q
AT 0110 = 2 2 (1l e )

< TN oy = ITAIL ) <UTIE ) 1712 0
k

q/p
= HT”Z};(U)*)L[](V) (;”HZP(UIC)—}L(!(Vk))

and the lower bound in (3.2) follows by tending A — 1.

3.2. Integral operators with Oinarov type kernels.
We demonstrate the block-diagonal method for the operator (1.6)
0=l [ Ko O ay
with a kernel k(y,x) > 0 satisfying
k(y,x) = k(y,z) + k(a(z),x), x<z, a(z)<y<bx). (3.4)

Given functions a(x) and b(x) satisfying (1.2) we take a sequence of points {&; }rez C
(0,00) such that
b=1, &=("'ob)(1), ke, (3.5)

and put

m=a(&)=b&-1), M=I[&E+1); &=[MM), k€Z. (3.6
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Breaking the semiaxis (0,o0)
into intervals by points of the se-
quence {& brez, we decompose
the operator #* into the sum

N+2

Sk

H =T+ 3.7)

of block-diagonal operators .7
and . such that

Mk+1

T;
5 : gzsz, f:ZSk,
| keZ keZ
! (3.8)
K ! ! where
S & > &
(k1)
B =) [ KOOSO, T L3 — Ly(a),
b(x)
S0 =wx) [ KOTOWOMY, Sk Lp(Bhn) = Ly(80)
k

A%, T and & are integral operators with non-negative kernels, then
1 |y g 2 1T MLyt + 17 Ly

Since | |A; =8 = (0,0) by Lemma 3.1 we can estimate the norms of Z and . via
the norms of 7; and S;. Moreover, kernels k(y,x) of the operators T; and Sj satisfy
the condition (3.4) for x < z, x € Ay and

a(z) <y <a(e), b(&) <y <b(), (3.9)

respectively. It allows us to apply preliminary results (see Section 2).
More precisely we have the following theorem.

THEOREM 3.1. Let 1 < p < g <oo. Then
1A yory = ™ =+ (3.10)

where

1

t b(s) o

i =ty =sp s [waomar)” (7 0ar)”
b(s)) \’$ a

>0 5>0 s<r<a1(

' i/ [bls) . ;
o :=sup*(s)=sup  sup (/ wq(x)dx> ’ (/ kP (y,t)vP (y)dy) "
b(s)) \’* a

s>0 s>0 sgtgafl(
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Moreover, £ is compact if and only if o/* < oo and lim;_,0 &% (s) = liMs_.e &/ (5) =
0,i=0,1.
If 1 <g< p<eoo, then
1

1A Ly, = B = (2[(=@Z,1)’+(%’;2)’+(ﬂ;ﬁ’ﬂﬂ;ﬁ’]) ., (.11
k

where

, 1
r

a(&1) | a0 97 raEer) ,
B = /(5) / K1, x)w (x)dx [/ v”(y)dy} W (0t |
) a(ck k t

wq(t)dt> r ,

. 1

By ( /bff)) [ /fkf(:) OlaEmiwa] [ o] (r)d:) B

1
-

. i1 Err1 b b(t) , #
o ([ ] [0 0o ] i)
k k

and " is compact if and only if B* < oo.

U~

]~

G [ ft b [ oralGan) , »
= ([ | [orwar]"| [ G ]
’ X e a(t)

s

Proof. Put

[N =17 -y Tl = 1Tl —rga0> ISl = ISkl (5.)—L(a0)-

Let 1 < p < g < . It follows from (3.7) — (3.8) and Lemma 3.1 that
|27 || ~ sup | Ti[| + sup || S]] (3.12)
k k

The norm of the operator Ty is characterized by Corollary 2.2 (a):

‘ i ra&e)
I ~ sup ([ e aprca) " ([7" ' 0jay)
ren, \Y& a(t)

r i e
wsup ([ o) ([0 0 0)ay)
rei, \J& a(t)

= -

= -
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For the kernel of the operator S, it follows from (3.4) provided z = &, x € A; and

(3.9) that
k(yvx) ~ k(yv 5](-&-1) + k(a(ék-‘rl)?x)'

Therefore, Sif(x) ~ Si.1f(x) + Sk2f(x), where

S = b(X)k ¢ d A
0 =w(s) [ KOO0 x€ A
Staf () = wika&e) ) [ FOROM. e

The norm estimates for Si ; and Sy, follow from Lemma 2.1:

o N CON v
s s ([ et meas)” ([ o)
k

teEA

Sir1 % b(r) , v
wsup ([* " wrae) " ([0 0 & 0y
t

teA k

Define the following functions

0= ([ et war ) l (/ fi) oy

b(s

= ([ w%x)dxf (/ m)kp’@,r) )"

where s <t < a~!(b(s)). Then

| T|| = sup (&, 1) + sup 1 (& 1), (3.13)
teA teA
|[Sk[l = sup A (t, Ext1) + sup A (1, E1) (3.14)
teA teA
and
y =sup sup  (st), @ =sup sup  H(s1),
>0 s<r<a! (b(s)) >0 s<r<a! (b(s))
Supﬂfi(ék»t)g sup M(ékvt)<%*7 l:O,l,
1€4k Ge<i<a™(b(&))
%(hék-&-l)gg{i*, l:071

sup o7(t,Eq1) < sup

ey 1<E<a (b))

Now it follows from (3.12) — (3.14) that
|27 < oy +
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For the lower bound in (3.10) we suppose that || J£*| < oo and s <x <t <
a'(b(s)). If

FO) = Xat) w0V L),

then
b(s) /
A 2wl [ K0 )

a(t

The condition (3.4) with z =t implies k(y,x) > k(a(t),x), therefore
b(s)
HJ@) > w(kale) ) [ )y
a(t

Hence,

_—
|~

jo) 3 12 e (/[kq(a(t),x)wq(x)dx>

( /h<s) Y ) )p,
1% .
71, ' aw O

Therefore, ||27*| = @%(s,t) forall s <t < a '(b(s)). Consequently, ||2*| > <.
The inequality ||.#*|| > 7" can be proved analogously by applying a test function

8(x) = X5 (W (x)

into the inequality for the operator dual to .Z*.
To prove (3.11) we note that by Lemma 3.1

1 1

W%(leTkll’) +<ZSk’> : (3.15)
k k

Norms of the operators T; and Sy are estimated with the help of Corollary 2.2 (b) and
Lemma 2.3 by the following way:

ITell = Bye1 + Ba ISkl ~ B3 + Bra (3.16)

and the required result follows.

The proof of compactness assertion of the theorem for 1 < p < g < o follows
from representation of the operator by the sum of a compact operator and an operator
with a small norm. For 1 < g < p < oo the required result follows by applying Ando’s
theorem (see [11], [16] and [27]).

Using decomposition (3.5) for the operator %~ defined by (1.4) with the kernel
k(x,y) > 0 satisfying the condition (1.5) we obtain the analogous result for .7 .

THEOREM 3.2. If 1 < p < g < oo, then

| L, —1, = A =+ S,
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where

ES)
N
=
= =
<

’v\
e
~<
=
<
~_
~ -

Ay =sup(t) =sup  sup (/St kq(x,b(s))wq(x)dx)

t>0 t>0 b—l(a(t))<5<

|~

‘ W ON : '
| =sup i (t) =sup  sup </ w"(x)dx> ! (/ kP (s,y)v? (Y)dY) .
<s<t \YS a

>0 >0 p=1(a(r)) (t)

Moreover, X is compact if and only if @ < oo and lim;_,0 (1) = limy_e (1) =
0,i=0,1.

If 1 <g< p<eoo, then

1

H’%/”Lp_’Lq ~ % = <2 I:'%]';l + %1272 +e%;;3 + %]@4]) s
k

where

P
=
=
~
=
=
by
| S
~
o
a\g
™
+
=
P
e
&
<
=
<
]
~—
=
<
| I
~J~
=
=
~—
-~
~—
=
~
v
S

@ /h(ékﬂ) |:/§k+l K () ]5 [/l p,( \d }q’ p/( \d .
3= x,t)w?(x)dx vV (y)dy| VP (t)dt |
o3 W& Lo b(&)

1

B = ( L o] ’L’ [ e o] w%)dr) B

and the operator J is compact if and only if P < oo.

REMARK 3.1. Itis curious to note, that in spite of duality of Theorems 3.1 and 3.2
the conditions (3.4) and (1.5) are independent in general, that is one of them can hold
whereas the other is broken. In practice the operators (1.4) and (1.6) are almost indis-
tinguishable and, therefore, a form of criterion entirely depends on which of conditions
(3.4) or (1.5) holds. This phenomenon is caused by the following. The condition (3.4)
extends (2.3) for the Volterra operator with variable lower limit, but (1.5) generalizes
(2.3) for the operator with variable upper limit. Losing Volterra’s form the operator
((1.4) or (1.6)) forgets the origin, but its kernel remembers.
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4. Hardy-Steklov operator

4.1. Muckenhoupt and Mazya-Rosin type criteria
In this section we give complete analogs of the conditions (2.4) and (2.6) for the
operator (1.1) basing on the fairway—function conception.
Put
I “ A(x) = [a(x),b(x)],
T I 5(x)=[b""(a(x),a " (o)),

where a~!(y) and b~'(y) are the functions
converse to y = a(x) and y = b(x), respectively.

THEOREM 4.1. Let the operator F of the form (1.1) be given with the boundary
Sunctions a(x) and b(x) satisfying the conditions (1.2). Then for the norm of 7 and

1 < p < g < o the estimate
1|1, 1, = D, 4.1)

holds, where

1

1 1
Gy = sup Ay (t) = sup (/ wq(x)dx) ! (/ vp,(y)dy> " 4.2)
>0 >0 \/4() A(r)

Moreover, S : L, — Ly is compact if and only if oy < o and lim,_ oy (t) =
If0<g<p<o, p>1,1/r=1/qg—1/p, then

12N, —1, = Bur, (4.3)

s ([ [, 0]

and F : L, — Ly is compact if and only if Byr < .

where :

r

wi (t)dt) (4.4)

~J~

Proof. First we consider the case 1 < p < g < oo. It follows from Theorem 3.1
with k(y,x) =1 that ./} = <7|" and by (3.10)

| := |||, ~1, @ A:=sup  sup  A(s,1), 4.5)

5>0 s<r<a1(b(s))

where
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Let A" = sup.Sup,-1(4(s))<r<s A(t,5). Then A = A and using (2.54) we find for all

t>0
1 1
t q o@t) |, »
Ay (t) = (/ wq(x)dx> (/ vP (y)dy)
A CIO)) a(t)

() ([ o)

= ALY (0(1)),1) + A (t,a  (0(1))) < 2A.

It implies 2%, < A. For the proof of the opposite inequality we put 7= o~ (h(s)) and
write

1
I

_ =

A< sup A(s, 1)+ sup A(s,7) < .
ST t<t<a~ 1 (b(s))

Indeed, if s <7 < 7, then (s7t) c(b=Yo(1),a(o(1))), (al(t),b(s)) C (al(t),b(t))
and sup,, A(s,1) <.y If s <7<t <a'(b(s)), then (s,1) C (s,a ' (b(s))) =
(71 (0(2)), a'(0(1)), (alt),b(s)) C (a(r),b(£)) and SUr_; 41 5)) A1) < S
Therefore, </)y ~ A and (4.1) follows from (4.5). The criterion of compactness of the
operator 7 follows from Theorem 3.1.

Now we consider the case 0 < g < p < oo, p > 1. For the proof (4.3) we show
first that ||.77|| < %ur. To this end we introduce some notations:

=0 '(a(&)), F=07' (&), M=I[& & =0 UA,

AI; :[5];75](}7 A]j:[gkangrL kEZa
where {& }rez are given by relation (3.5). The operator 7 with x € Ay splits into the
sum of four operators

Hf(x) = Ti 1 f(x) + Teo f (%) + S f(x) +Seaf(x),  x€A,

b(E) | ————————

k2

Sk2

“(§k) .-,l"
Tia

G N —>Hg— Af —>gF
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where

a(&) 3
Taf ) =w) [ OOy, xea;,

b(&)
Taf () =w(o) [ 7 FO)0)ay, xeaf,

b(x)

Sk f(x) = wlx) f( W)y, x€AL,

b(&

Sk2f / f dy, xEAk_.

Applying known estimates of these operators (see lemmas 2.1 — 2.4) we receive

r

& ([ [t b [ ral&) o
malr = [ wwax) " ([ 0 ) v
' - g a(r)

g oG s i

= / v (y)dy ( wq(x)dx) =

r \ Jag) &

W) V[ rh & 5
@34 / Cp (y)dy /k< kwq(x)dx)pwq(t)dt .
o(&) & \Jr
)

For 1 € [£,,&] we have a(t) < 0(E), b(E) <b(1), & <a~'(0(t)), then [0(&,),
b(E)] CA®), [t.&] C[t,a ' (o(t))] C 8(t), therefore

& ; N
el [ (f, wax)" ([ o) wioa = @o
& \Jo() A(t)

Analogously, we find

r

&/ pooE) 7’
malr [ ()" ([ o) wrioar
/ & k a(t)

Since for ¢ € [&,&7] we have & > b '(o(t)), b(&) < b(t), then [&,1]
C (b !(a(1),1) € 8(r), [a(r),b(&)] C Ar), hence

& , 7
el [*(f, )" ([, o) =g @)
k t t

Similarly, we prove that
1Sk1ll" < Jk2, [Sk2ll” < Ji1- (4.8)

Using a decomposition of operator 7 and the estimates (4.6) — (4.8) we obtain the
required inequality ||57|| < Bur-
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For the proof of the estimate || 7|| > ZPur we suppose first that
o(x) =x, (4.9)
i.e. fairway is the bisectrix of the first quadrant. In this case we denote
x =a(x), x"=bkx), Al =[x ,xT]=A"(x)UAT(x),
A™(x) =[x ,x], At (x) = [x,xT]
and we name basic an interval of the form [x~,x"]. We need the following

DEFINITION 4.1. Let p € (1,e°) and the functions a(x), b(x) and weight func-
tion v(x) satisfy the conditions of Definition 2.4 provided (4.9) is fulfilled. Define £
as the set of all absolutely continuous functions F on (0,e0) such that ||[F"/v||, < e
and if F € &, then there exist mutually disjoint intervals I = (ay, ;) C (0,0) and
basic intervals J; = [c,:,c,ﬂ such that I C Ji, suppF C Uy and F(oy) =F(Br) =0
for all k.

We consider the inequality
1Fwllg < CIF'/vlp, Fe, (4.10)

with a constant C independent of F € .Z and chosen as the least possible. We show
that
c<|l2). (4.11)

To this end for any function F € .Z we write
[ 1@t ax =3 [P ds
0 = /I

Since Iy = (04, Bx) C [c; ;¢ ] = Ji the only three variants are possible:
A B <a, (i) o < o, (i) ¢ € Ik

In the case (i) we have

[rwmewas< [ ([1Flas) wias< [ ([ ., POy ) W,

because (o%,x) C (a(x),x) C A(x) on the strength of oy > ¢, = a(ck) = a(By) = a(x).
Analogously, for the case (ii) we write

i< [ ([*1F0la) wiwars [ ([ F0la) i

since (x, ) C (x,b(x)) C A(x) which follows from the chain of inequalities B < ¢
=b(ci) < b(og) < b(x). Thus, using the above arguments, we obtain for the case (iii)
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[ < [*( [ o) v [*([*1F0la) i

Ol Ok

<[ ( L |F’<y>|dy)qwq<x>dx.

| P wdx <3 [ (1P 1) dx < | 1F g < £ 1F ol
k Yk

Consequently,

and the inequality (4.11) is proved. Thus, Theorem 4.1 will be established under the

condition (4.9) if we show that
PBur <L C. (4.12)

For this purpose it is sufficient to prove that %A{E]R < C, where
1

Biin — ( L1 weoas] % o ’ Wq@d,) ,

and (1) = [b'(1),7], 67 (t) = [t,a”'()]. We prove the inequality %, < C, argu-
ments for %, < C are similar.

Let no = 1 and the sequence
{Mi }xez C (0,°0) be defined by

M1 =a (), ke
Put
N = min(n", Nesr).-

For a fixed k € Z we take five
neighboring points My, N,

Ni+15 Mk+25 TI;QQ and let

M1 M Mt 1 Mt N2

r

0 =0 @ [ ([ 00) T ([ 0a) T 510

On the interval [n;_1,n),,] we define the function

8k(Mks2)Ru2(t), € [Mig2,Mi 0l

() {gm 1 M2,
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Q1) = (/n:h* vpl(y)a’y>1 /t”z* v (5)ds.

where

Put

Nk+2 Nk+2 5 s , ﬁ ,
Ak ::/ (/ wq(x)dx> (/ VP (y)dy) VP (s)ds.
Nk—1 s Mk—1

and observe, that A; € (0,o0) for all k. Now we find decomposition

3
he(t) =Y hyi(t),
i=1
with iy ; € £, i =1,2,3. To this end we determine /;; by

0, t ¢ [Me—1,15]
M1 (1) = § hy(1), € [Mi—1, M),
k(M) (1), 1€ [me,mf]

479

(4.13)

(4.14)

Since 1, = Mi—1, then supphy; C [0, , 0] C [n,:,n,j], therefore iy | € . Now, let

WD (1) = hit) — s (8).

Define
0, ¢ MMl
hea(t) = 3 (@), € e M,
B )@t (0, 1€ Meemiy)-
Obviously, i, € £ and hy 3 € £ too, where

hia (1) = 1 () = e (0).
Now it is clear that (4.14) holds. We also need the following estimates

I /vIID < Ak, i=1,2,3.

(4.15)

Write
Nk _ U _

iy = |y VB = /n 1 ()| (s)ds+ g8 (1) /n QL (5)PVP(s)ds =: Ky + K12
k—1 k

Evidently,

Mk Niy2 g s , q—'/ ,
K11 =/ (/ Wq(x)dx) (/ VP (y)dy) v (s)ds < Ay
Nk—1 s Nk—1

Holder’s inequality yields

r

o< [ (" wwa) ([ o) woas([* o)
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Aﬁ%@%ﬂmM=Ufﬂw@fi

M, p-l nwo, =p
Ko < Ak (/ P ()’)d}’> (/ vP (}’)d)’) .
n, Nk

k

Since

then

If nf = n,j, then K < Ay because of (2.54) and (4.9). If M; = Mk+1, We observe that

% e e M1
/ W (y)dy= [ v (y)dy< W (y)dy =2 W (y)dy, (4.16)
n

k Nk Mt 1 Nk

therefore, Ky 2 < 2P~'A. Thus, (4.15)is proved for i = 1. Since h,(f)(nkﬂ) = e(Nit1),
the other cases of (4.15) follow from the first. Now, on the strength of

gm»([wwwMYM;(ﬁfww@ﬁwwm

Nk+2 p_rq t , Trq
~ ([ wia )" ([ )™ e menmieal,
Mk—1

the lower bound

Mk+2
ety > [ gute) i e)ar

Nk—1

o ([ o) (] o)

holds and integration by parts brings

'E\l ~

||th||Z > M. 4.17)
Now we construct the functions

hi = 2 hii = 2 hoyi + 2 hokr1,=: Fri+ Fa,
|k|<N |k|<N |k|<N

where N € N. For each i = 1,2,3 the supports of hy;;, k € Z, are mutually disjoint.
Therefore, F ; € £ and by the same reason F,; € .Z. Observe that

1< Y, Ksuppi () < 4, xe |J supphy.
|k|<N |k|<N

Letting

Ay =Y A € (0,00)
kl<N
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and using (4.14) — (4.17) and (4.10) we find

3
A< Y howly < zan,leq@ZZ 15/l

[k|<N i=1j=1 i=1j=

[\S]

=

<<C< 3 ||h§<7i/v§> < CAYP.

k|<N.i

It implies C > Azlv ". Letting N — o we obtain C >> ¥ A; and because of definition
(4.13) we have

A > /n :’”' ( / " (x)dx)
g /njk“ </s+<s> Wq(x)dx> </A 0 v (y)dy> (s

Then the required estimate C > ,@AZR follows from (2.54) and (4.9). The inequality
C > %),r can be proved by a similar construction using the intervals formed by the
upper boundary function b(x). Thus, the estimate (4.12) is true. Consequently, inequal-
ity ||| > Pur is proved in the case when the fairway o(x) =

Now we set free from this constraint. Let

fO)y=flem)le’®]'?,  a)=0""(a), blx)=0""bK). 18
By change of variables in the left and right hand sides of
12 fllq < 1201 f 1l (4.19)

it follows from the inequality of the form
1
1

( | v qu> "< ([1rors)’. @

where 7(y) = v(a(y))[0’(y)]V/¥'. It is easy to see, that

X , o) b(x
/N( )W’(y)dy=/(> vP (y)dy— (v)dy = / y)dy, (4.21)

therefore the fairway for a, band 7 is 5(x) = x. It has already been proved above that
PBur < |||, where

r

([ o) wiyas

r

S

1R

bx

" Forstas

r

B = [, wrax) % (L, 7o) wioa

Because of A(t):=[a(t),b(t)], 8(t):=[b~1(&(t)),a 1 (6(t))] = [p"1(o(t)),a  (c(t))]
=4(¢) and fg(t) v (y)dy = Jae) V' (y)dy the equality Buyg = Bur follows. The as-
sertion about compactness for g < p is a direct corollary of obtained criterion of the
boundedness and Ando’s theorem.
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4.2. Tomaselli and Persson-Stepanov type criteria

Now we give complete analogs of the alternative boundedness conditions for the
operator (1.1) similar to (2.5) and (2.7).

Let 6~ !(y) denote the inverse function to
—H————— e — the fairway o(x) and put

I |
T ' At) = (alt),b(1)),
0(r) = (0" (a(r)), 0~ (b(r))).

THEOREM 4.2. Let the hypothesies of Theorem 4.1 hold. If 1 < p < g < oo, then
||, —1, = <1, (4.22)
where

1
P

(oo o) (70

If0<g<p<o, p>1,1/r=1/qg—1/p, then

72|, L, = Pps, (4.23)

1

Bps = ( TRy (y)dy}qw%x)dx] '% [, o " <r>dr> B

Proof. The upper bounds. Given boundary functions a(x) and b(x) satisfying the
conditions (1.2) let a point sequence {& }rez C (0,°0) be given by relation (3.5) and
put as before

&=0'a&), & =oT'b(&), M=[g &) =a UA,
Al: = [é;’gk)» A]j_ = [5[0&]:_)7 keZ.

Note that in view of (2.54)

1 / b(t) , ,
o ey [ o< [ vy for rea; @2
A(r) a At)
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and

bE) :
/ )y < / VP (y)dy < / W(ydy for reAf. (425
2 (t) A(t)

As in Theorem 4.1 we split the operator .7 into the sum of four sequences of
operators

Hf(x) = Ti 1 f(x) + Tiof (x) + S f(x) + Seaf(x),  x €Ay, (4.26)
then
17115 = 217 g ~ 2T f gy + 28k o
+;HT]"2JCHZ,,(AZT) +zk:HSk-,1fHLq(A,j)' (4.27)

Let us start with trapeze-shaped operators S;» and Tpp. If 1 < p < g < oo, we
find by using the estimate (2.35) of Lemma 2.1

q
1Sik2l17 agee) bz —(ar)

t e a be) 7
~ sup (/ [/ vP (y)dy} wq(x)dx> (/ vP (y)dy) .
teA; . LJa(&) a(&)

Forany ¢ € [§,&] wehave (£ ,7) C0(r), and (a(&),b(x)) C A(x) for x € (&, ,1) C
(&, &)- Therefore, in view of (4.24),

( (86):b(&))—Lqg (A )

q 4
P q P ! q
< Sul; </9(t) [/A(X)v (y)dy} w (x)dx) (/A(t)v (y)dy) <off. (4.28)

teA

Analogously, by applying (2.41) of Lemma 2.2 and (4.25) we obtain

ITell7 ey mie)—tya)

! q / _% q
P q P . (4.2
i L] ) )

If 0 <g < p <o, p>1 wehave by applying the estimate (2.44) of Lemma 2.3

1Sk2112, ae0) btz — o)

[ Lo ) (08 P

k k
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Fort € [§,,&] ityieldsthat (&, ,7) C 0(1), (a(&),b(r)) C A(r) and also (a(&),b(x))
C A(x) forany x € (&, ,1) C (& ,&). Moreover, a(&) < o(t) for t € [§,,&]. There-
fore, in view of (4.24)

& , q g
< P q
l k2||L (&).D(E))—Lg(Ay) /, (/B(r) [/A(x)" (y)dy] w (x)dx)

k

) a7 bty 7
><< / vP (y)dy) ( / vP (y)dy> wi(t)dt
Ar) o(t)
@54 & , q 7
< ZP/ (/ [/ vP (y)dy} wq(x)dx)
. \/0(1) L/A(x)

k

X (/A([) vp,(y)dy) " wi(t)dt

— (%Ag)r. (4.30)

Analogously, by applying (2.52) of Lemma 2.4 and (4.25) we can get that

HTkZHL ):b(8))—Lq(AF)
ék , 1 v ' "
2 0(r) [JA(x) A0
B (QA;> | 4.31)

To estimate the norms || 7y | H’ and [1Sk.1 ||

& )wal8))—Lg (A (ik ))_’Lq(A/:r)
of triangle-shaped operators we 1ntroduce sequences {tl}l” k-1 and { s j=0 b1 ae-
cording to the constructions of Lemmas 2.5 and 2.6 with ¢ = &;. Then the operators

T f(x), x€ A, and Sg 1 f(x), x€ A,‘:, split into the following two sums:

lb ih (k)_l

k)—
Tit f(x) 2 T @) = Y [Taf () a )]

' i=0
(4.32)
Ja(k)=1 Ja(k)—1

Sf@="% SAI0 = 3 [Suf @00

Jj=0 Jj=0

If 1 < p < g << we have for Tk(?, 0 <i<ip—1, by applying the estimate (2.40) of
Lemma 2.2

e, ([ i) ([ 0rs)”
a(&))—Lg(titiv1) t';;ilzﬂ A W a(t) vy
q
' o&) v’
< sup ( wq(x)dx) / v (y)dy
i<t<tiig \Jti a()
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a
1 b ) v
@.54) (/ qu(x)dx) / o )y
3 a(&)
a
(2.58) 1>p’ (/tm J ) (/b(t,) )
= — wi(x)dx dy
(2’ Y a(&) o)

Since q/p' =q—q/p and (t;,1) C (& ,1) C O(z) for 1 € [§,&] we get in view of
(2.55) that

9
7

( a(t;), ( )_’Lq(tntHrl)

(255) ( ) ( it W()d ) (/b(ti) p,( \d >q</b(ti+1) p,( \d )‘%
X)dx vE(y)dy v (y)dy
a(&) a(&)
N Q24 P sup / / vy y:| wix )C) (/ ve (y y)
2 <t<tipy \Jti LJa(&) a(&)

@24 g (1\7 , q , -3
<L 20 (—) sup (/ [/ vP (y)dy} wq(x)dx) (/ vP (y)dy)
21 i< \Jo0) /A Afr)
9
1 _/
< <2l> A (4.33)
Hence, since p < ¢ it holds that
ip—1
HTkJ‘fHZq(A;) = lgo H ‘fHLq (t: t1+l \ 2 H t,) (ék A’Lq(tt tit1) ||fH ) (ék))
9 ’
@33 ‘h—l 1\ zq/p Al £l
_ < -
< ”QfTHf”L,;(a(i,Z),a(ék)) g‘) 2i = 0a/p — Hf” )sa(&))”
(4.34)

Analogously, from (2.34) of Lemma 2.1 by using (2.65), (2.63) and (4.25) we can get
that

/

ISk f17, (o) < SV (4.35)

2a/p" _

If0<g<p<eo, p>1 wehave for Tk(il), 0 <i<ip—1, by applying the estimate
(2.50) of Lemma 2.4

r
7

e 5 e I
I e = | ([ 0ax) " ([0 00y ) wateya
o&) 7o [t ;
< / VP (y)dy / ( wq(x)dx) wi(t)dt
a() 1 ti
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b ) ﬁ t; t 5
@39 / — (y)dy / B </ wq(x)dx> pwq(t)dt
a(&) li li
- b(t) 7 1 5
@29 (il) ! (/ vP (y)dy) ! / o (/ wq(x)dx> ’ wi(r)dr.
2 a(&) ti ti

By using the relation r/p’ = q-r/p+q—r/p we write

DTN ot o) Latiien )

1\ 7 b(ti) TS t b
< ( l) (/ vP (y)dy) / (/ wq(x)dx) wi (¢)dt
2 a(&) li fi
7 i pta b(tiv1) 7
(.55) .- l)p (/h(l) / )q » (/ +1)
=27 (= v (y)dy v (y)dy
(2’ a(&) o) a(&) o)
lit1 4 P
x/ (/ wq(x)dx) wi(t)dt
t; t;
() [ (1L ] wa) ([ o)’
<2r Y v (y y} wi(x x) (/ vy y)
2 ti ti [Ja(&) a(&)

(2 [ ] o] ) (L 0]

As before (1;,1) C (§,1) C O(r) for t € [§,",&]. Therefore, we have

17

( (11),a(S)) =Ly titis1)

I —
7

(T el el (o) e

(N (0
=: <§> <@Ak> . (4.36)
By applying Holder’s inequality with the powers r/q and p/q we get that
ip—1
HTk?lf”LLI,q(AI:) = 2 || 1f||Lq tl tH»l
ip—1
IE“ || leLp tz (ék A’Lq Ul [z+l ||fHLp [1 (ék

4
7

@39 g LI (!
< 7L, @))Z(E) (‘@Ak

1
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. ip—1 @ N =1/ 5 %
S I g atz ;}(9@) 20(2—)
or—1 »
< (2,71_1) (B ) W et (437)

Analogously, from (2.42) of Lemma 2.3 by using (4.25), (2.65) and (2.63) we can get
that
q

or—1 P
HSklfH )< (ﬁ) ( ) ||fH BED))' (4.38)

Since every series {Tk,1}7 {Tio}, {Sk1} or {Skg} is block-diagonal, we have
the following pair of inequalities coming from Lemma 3.1 for each term in (4.27).
Namely, if 1 < p < g < oo then

/

2a/v' 24/p
q q q q
< a1 2 Wy < g =1 4 M

IfO0<g<p<o, p>1then

(4 34)

> 1T 1l

keZ

1

DAV (2 (%)’) 1£1p < Bosl £l
keZ, Ac) keZ

Analogous inequalities hold for {T;>}, {Sk1} and {Sk2} on the strength of (4.29),
(4.35), (4.28) for 1 < p < g < oo and (4.31), (4.38), (4.30) in the case 0 < g < p < oo,
p > 1, respectively. By combining these estimates with (4.27) we obtain the upper
bounds in (4.22) and (4.23).

The lower bound. Let 1 < p < g < oo.
First we prove that &1 ~ /1,1 + /2, Where 1.1 := SUP,~( SUPy1 (o(s))<s<s ZT,1(5,1)
and 15 1= SUP;~ SUP; <y 1 (o(r)) PT2(1,5) With

s (] [ o] ) ([ )
s ([ [, o ([ 0m)

Indeed, in view of (2.54)

and

1 b(s) , o(r) , b(s) , 71
3 [, o< [ mars [ s b o) <s<r @39)
a(s) a a(s

Therefore, it holds that

bs) -5 t , g
/| & sup (/ vP (y)dy) sup (/ [/ vP (y)dy} wq(x)dx>
>0 a(s) s<t<o1(b(s)) \/$ A(x)
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g ([ s s ([, 00)

Analogously, because of (2.54)

|-

1 bl bs) bs) .
3 L, o< [y [ may r<s<a o). @a0)
als ot als

Thus,

/f:*‘<a(s)) |:/A(x) Vp,(y)dyrwq(x)dxy (/A(S) vpl(y)dy>_F .

Now suppose that ||.7#|| < e and insert the function f,(y) = w'L(y) Xla(s),o ) (V)
where b~!(o(t)) < s <t, into the inequality

(f (%”f)q(X)dxy <1l ([ o) '

Since a(s) < a(x) and o(x) < o(z) for s < x <t, we have in view of (2.54) that

L/ D b q i/ o) -
=5 ([ o] wawax) (7" 0ar) " st

Therefore, ||| > <11 (s,t) for all s <t and, thus, ||| > o/ ;. Analogously, by
applying the function f;(y) = vl’,’l(y)x[a(,%b(s)] (v) with t <s <a (o(t)) we get
that ||%H > JZ{TQ.

Let 0 < g < p <oo, p> 1. First, similar to Theorem 4.1 we prove ||#|| > PBps
under the condition (4.9). Let us remind that in this case we denote

dT,Z ~ sup (

s>0

¥ =aly), A =b(), A=l x']
and establish the estimate

C > PBps, 4.41)

where C is the least possible constant of the inequality (4.10) which holds for the
function class from Definition 4.1. For this purpose it is sufficient to prove that C >
%’;fs, where

i (o o] ] [ ] )

and A= (¢) = (t7,1), AT(t) = (¢,7).
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Further we utilize in part nota-
tions from the proof of Theorem
4.1 with sometimes a different
meaning. To prove C >> %
we put 1o = 1 and define the se-

quence {1y }rez C (0,%0) by
M1 =a' (), ke
Let
N = min(nk*,nkﬂ)

For a fixed k € Z we take four
neighboring points My, M,

Ni+15 nfﬂ and let

M1 Mk M1 L

Ji(t) = Xy () [86 () + hi(2)]

where

r

al)=| ( [* ) . ( [ miar)™ v sy

L.

wr=([2va) * ([ o] on) ([ ow)

On the interval [n;_1,n; ;] we define the function

¢k(t) — fk(t>7 e [nkflankJrl]a
oM 1)1 (1), 1 € M1, M)
where
* —1 *
nl / nl /
au) = ([" o) [" v as
m t
Put
Vi = Ak + i,
where

r
7

o= [ ([ ) 3 ([ o) vas
e (o) ([ el

Now we find a decomposition

2
o(t) =Y, dilt) (4.42)
i=1
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with ¢ ; € £, i =1,2. To this end we first determine ¢ ; (¢) by

0, t ¢ M1, (],
Pe1 (1) = § d(t), 1€ M1, M),
Oc(Me) % (2), € [me, ;]

Since 1, = N1, it yields that supp¢y; C [, ,n{] C [n,:,n,j] and, hence, ¢ € Z.
Obviously that ¢ »(¢) = ¢ (f) — @x,1(z) is in Z. Itis clear that (4.42) holds. Our next
step is to prove that

g /vl < i, i=1,2. (4.43)
If
!/ M /! — 4 nlf / —
Ki = ||¢k,1/VI|§=/n |G () PV P (s)ds + f; (nk)/n | () [Py (s)ds =: ki1 + K12,
k-1 k
then
Nk Nk+1 é s / qL’ /
an= [ ([ wwas) ([ )" s
Nk—1 s Nk—1
M+l ~d Mi+1 s , q q
+ ( / v (y)dy> ( / [ / vP (y)dy} W“(S)dS)
N1 N1 Nk—1
Nk ,
X (/ vP (s)ds) </lk—|—,uk:vk.
Me—1
By Holder’s inequality,

o) ~ ( [ e . [ o] i vf”(s)ds) !

(L o) ([ o] ) ([ o)

([ e ([ o) o[ )
([ o)

<G ([* o) S— (" veas)
" s ras = [* o)

Mk ’ p=1 nlf ’ 1-p
K12 < Vi (/ v (s)ds) (/ vP (s)ds)
Mk—1 Nk

Since

we have that
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and in view of (2.54), (4.9) and (4.16) it holds that k; » < vi. Thus, (4.43) is proved
for i=1. Since Qg2 (Mi+1) = Px(Mk+1), we can write for the second case of (4.43) that

Mk+1 k+l
= [0/l = [ Loy ds +of ) [ 194 (1 (s

Mk+1

Ni+1 , , Pu—p » k1 P.—p
= |9 (s) = B (8)|Pv P (s)ds + oy (nk+1)/ Qi1 (8)[Pv P (s)ds
Nk Nie+-1
Met1 po—p p Miet+-1 , po—p
< /n 16L()[Pv P (s)ds+ £7 (me) /n i) ()| ()PP ()ds
k k
k+l
) [ R I P (s = o+ Ka R,
Nk+1

Obviously, K> > = k12 < Vi. Similar to k1,1 and k1 we can prove that k» | + Kz 3 <
Vi. Therefore, (4.43) is true for i = 2 also.
Now, since

r r

a) = (["wwan) ™ [ ([ )T gas

Ni+-1 PL‘I 4 / Plq
~ ([T wiwan) " ([ v war)™ e el
t Nk—1

the lower bound
[l > vi (4.44)

follows. Next we construct the functions

k= 2 Ori = 2 Poxi+ 2 Oy1,i=: Fi+Fa,

|kI<N |k|l<N k<N

where N € N. For every i = 0,1 the supports of ¢o;;, kK € Z, are mutually disjoint.
Therefore, F; € .2 and by the same reason F>; € .. Observe that

2< 2 Xsuppgy (x) <3, X € U supp ¢x.
k|<N |k|<N

On the strength of (4.42), (4.43) and (4.44) we find that

1/q 2 2
< Z Vk) < 2 ¢kw||q < Z Z |FJIWHq SCZ Z IF z/VHp
i=1j=1

|k|<N k<N i=1j=

1/p 1/p
<<c< D (]),i’i/v’;) <<C<2 vk> . (4.45)

k| <N i k<N

Therefore, by letting N — oo we obtain C > (37 vk)l/ ". Now we put

= njil (/nt“ Milvp/(y)dy]qwq(S)dS)g (/t vp'(y)dy);vp/(t)dt,

Nk—1
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Mt 1 t s , 14 b t , a7
A= ( [ v (y)dy| wi(s ds) ( vP (y)d ) wi(t)dt.
; /n /n /n )| s /n 0y (1)

Write

= ") o] - [ e 5 ([ o) o

and note that

! s / a Nkt 1
/ (/ v (y)dy) d (-/ Wq(x)dx>
Mk—1 Mk—1 K
4 Ni+1 s , q—1 ,
<q (/ W‘I(x)dx> </ VP (y)dy) VP (s)ds
Mk—1 s Mi—1
4 Mt 1 5 , g=1+4; s ) -%
~ (/ w‘i(X)dx> </ P (y)dy> (/ WP (y)dy) VP (s)ds
Mk—1 s Mk—1 Mk—1
[applying Holder’s inequality with the powers r/q and p/q ]
r r q
4 Mk+1 q s , A I 7
< / [/ W‘I(x)dx} [/ P (y)dy] V' (s)ds
Nk—1 L/S Nk—1
¢ s , -4 ) 7
(1] o] o)
Mk—1 LY Mk—1
This implies
7 et ' M+1 2 $ / ﬁ—i_# /
e [N ([ o) ([ )T s
Me—1 7 M1 s N1
X (/ v (Y)d)’) v (t)dt
Ni—1

Mk+1 Mk+1 5 S / Jd72p
= (/ wq(x)dx> (/ vP (y)dy) VP (s)ds
Mk—1 s Nie—1

Nk+1 1 , 21)75 ,
></ (/ v’ (y)dy) v (1)dt < Ag.

<=

o+

Nk—1
Observe that
~ p [Tt t s , q q t , 5
=2 ([ v eay| wiwds) a (= | [ v Giay
rJniq Me—1 L/ M- Ni—1

= Py Par
r q
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Therefore,
A=+ Ly,
p r

and, hence,
Al € V.

This implies C > (Sxez vi)'/" > (Skez Af)"”. Note that

t , T , o,
[ vwoar< [ o< [ v (4.46)
Nk—1 Nk—1 Nk
and
1 / t+ / /
> / VP (y)dy < / VP (y)dy < / vP (y)dy (4.47)
2 /) Tk A(r)

for any 7 € [N, Nk11]. Therefore, in view of (2.54) and (4.9) we obtain that

Nkt 1 4 s / g b 1 , =5
A = / (/ [/ vl (y)dy] wq(s)ds> (/ vl (y)dy) wi (t)dt
Nk Me—1 L/ Mk—1 Mk—1
(446) ;s ) q g
> 2 I’/ (/ [/ v’ (y)dy} wq(s)ds)
Mk A=) LA (s)

s

X (/A(Z) V”/(y)dy>q (/nk v’ (y)dy)" wi(t)dt
5 [ Lo ton) ([ o)

Hence, the required estimate C > % is proved. The estimate C>> % s can be proved
similarly with intervals formed by the fairway o(x) and the upper boundary function
b(x). Thus, the estimate (4.41) holds and, therefore, the inequality ||57| > PBps is
proved in the case when the fairway o (x) = x. The general case follows similar to the
proof of Theorem 4.1. By changing variables (4.18) in both hand sides of the inequality
4. 19) we arrive to the inequality (4.20). Since (4.21) is true the falrway—functlon for
a, b and ¥ is just &(x) = x. Therefore, in view of the obtained estimate Zps < |||
with

= ([, [ L, 7o) (s ) % (f, 7o) "

and because of A(r) = [a(t),b(1)] = 0(t), [y, 7 1)y = [y v’ (v)dy we get FBps =
%ps.

5. Geometric Steklov operator

In this section we study the geometric Steklov operator
b(x)

910 i=exn (55 [ oef0s ). 100
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acting in weighted Lebesgue spaces with the border functions a(x) and b(x) satisfying
the conditions (1.2). This operator is closely related to the Hardy operator (1.1) because
of Jensen’s inequality

A1)
97 (i) < T

from which the upper bound for the weighted L, — L, boundedness of & easy follows
if L, — L, boundedness of .7# has a suitable characterization.

(5.1)

THEOREM 5.1. Let 0 < p < g < e and the operator 4 be given by (1.3) with the

boundary functions a(x) and b(x) satisfying the condition (1.2). Then for the "norm”

B .
1D |2, Ly = SUP =0 i HffVH la' the estimate

/ o u%x)dx) "6~ a] (5:2)

YL, ,—L,, = su
191]2p—Lyu P( ot

>0
holds.
If 0 < g < p <oo then

SR b »
19 11yt /O /G iy 05| b)) Py | = By, 53
0

where

oo(t) := "2, u(t) == (9v1) (O)w(r). (5.4)

Proof. The proof of the estimate (5.2) is due to L.-E. Persson and D.V. Prokhorov.
We prove the estimate (5.3).

The upper bound. Let 0 < g < p < oo and Py < o. According to Jensen’s in-
equality (5.1) we can get the upper bound in (5.3) by using Theorem 4.2 with suitable
summation parameters and proper weight functions. Indeed, since ¢ (f*) = (¢ f)* and

Y(f-g)=(9f) - (9g) the equalities

1
1 et =G Ny —t00 =L, 1y, (5.5
hold with u defined by (5.4). Note that for 7#: Lj; — Lz 7 with i =u*, p=p/s and
g = q/s the corresponding parameter 7 is equal to r/s and, respectively, 7/p = r/p.
Moreover, the condition p > 1 of Theorem 4.2 is satisfied if we put 0 < s < g < p < oo.
Therefore, according to (5.1) and Theorem 4.2 with v =1 and w = »* we have for any
0<1<gq/s<p/s<eo that

1 1
917, 2y, <1910y 1, < %o 56

Now, in view of (5.5) the upper bound in (5.3) is proved.
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/s
The lower bound. Suppose that |4 ||, 1, = 19, ,~L,. = ”g”Lﬁ,l—’Lﬁ < oo,

where #=u* and p = p/s, ¢ =q/s forany 0 < g < p < s < . In other words the
inequality
1% )ullg < ClI ANl (5.7)

holds for all f € Lz and 0 < g < p <1 with C < e independent on f. Now the
fairway—function o(x) is such that b(x) — o(x) = o(x) — a(x). Let us remind that as
before we denote

x =0 (ak), x"=0c'bx), 6@ =K ,x"].
Similarly to the sections 4.1 and 4.2 we prove that

I

(/0” [/eim ﬁq(s)ds} b alo)”

where 07 (x) = (x,x), 07 (x) = (x,x") and 1/7=1/¢— 1/p. To prove the inequality
with (B )~ we put & = 1 and define the sequence {&} C (0,0) as before such that

=i

g’

m”(x)dx> = (%B4)* <9I, 1

&=(atob)*1), keZ.

Th(en 5k)< & =& < &1 Moreover, U [&, &r1) = (0,00) and Uy [0(&k), 0(Eer1))
= (0,00).

b)) F—————————————— — — — — +_£g— _ 0
) Further, put §," = & | = my,
oW and construct on every seg-

ment [&, & 1] the sequence
{m} with —ju(k) < j <
J»(k) by the following way:
for —j,(k) < j <0 we use
the construction of Lemma
2.7 with v =1 and d = &,
while for 0 < j < jp(k) we
use Lemma 2.5 with v =
1 and ¢ = & . Actually
we have the sequence {m, },
~julk) < J < jy(K), defined
by:

o'(mg) ______

a) [~

& & ome omt o mb G

W m O =g, m =g

(2) if (&) <& then jo(k)=1; jp(k)=1if [#"~ (k)] =0 or A"~ (k)=[4"" (k)] =1

(3) if (&)™ > &, then j,(k) > 1 and mi_l = (m!)~, where (mi)’ > & and
—Jja(k)+2<j<0;
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Then we have
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(4) if [

(k)] > 0, then the points m; for 1<j<
Then we have (J, """~
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[/~ (k)] are taken so that
2 [b(mf”

)[mi7mi+l) =
1°) ifr e (mk,

Y —a(&)]
/+1)

then

b(my) —a(Ges1)
Jj==Ja(
b(t) —a(t) coming from Lemmas 2.5 and 2.7
and

b(t)—a(t) =~
b( £+l)

2°) if 7 € [x7,x], then

b(t) —a(t)

and

(5.8)
b(m[™) —a(m])
a(my) ~ b(m]) —a(m;

)N

(0,00) and the following useful properties of

my
b(x)—a(x")

(5.9

~b(m]™") —a(m™); (5.10)

~b(x)—a(x) for & <x <tr<x<E',

(5.11)
b(1) —altr) < b(x) — a(x") ~ b(x) — a(x); (5.12)
) if 0< j < jp(k) — 2, then
b(m]")=a(&i1) =2 [b(m})—a(&i1)] forsome i€ {1,.... jp(k)—j—1}
Now we apply in (5.7) a test function of the form f(y) =
Jij(y) =

X (] om0
m[{+1 B
lk": = / )
; ( |

(.5.13)
Ykez Zj’__j
iﬂ(s)ds) " [B(
mk)’

fk /( )
Jj+1

3
.
=

|
E~

./b ) 1
log
(*)
7. jk W (x)dx
my

Zan,

n€Zi=— j,(n)

o)



497

KERNEL OPERATORS WITH VARIABLE INTERVALS OF INTEGRATION

(5.9) Jjp(k)—1 m,{“
2y s [0
KEL j=—ja (k)" "%
Jp(k)—1
=y X
kEijfja(k)

/x, ﬁ’q'(s)ds) G (b(x) —a(x))” 7 @ (x)dx

(mi) -

(5.14)

On the other hand in view of p < 1 we have that

Jp(n)—1 (&kt1) !
n,i d npl
171 kEZZ/ . ( 2) y) <2 <zz & )

nGZlffj (
(k1) -1 5
= 2/ 2 %(1 m, H»l))(y) ln,i dy
keZ nEszfja(

Denote

My i(k): = (0(&),0(&r1)) N (almy,),b(m))

and observe that M,, ;(k) = @ if n <k—2 and n > k+2, while M, ;(k
for the rest k— 1 <n < k+ 1 and all corresponding them —i,(n) <i

fore,

) € (a(my,),b(m))
< ip(n)— 1. There-

k+1 Jp(n)—1

(&k+1) ~
Hf||p 2/ ( > X ) l,i’,i) dy
kEZ n=k—1li=—j,(n)

G(ék+l) Jb(k71)7 13, /b(k) 1 ﬁ
:2/ 2 XMk*lj()( )lk 1j+ 2 Xy j(k )()lk,j
kez /o5 \ j=mjalk-1) J——Ja(k)

Jp(k+1)—1 »
+ Z XMHL/‘(")( k+11> 2 Z lllz lj[b(mi 1)_‘1(”% )]
j:_ja(k+1) keZJ__Jak 1)
+1 Jp(k+1)—1 - )
+2 Z my mk +2 2 l11c7+1,1[b(ml£+1) a(’”’/iﬂ)]
kez /**/a(k) kEZ j=—ja(k+1)
Jpk=1)—1 Jp(k)—1 Jp(k+1)—1
= 2 2 kal,j+ 2 Tk7j+ 2 Th+1,j
keZ J':*J'a(kfl) J.:*J‘a(k) jz*ja(k‘s'l)
Jpk)—1
<33y w, (5.15)
KEZ j=— ja(k)
where B
mi T ~ % 7
o= ([ wos) pon™) - atndy
(mk)’
and



498 VLADIMIR D. STEPANOV AND ELENA P. USHAKOVA

r (mk
q . I m£+1 4 %
+r[b( i-‘rl) a(mi)]_i/j (/( j) ﬁ‘l(s)ds> ﬁq(t)dl‘
My My
=: I+ 1l ;. (5.16)

On the strength of (5.9) II; j =~ 1 j and we can write that

. Jp(k)—1
A< Y [j+n] (5.17)
kEZ j=—ja (k)

Now we need to estimate 3., 377

Jﬁ,] (k) ij by ZkeZ Ejb
then (m, Ja(k) )~ =m) | and

= Jal k Yi,j- Let j= —Jja(k),

j=0 mi—l m]
Jyk—1)-1
= Y T (5.18)
=0

o = [b(md)—a(m®)] /(:f) ( /(;O)Qq(s)ds)%ﬁq(t)dt

=

/ ,0 lﬁ(s)ds) b(t) —a(t)] 7 (1)dr

(mk)*

(5.10),(5.12) [m?
S (
(m))-

j+1

. jh(k_zl)_l/mkl (/(tk . 1,77(S)dS> ’ [b(1) _a(t)]i%iﬁ(t)dt

j=0 mk— 1 mj_

il
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Jpk=1)—1

< Y Vo1 Vet (5.19)
j=0

If j,(k) > 1 and —j,(k)+ 1< j <0, then

0 0
2 Ik,j = Ikﬁja(k)Jrl + 2 Ik,j~ (5.20)
j:_ja(k)+1 j:_ja(k)+2
Analogously to (5.19),
Jjp(k—1)-1
L juos1 << 2 Y1yt Ye—ju(t)» (5.21)
J=0
while
0 0 —1
Y i< Y Wj-i= Y Y (5.22)
j==Jalk)+2 j=—Jja(k)+2 j==Jalk)+1

Finally we get from (5.18) — (5.22) that

0
2 1k,j<<2 2 Yklj-i- 2 Yrj < 2( 2 Yklj-i- 2 Yk,)

j=—Jja(k) J=—Ja(k) J=—Ja(k)
(5.23)

Further, if j,(k) = 1, the required estimate follows from (5.23). Let Jp(k) >1 and

1 < j < jplk)— 1. Since (m?)~ < (mi)’ <m) < m] we have for 1 < j < j,(k)—1

that

By < [pnf) —am))] 7 / ) (

(mk -

STl
t

/(;2) ﬂ(s)ds) & (1)dt

I

+ [~ alm]) "2/ (/ s)ds) d)dr = 1+ 1
mk mk

To estimate [; ; observe that b(mi) - a(mi) R~ b(m,i) —a(&1) and in view of (5.10)
and (5.13)

b(m{ ™) —a(m]) ~ b(m]) — a(m]) ~ b(m}) — a(&1) = 2/ [b(m]) — o(m))].

Analogously to (5.19) we have for each 1 < j < j,(k) — 1 that

g, < 28 (o -owd) 7 [

(5.12)
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500
P A 5 o
<27 |y / / C @(s)ds )| [p(t) —a(e)] Fal(c)de
i=0 m}(i 1 (m;ﬁ 1 )~
oot e ; -
+ Y / (/ ﬁq(s)ds> b(t) — a(e)] P (t)dr
n=—jq(k) m ()~
T jl)(k_l)_l —1
= 27 Yetit X, Yen|- (5.24)
i=0 n=—ja(k)
Therefore,

D N I
L, < 20 2 Yk Lit+ 2 Yien

j=1 j=1 n=—jq(k)
o/ [tk
m[ 2 yk11+ 2 nn]. (5.25)
nffja

Further, in view of (5.10),

ST
=i

I < b(m]) —a mk} i\
k

i mkl ( /; ﬁ?(s)ds) @A@dr. (5.26)

Therefore, on the strength of (5.13) and the equivalence b(mi) - a(mi) to b(mi) -

a(k1) we get

STl

/ ; a?(s)ds) & (1)di

+ [bmd) ~ ()] 7 ([ [+ ’f"] [ ) : m)dt) .
o atn)]
><< /mr;k+ + ZJ::);] { /<rtni“k“> a(s)ds}’%zﬁ(z)dt>
(5%3) [jhé):Zg [b(mk)—a(ékﬂ)]’r;/m? </(:"i) zﬁ(s)ds)%lﬁ(t)dt
N fbikolz‘%?] [b(m?) — a(&s1)] m':k (/(;%)ﬁ(s)azs)"7 (1)t +
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Jp(k)—1

L (6~ 1 -z ny;
2 "] {b(mi'() )—a(fkﬂ)] p/mk)—z
my

(5.9),(5.10),(5.12)  27/P m) ¢ z o
s il _ 5l
< S l /m : ( /(mbu (s)ds) [b(t) — a(t)] 7 @ (1)dt + ..
PN .
"+/mi,,(k)2 (/(mi,,(k)l) W(s)ds) [b(t)—a(t)]_iiﬂ(t)dt‘|
oF/p n(k)-1
<75 ;O Vi (5.27)

Now we have from (5.25) — (5.27) that

Jp(k)—1 of/p [Jp(k=1)=1 Jn(k)—1
Z hj < S Z, Vit X Wil (5.28)
j=1 j=0 J==Ja(k)

By combining (5.23) and (5.28) we conclude that

Jp(k)—1 /P Jp(k=1)—1 Jp(k)—1
2 Iy j < max q 2, i1 2 Ye—1,; + 2 Yk.j
j==Ja(k) N Jj=0 j==Ja(k)

oF/P Jp(k=1)—1 Jp(k)—1
< max Z,W 2 Ye—1,j+ 2 Yi,j | - (5.29)

j:_ja(k_l) j:_ja(k)

It follows from (5.17) and (5.29) that

. Jp(k=1)-1 Jb(k)—1 Jb(k)—1
<Y | X %t X wi|<2Y XY % (530

keZ j:_ja(k_l) j:_ja(k) kEZj:—ja(k)
Finally, we have by combining (5.14) and (5.30) that
Jn(k)—1 T
||g||L,~,1—>L§g >> 2 2 Yk.,j
k€Z j=—ja(k)
=1 ! _ 5 P .
> (3 'y / | [ / ﬁq(s)ds] [b(x) — a(x)] 7 @ (x)dx
KeZ j="Ja (k) /i 67 (x)
= (Ba)"-
Analogously we can prove the inequality
”g”Lﬁ‘lﬂLq,g > (‘%)g)-i_
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Hence, in view of the equivalence By =~ (By)~ + (Hy)* and since 7/p = r/p and
u? = uf the lower bound for ||¥||r,,—L,,, is proved.

6. Applications

6.1. Embeddings

Let u, v and w be non-negative measurable weight functions such that for 0 <
P,q,s < oo, p>1 the powers u®, w?, v~ 7 and v are locally integrable on (0,o0)
and 0 < u(x),v(x),w(x) < e for a.e. x € RT. The Sobolev space WPIJ consists of all
absolutely continuous functions on (0,e) such that

1wy, = IFulls+ [1F' /vl p < o. 6.1)

We assume for simplicity that Wp{_Y is a closure of the set of all finitely supported dif-
ferentiable functions with respect to the norm (6.1), i.e.

W,y =W, . (6.2)

In [15] necessary and sufficient conditions for u# and v are pointed out under which
(6.2) holds. In this case by arguing as in [15] it is possible to construct the boundary
functions a(x) and b(x) satisfying (1.2) such that a(x) < x < b(x) and for all x € (0, o)

/ YOy = / v)dy, 6.3)
( /A o u“'(Z)dZ)% ( /A " " (y )dy> =1, (6.4)

where A(x) = [a(x),b(x)], A~ (x) = [a(x),x], AT(x) = [x,b(x)]. The equality (6.3) says
that the fairway o(x) = x, and (6.4) guarantees inequalities

==

<~/A(x) |F(Z>|S”S(Z>dz> % <2 ( /A(X) |F ’(y>|”v1’(y)dy) ’ (6.5)

for every absolutely continuous function F such that F(¢) = 0 for some ¢ € A(x) and

s ol ([ o)’ [( [ roreeas) ([ o)

which follow by applying Holder’s inequality.

Let & Cvff 11,75 be the set of functions satisfying Definition 4.1. Using (6.5) it is
easy to see that for 1 < p s < oo

1wy, ~ 11F /vl FeX. (6.6)

Applying Theorem 4.1 we obtain the following assertion, where the constants o7
and Pyr are given by (4.2) and (4.4), respectively.

| S|
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THEOREM 6.1. Let 1 < p < g <oo, s> 0. Then the inequality
[Fwllq < CHFHWI}#S: FeXZ (6.7)

is valid if and only if @y < oo. Moreover, for the least constant C in (6.7) the equiv-
alence C = @y holds. If 0 < g < p < oo, s > p > 1, then (6.7) is valid if and only if
Bur < 0, moreover C =~ Bygr.

Proof. The upper bounds C < & and C < By follow from (4.11) and the
upper bounds for the norm ||.7#|| established in Theorem 4.1. The estimate C > ZBur
follows from the proof of Theorem 4.1 and (6.6). To justify C > o7, we fix an arbitrary
number ¢ > 0 and consider a test function F; := F(x) determined by

0. X [0) 1,
/(r)f v (v)dy, xe [t )],
F()C): /(t*)* vP (y)dy7 X e [l‘i,l‘],

, X€E[,rr].

: /t v (y)dy

Obviously, F is absolutely continuous, suppF C [(r~)~,*] and

q a v
</A<,>W (x)dX) (/A(”v (y)dy> < ||Fwllg- (6.8)

1
/ r
1Fllw,, < (/ VP (y)dy> : (6.9)
A=)

Let us show that

‘We have

|Full$= /A*(ﬁ) (/(:) vpl(y)d)‘}yus(z)dz—k (/A(Z)vp/(y)dy) /A*(t) w'(z)dz

/A* - Vp,()’)dy o §
T # / (/ P (y)dy) w(z)dz = +h+5,
/ v (y)dy | TATO A2
AT (1)

N

, p
, /A B (F)V” (v)dy ,
IIF’/VII§=/, VP dy+ | / W (y)dy=:1+1I.
A (17) / W (y)dy AT (1)
A (1)
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Using (6.3) and (6.4) we find

I < (/A(t)us(z)dz> (/A( x
L < (/A(t)vp'(y)dy)ﬁ (/A(t)vp'(y)dy> ! /A(t) u'(z)dz

N
<
bS]
—~
=
=
<
\_/_
VAN
7N
s
|
2
<
i
=
S
S~

/

Is < 21”1/ v (y)dy.
A= ()

Putting these estimates together we get (6.9). Now we represent the function F in the
form
F=F+F,

where
0, x ¢ A1),

Fl(x) — [ Vp,(y)dy7 DS A_(t_)7

e,
[ v xearw).

Fi € .Z because of (6.3), therefore F, := F — F] belongs .Z too. Itis easy to see, that

5 5
Filly: < P (y)d / “(2)d é+/ v d(/ d)
iy, < [ ([ e@a) s [ ([ e
1 1
+2 ( / vl”(y)dy) "« ( / vP’(y)dy> ! (6.10)
A () A ()

and by the inequality (6.9)

1
/ P
y4
FzW,;J<||FW,;‘A,+||F1||W;~S<<</A(t)v (y)dy) . 6.11)

From (6.8), (6.10) and (6.11) applying (6.7) to F; and F> we find

1
q q/ v’
(o i) ([ w0l ) < Fiml+ Il
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/ P
<C[IFilly, +1Rlwy ] < ([ )"

It implies
1

</5+(;) Wq(x>dx) % (/A(t) W (y)dy) "<

where 8T (¢) = [t,a ' (¢)], 8§ (t) = [b~'(¢),#]. Similar inequality with §~(¢+*) and
A(t") instead of 87 (¢7) and A(z~) follows from analogous consideration with test
function G; := G of the form

0, I

A W’(y)dy/f* TR el
G ={" /;v” (v)dy

/:W W (y)dy, xer,rt],

[ va relrt ()]

Since ¢ > 0 was arbitrary we obtain o7y < C.

6.2. Inequalities on monotone functions

In this section we study the operator (1.1) from weighted L, to L, on subclasses
of non-increasing (f |) or non-decreasing ( f T) non-negative functions. The border
functions a(x) and b(x) as before satisfy the conditions (1.2).

Applying the Sawyer criterion [21] we reduce the problem to the L, — L, charac-
terization of integral operators with Oinarov’s kernels considered in Section 3. Using
the results of Theorem 3.1 and 3.2 we characterize the operator .7 on the cones of
monotone functions.

Let U(x) := [y u?(y)dy. Put

o= ([ o] iy ine,

g =sun(['| f()> 1)) q (o)) % ([ v ew)”.

42%1%1 =sup sup {Aé(s,t)—l—A%(s,t)},

5>0 s<r<a1(b(s))

2=

where

2>
O
—
o
~
S~—
Il
Ny
| — |
=
2
<
—~
<
=
<
_ 1
Q
S
Q
—~
=
=
=
N————
ST
N
2
= &
5
]
—
N
S~—
<
=
—~
[\l
N~—
IS
[\l
N————
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altsa)y = ([ v

Also we notate

s (AL
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(x)dx) ‘li ( /a ?:)

U U @tz dz]

'%tl =
kel
where
! a(&err) | pat) t
=\ L, |/ {/
’ a(&) « a(x)
§k+1
X [/ uf(z )dz]
kvt b
= (L }
k2 ( 3
[ §k+1
L b(&rr1) [ it a(&ri1)
B pr—
b= / Y
b(&) b=1(r) \Ja(x)
RIS 7
X U P (9uf(z)d }
b(&)
L kv it b
B, = / / wl(x)dx
& 1
b(t) Z
et
b(&) \a(&i1)
and & = (a ' ob)*(&), &=1

==

<>dy} U >up<z>dz]
v(y
U- p()u”(l)dt) :

/

V(Y)dy}p U”/(z)u”(z)dz]

{/a;) v(y)dy] : v (z)up(z)dz> . .

|:/*b(t)
a(t)

)dy}qwq(x)dx}

.
v

€1

~i—

w‘f(t)dt) ,
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THEOREM 6.2. For the least possible constant C in the inequality

I, <Clfull,,  FL (6.12)

the estimates
A Ayt A, 1<p<q<es,
Ay + B+ B, 1<q<p<e,

hold.

Proof. We start with analysis of the Sawyer criterion for the three-weighted in-
equality
ITfllg < Cllfull,, fl (6.13)
where

TAe) =) [ty
is an integral operator with a non-negative kernel 7(x,y). Let
Tg(s) = v00) [ rlxy)gpwdx

be a formally adjoint operator to 7. By Sawyer criterion [21] the inequality (6.13) is
equivalent, when 1 < p,g < oo, to the following two inequalities

(/Ow [U‘l(z)u”‘l(Z)/OZT*g(y)dyr,dx> ’ <G (/Owgql(X)dxy , 80,

(6.14)

| —

and 1
/ T"g(y)dy < G </ gq'(x>dX>q U'P(es), g0 (6.15)
0 0

We assume the constants C, C; and C; as the least possible. The second inequality
(6.15) is easily characterized by the duality in Lebesgue’s space and

e[/ °°r<x,y>v<y>dy]qwq<x>dx) i)

As for the first inequality (6.14) it is more convenient for our purpose to use its
dual form

1

(/O“‘ [W(x) /Omt(x,y)V(y) {/meI(Z)upl(z)g(z)dZ}dy]qu) g

1
<G (/ g”(Z)dZ> " g=0. (6.16)
0
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Now, applying this scheme for the least possible constant C in (6.12) we have
Cr df + .y,

where ;afll is a characterization constant for the inequality

(/Ow[w / {/ U~ (2 )(z)dz}dyrdx)é
<c1</0 g zdz)p7 g0, 6.17)

‘We write for the left hand side of (6.17)

Foe /Ow {w / . {/ U @ (g (z)dz}dyrdx
m/ow{w(x/ . dy{/ U (2 )()dz}rdx
+/0°°{ / U~ (u (2)g (){/a;)v(y)dy}dzrdx.

F ~ /Ow [w(x) /a?:)v(y)dy{/b; Ul(z)upl(z)g(z)dz}rdx
+/0°° [w(x) /abj) k(z,x)g(z)U_l(z)up_l(z)dz] qu,

where k(z,x) := fu(x) v(y)dy. Clearly, the kernel k(z,x) > O satisfies the condition (3.4).
Thus, the inequality (6.17) is equivalent to the following two inequalities

</0m [w(x/ dy{/ U (2 )(z)dz}rdx)%
<Cio (/Omg”(z)dz) ,, , ¢>0, (6.18)

1

(/Ow [w(x) /:):) k(ax)g(z)U‘l(z)u”_l(z)dz] qu) !

1
b P
<Ci (/0 gp(z)dz) , g=>0, (6.19)

Hence,

and

with C; = Cj g+ C1,1. The constant Cj o of (6.18) is characterized by Lemma 2.2 and
2.4: for 1 < p < g <o we have Cjg %szllo, and Ci %%%0 for | <g<p <o
Applying Theorem 3.1 for the inequality (6.19) we finish the proof.
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REMARK 6.1. The similar result as Theorem 6.2 is also true for non-decreasing
functions. We omit details.

Bibliographical Remarks

Section 1. Investigation of the operators (1.1) in a primitive form was started in
[2], the case a(x) = x, b(x) = 2x was later completely characterized in PhD Thesis by
E.N. Batuev [1]. The regular study of the L, — L, boundedness of (1.1) was initiated in
[7] and for (1.4) in [6] in the Banach function spaces setting and continued in [28], [5].
In particular, the important conception of a fairway-function was introduced in [28].

Section 2. The standard references for the weighted Hardy inequalities are the
monographs [14], [10], [9] and [12] (§1.3) with original papers [31], [13], [4] and
[23]. The Hardy type operators were studied in [16], [3], [26] (see also [20]). The
characterization constant (2.7) was discovered in [18].

Section 3. Lemma 3.1 was stated in [29]. Theorems 3.1, 3.2 improve and correct
the related results of [28].

Section 4. Less general form of Theorems 4.1 and 4.2 can be found in [28], [30].

Section 5. Theorem 5.1 in case 0 < p < g < oo is proved in [17].

Section 6. Theorem 6.1 is closely related to the results of [15] and Theorem 6.2 to
the results of [24], [25], [7], [22], [19], [8].
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