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INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

TO THE CALCULUS OF VARIATIONS ON TIME SCALES

MARTIN J. BOHNER, RUI A. C. FERREIRA AND DELFIM F. M. TORRES

(Communicated by J. Pečarić)

Abstract. We discuss the use of inequalities to obtain the solution of certain variational problems
on time scales.

1. Introduction

A time scale, denoted by T , is a nonempty closed subset of the real numbers. The
calculus on time scales is a relatively new area that unifies the difference and differential
calculus, which are obtained by choosing T = Z or T = R , respectively. The subject
was initiated by S. Hilger in the nineties of the XX century [17, 18], and is now under
strong current research in many different fields in which dynamic processes can be
described with discrete, continuous, or hybrid models. For concepts and preliminary
results on time scales, we refer the reader to [6, 7].

In this paper we start by proving some integral inequalities on time scales involving
convex functions (see Section 2). These are then applied in Section 3 to solve some
classes of variational problems on time scales. A simple illustrative example is given
in Section 4. The method proposed here is direct, in the sense that it permits to find
directly the optimal solution instead of using variational arguments and go through
the usual procedure of solving the associated delta or nabla Euler–Lagrange equations
[2, 4, 11, 19]. This is particularly useful since even simple classes of problems of the
calculus of variations on time scales lead to dynamic Euler–Lagrange equations for
which methods to compute explicit solutions are not known. A second advantage of the
method is that it provides directly an optimal solution, while the variational method
on time scales initiated in [4] and further developed in [3, 12, 14, 20] is based on
necessary optimality conditions, being necessary further analysis in order to conclude if
the candidate is a local minimizer, a local maximizer, or just a saddle (see [4] for second
order necessary and sufficient conditions). Finally, while all the previous methods of
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the calculus of variations on time scales only establish local optimality, here we provide
global solutions.

The use of inequalities to solve certain classes of optimal control problems is an
old idea with a rich history [8, 9, 10, 15, 16, 21]. We hope that the present study will be
the beginning of a class of direct methods for optimal control problems on time scales,
to be investigated with the help of dynamic inequalities — see [1, 5, 10, 13, 22, 23, 24]
and references therein.

2. Integral Inequalities on Time Scales

The first theorem is a generalization to time scales of the well-known Jensen in-
equality. It can be found in [22, 24].

THEOREM 1. (Generalized Jensen’s inequality [22, 24]) Let a,b ∈ T and c,d ∈
R . Suppose f : [a,b]κ

T
→ (c,d) is rd-continuous and F : (c,d) → R is convex. More-

over, let h : [a,b]κ
T
→ R be rd-continuous with

∫ b

a
|h(t)|Δt > 0.

Then, ∫ b
a |h(t)|F( f (t))Δt∫ b

a |h(t)|Δt
� F

(∫ b
a |h(t)| f (t)Δt∫ b

a |h(t)|Δt

)
. (1)

PROPOSITION 2. If F in Theorem 1 is strictly convex and h(t) �= 0 for all t ∈
[a,b]κ

T
, then equality in (1) holds if and only if f is constant.

Proof. Consider x0 ∈ (c,d) defined by

x0 =
∫ b
a |h(t)| f (t)Δt∫ b

a |h(t)|Δt
.

From the definition of strict convexity, there exists m ∈ R such that

F(x)−F(x0) > m(x− x0)

for all x ∈ (c,d)\{x0} . Assume f is not constant. Then, f (t0) �= x0 for some t0 ∈
[a,b]κ

T
. We split the proof in two cases. (i) Assume that t0 is right-dense. Then, since

f is rd-continuous, we have that f (t) �= x0 on [t0,t0 + δ )T for some δ > 0. Hence,

∫ b

a
|h(t)|F( f (t))Δt −

∫ b

a
|h(t)|ΔtF(x0) =

∫ b

a
|h(t)|[F( f (t))−F(x0)]Δt

> m
∫ b

a
|h(t)|[ f (t)− x0]Δt

= 0 .
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(ii) Assume now that t0 is right-scattered. Then (note that
∫ σ(t0)
t0

f (t)Δt = μ(t0) f (t0)),

∫ b

a
|h(t)|F( f (t))Δt −

∫ b

a
|h(t)|ΔtF(x0)

=
∫ b

a
|h(t)|[F( f (t))−F(x0)]Δt

=
∫ t0

a
|h(t)|[F( f (t))−F(x0)]Δt +

∫ σ(t0)

t0
|h(t)|[F( f (t))−F(x0)]Δt

+
∫ b

σ(t0)
|h(t)|[F( f (t))−F(x0)]Δt

>

∫ t0

a
|h(t)|[F( f (t))−F(x0)]Δt +m

∫ σ(t0)

t0
|h(t)|[ f (t)− x0]Δt

+
∫ b

σ(t0)
|h(t)|[F( f (t))−F(x0)]Δt

� m

{∫ t0

a
|h(t)|[ f (t)− x0]Δt +

∫ σ(t0)

t0
|h(t)|[ f (t)− x0]Δt

+
∫ b

σ(t0)
|h(t)|[ f (t)− x0]Δt

}

= m
∫ b

a
|h(t)|[ f (t)− x0]Δt = 0 .

Finally, if f is constant, it is obvious that the equality in (1) holds. �

REMARK 3. If F in Theorem 1 is a concave function, then the inequality sign
in (1) must be reversed. Obviously, Proposition 2 remains true if we let F be strictly
concave.

Before proceeding, we state two particular cases of Theorem 1.

COROLLARY 4. Let a,b,c,d ∈ R . Suppose f : [a,b] → (c,d) is continuous and
F : (c,d) → R is convex. Moreover, let h : [a,b] → R be continuous with

∫ b

a
|h(t)|dt > 0.

Then, ∫ b
a |h(t)|F( f (t))dt∫ b

a |h(t)|dt
� F

(∫ b
a |h(t)| f (t)dt∫ b

a |h(t)|dt

)
.

Proof. Choose T = R in Theorem 1. �

COROLLARY 5. Let a = qn and b = qm for some n,m ∈ N0 with n < m. De-
fine f and h on [qn,qm−1]qN0 and assume F : (c,d) → R is convex, where (c,d) ⊃
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[ f (qn), f (qm−1)]qN0 . If
n−1

∑
k=m

qk(q−1)|h(qk)| > 0,

then
∑n−1

k=m qk|h(qk)|F( f (qk))

∑n−1
k=m qk|h(qk)| � F

(
∑n−1

k=m qk|h(qk)| f (qk)

∑n−1
k=m qk|h(qk)|

)
.

Proof. Choose T = qN0 = {qk : k ∈ N0} , q > 1, in Theorem 1. �
Jensen’s inequality (2) is proved in [1, Theorem 4.1].

THEOREM 6. Let a,b ∈ T and c,d ∈ R . Suppose f : [a,b]κ
T
→ (c,d) is rd-

continuous and F : (c,d) → R is convex (resp., concave). Then,∫ b
a F( f (t))Δt

b−a
� F

(∫ b
a f (t)Δt
b−a

)
(2)

(resp., the reverse inequality). Moreover, if F is strictly convex or strictly concave, then
equality in (2) holds if and only if f is constant.

Proof. This is a particular case of Theorem 1 and Proposition 2 with h(t) = 1 for
all t ∈ [a,b]κ

T
. �

We now state and prove some consequences of Theorem 6.

COROLLARY 7. Let a,b ∈ T and c,d ∈ R . Suppose f : [a,b]κ
T
→ (c,d) is rd-

continuous and F : (c,d) → R is such that F ′′ � 0 (resp., F ′′ � 0 ). Then,∫ b
a F( f (t))Δt

b−a
� F

(∫ b
a f (t)Δt
b−a

)
(3)

(resp., the reverse inequality). Furthermore, if F ′′ > 0 or F ′′ < 0 , equality in (3) holds
if and only if f is constant.

Proof. This follows immediately from Theorem 6 and the facts that a function F
with F ′′ � 0 (resp., F ′′ � 0) is convex (resp., concave) and with F ′′ > 0 (resp., F ′′ � 0)
is strictly convex (resp., strictly concave). �

COROLLARY 8. Let a,b ∈ T and c,d ∈ R . Suppose f : [a,b]κ
T
→ (c,d) is rd-

continuous and ϕ ,ψ : (c,d) → R are continuous functions such that ϕ−1 exists, ψ is
strictly increasing, and ψ ◦ϕ−1 is convex (resp., concave) on Im(ϕ ). Then,

ψ−1

(∫ b
a ψ( f (t))Δt

b−a

)
� ϕ−1

(∫ b
a ϕ( f (t))Δt

b−a

)

(resp., the reverse inequality). Furthermore, if ψ ◦ϕ−1 is strictly convex or strictly
concave, the equality holds if and only if f is constant.
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Proof. Since ϕ is continuous and ϕ ◦ f is rd-continuous, it follows from Theo-
rem 6 with f = ϕ ◦ f and F = ψ ◦ϕ−1 that

∫ b
a (ψ ◦ϕ−1)((ϕ ◦ f )(t))Δt

b−a
� (ψ ◦ϕ−1)

(∫ b
a (ϕ ◦ f )(t)Δt

b−a

)
.

Since ψ is strictly increasing, we obtain

ψ−1

(∫ b
a ψ( f (t))Δt

b−a

)
� ϕ−1

(∫ b
a ϕ( f (t))Δt

b−a

)
.

Finally, when ψ ◦ ϕ−1 is strictly convex, the equality holds if and only if ϕ ◦ f is
constant, or equivalently (since ϕ is invertible), f is constant. The case when ψ ◦ϕ−1

is concave is treated analogously. �

COROLLARY 9. Assume f : [a,b]κ
T
→ R is rd-continuous and positive. If α < 0

or α > 1 , then ∫ b

a
( f (t))αΔt � (b−a)1−α

(∫ b

a
f (t)Δt

)α
.

If 0 < α < 1 , then

∫ b

a
( f (t))αΔt � (b−a)1−α

(∫ b

a
f (t)Δt

)α
.

Furthermore, in both cases equality holds if and only if f is constant.

Proof. Define F(x) = xα , x > 0. Then

F ′′(x) = α(α −1)xα−2, x > 0.

Hence, when α < 0 or α > 1, F ′′ > 0, i.e., F is strictly convex. When 0 < α < 1,
F ′′ < 0, i.e., F is strictly concave. Applying Corollary 7 with this function F , we
obtain the above inequalities with equality if and only if f is constant. �

COROLLARY 10. Assume f : [a,b]κ
T
→ R is rd-continuous and positive. If α <

−1 or α > 0 , then (∫ b

a

1
f (t)

Δt

)α ∫ b

a
( f (t))αΔt � (b−a)1+α .

If −1 < α < 0 , then (∫ b

a

1
f (t)

Δt

)α ∫ b

a
( f (t))αΔt � (b−a)1+α.

Furthermore, in both cases the equality holds if and only if f is constant.
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Proof. This follows from Corollary 9 by replacing f by 1/ f and α by −α . �

COROLLARY 11. If f : [a,b]κ
T
→ R is rd-continuous, then

∫ b

a
e f (t)Δt � (b−a)e

1
b−a

∫ b
a f (t)Δt . (4)

Moreover, equality in (4) holds if and only if f is constant.

Proof. Choose F(x) = ex , x ∈ R , in Corollary 7. �

COROLLARY 12. If f : [a,b]κ
T
→ R is rd-continuous and positive, then

∫ b

a
ln( f (t))Δt � (b−a) ln

(
1

b−a

∫ b

a
f (t)Δt

)
. (5)

Moreover, equality in (5) holds if and only if f is constant.

Proof. Let F(x) = ln(x) , x > 0, in Corollary 7. �

COROLLARY 13. If f : [a,b]κ
T
→ R is rd-continuous and positive, then

∫ b

a
f (t) ln( f (t))Δt �

∫ b

a
f (t)Δt ln

(
1

b−a

∫ b

a
f (t)Δt

)
. (6)

Moreover, equality in (6) holds if and only if f is constant.

Proof. Let F(x) = x ln(x) , x > 0. Then, F ′′(x) = 1/x , i.e., F ′′(x) > 0 for all
x > 0. By Corollary 7, we get

1
b−a

∫ b

a
f (t) ln( f (t))Δt � 1

b−a

∫ b

a
f (t)Δt ln

(
1

b−a

∫ b

a
f (t)Δt

)
,

and the result follows. �

3. Applications to the Calculus of Variations

We now show how the results of Section 2 can be applied to determine the min-
imum or maximum of problems of calculus of variations and optimal control on time
scales.

THEOREM 14. Let T be a time scale, a , b ∈ T with a < b, and ϕ : R → R be a
positive and continuous function. Consider the functional

F (y(·)) =
∫ b

a

[{∫ 1

0
ϕ(y(t)+hμ(t)yΔ(t))dh

}
yΔ(t)

]α
Δt , α ∈ R\{0,1} ,
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defined on all C1
rd -functions y : [a,b]T → R satisfying yΔ(t) > 0 on [a,b]κ

T
, y(a) = 0 ,

and y(b) = B. Let G(x) =
∫ x
0 ϕ(s)ds, x � 0 , and let G−1 denote its inverse. Let

C =
∫ B
0 ϕ(s)ds
b−a

. (7)

(i) If α < 0 or α > 1 , then the minimum of F occurs when

y(t) = G−1(C(t −a)), t ∈ [a,b]T,

and Fmin = (b−a)Cα .

(ii) If 0 < α < 1 , then the maximum of F occurs when

y(t) = G−1(C(t −a)), t ∈ [a,b]T,

and Fmax = (b−a)Cα .

REMARK 15. Since ϕ is continuous and positive, G and G−1 are well defined.

REMARK 16. In cases α = 0 or α = 1 there is nothing to minimize or maximize,
i.e., the problem of extremizing F (y(·)) is trivial. Indeed, if α = 0, then F (y(·)) =
b−a ; if α = 1, then it follows from [6, Theorem 1.90] that

F (y(·)) =
∫ b

a

{∫ 1

0
ϕ(y(t)+hμ(t)yΔ(t))dh

}
yΔ(t)Δt

=
∫ b

a
(G◦ y)Δ(t)Δt

= G(B) .

In both cases F is a constant and does not depend on the function y .

Proof of Theorem 14. Suppose that α < 0 or α > 1. Using Corollary 9, we can
write

F (y(·)) � (b−a)1−α
[∫ b

a

{∫ 1

0
ϕ(y(t)+hμ(t)yΔ(t))dh

}
yΔ(t)Δt

]α
= (b−a)1−α(G(y(b))−G(y(a)))α ,

where the equality holds if and only if{∫ 1

0
ϕ(y(t)+hμ(t)yΔ(t))dh

}
yΔ(t) = c for some c ∈ R, t ∈ [a,b]κT.

Using [6, Theorem 1.90], we arrive at

(G◦ y)Δ(t) = c.
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Delta integrating from a to t yields (note that y(a) = 0 and G(0) = 0)

G(y(t)) = c(t−a),

from which we get

y(t) = G−1(c(t−a)).

The value of c is obtained using the boundary condition y(b) = B :

c =
G(B)
b−a

=
∫ B
0 ϕ(s)ds
b−a

= C,

with C as in (7). Finally, in this case

Fmin =
∫ b

a
CαΔt = (b−a)Cα .

The proof of the second part of the theorem is done analogously using the second part
of Corollary 9. �

REMARK 17. We note that the optimal solution found in the proof of the previous
theorem satisfies yΔ > 0. Indeed,

yΔ(t) =
(
G−1(C(t −a))

)Δ
=
∫ 1

0
(G−1)′[C(t−a)+hμ(t)C]dhC

> 0,

because C > 0 and (G−1)′(G(x)) = 1
ϕ(x) > 0 for all x � 0.

THEOREM 18. Let ϕ : [a,b]κ
T
→ R be a positive and rd-continuous function.

Then, among all C1
rd -functions y : [a,b]T → R with y(a) = 0 and y(b) = B, the func-

tional

F (y(·)) =
∫ b

a
ϕ(t)eyΔ(t)Δt

has minimum value Fmin = (b−a)eC attained when

y(t) = −
∫ t

a
ln(ϕ(s))Δs+C(t−a), t ∈ [a,b]T,

where

C =
∫ b
a ln(ϕ(t))Δt +B

b−a
. (8)
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Proof. By Corollary 11,

F (y(·)) =
∫ b

a
eln(ϕ(t))+yΔ(t)Δt

� (b−a)e
1

b−a
∫ b
a [ln(ϕ(t))+yΔ(t)]Δt = (b−a)e

1
b−a [

∫ b
a ln(ϕ(t))Δt+B] ,

with F (y(·)) = (b−a)e
1

b−a [
∫ b
a ln(ϕ(t))Δt+B] if and only if

ln(ϕ(t))+ yΔ(t) = c for some c ∈ R, t ∈ [a,b]κT . (9)

Integrating (9) from a to t (note that y(a) = 0) gives

y(t) = −
∫ t

a
ln(ϕ(s))Δs+ c(t−a), t ∈ [a,b]T .

Using the boundary condition y(b) = B we have

c =
∫ b
a ln(ϕ(t))Δt +B

b−a
= C,

with C as in (8). A simple calculation shows that Fmin = (b−a)eC . �

THEOREM 19. Let ϕ : [a,b]κ
T
→ R be a positive and rd-continuous function.

Then, among all C1
rd -functions y : [a,b]T → R satisfying yΔ > 0 , y(a) = 0 , and y(b) =

B, with
B+

∫ b
a ϕ(s)Δs
b−a

> ϕ(t), t ∈ [a,b]κ
T
, (10)

the functional

F (y(·)) =
∫ b

a
[ϕ(t)+ yΔ(t)] ln[ϕ(t)+ yΔ(t)]Δt

has minimum value Fmin = (b−a)C ln(C) attained when

y(t) = C(t−a)−
∫ t

a
ϕ(s)Δs, t ∈ [a,b]T ,

where

C =
B+

∫ b
a ϕ(s)Δs
b−a

. (11)

Proof. By Corollary 13,

F (y(·)) �
∫ b

a
[ϕ(t)+ yΔ(t)]Δt ln

(
1

b−a

∫ b

a
[ϕ(t)+ yΔ(t)]Δt

)

=
(∫ b

a
ϕ(t)Δt +B

)
ln

(∫ b
a ϕ(t)Δt +B

b−a

)
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with F (y(·)) =
(∫ b

a ϕ(t)Δt +B
)

ln

(∫ b
a ϕ(t)Δt+B

b−a

)
if and only if

ϕ(t)+ yΔ(t) = c for some c ∈ R, t ∈ [a,b]κT.

Upon integration from a to t (note that y(a) = 0),

y(t) = c(t −a)−
∫ t

a
ϕ(s)Δs, t ∈ [a,b]T.

Using the boundary condition y(b) = B , we have

c =
B+

∫ b
a ϕ(s)Δs
b−a

= C,

where C is as in (11). Note that with this choice of y we have, using (10), that yΔ(t) =
C−ϕ(t) > 0, t ∈ [a,b]κ

T
. It follows that Fmin = (b−a)C ln(C) . �

4. An Example

Let T = Z , a = 0, b = 5, B = 25 and ϕ(t) = 2t +1 in Theorem 19:

EXAMPLE 20. The functional

F (y(·)) =
4

∑
t=0

[(2t +1)+ (y(t +1)− y(t))] ln[(2t +1)+ (y(t +1)− y(t))],

defined for all y : [0,5]∩Z → R such that y(t +1) > y(t) for all t ∈ [0,4]∩T , attains
its minimum when

y(t) = 10t− t2, t ∈ [0,5]∩Z,

and Fmin = 50ln(10) .

Proof. First we note that max{ϕ(t) : t ∈ [0,4]∩Z} = 9. Hence

B+∑4
k=0ϕ(k)

b−a
=

25+25
5

= 10 > 9 � ϕ(t).

Observing that since, when T = Z , (t2)Δ = 2t +1, we just have to invoke Theorem 19
to get the desired result. �

REMARK 21. There is an inconsistency in [8, Theorem 3.6] due to the fact that the
bound on the functional I considered there is not constant. For example, let a = A = 1,
ϕ(x) = x+1, and ỹ(x) = x for all x ∈ [0,1] . Then the hypotheses of [8, Theorem 3.6]
are satisfied. Moreover,

I(ỹ(x)) =
∫ 1

0
ln(ϕ(x)ỹ′(x))dx = [(x+1)(ln(x+1)−1)]x=1

x=0 = 2ln(2)−1≈ 0.386.
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According to [8, Theorem 3.6], the maximum of the functional I is given by Imax =
− ln(C) , where

C =
1
A

∫ 1

0

1
ϕ(x)

dx.

A simple calculation shows that C = ln(2) . Hence Imax = − ln(ln(2)) ≈ 0.367. There-
fore, I(ỹ(x)) > Imax .
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