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MULTIPLICATIVE PERTURBATION BOUNDS

FOR WEIGHTED UNITARY POLAR FACTOR

HU YANG, HANYU LI AND HUA SHAO

(Communicated by S. Puntanen)

Abstract. The multiplicative perturbation bounds for weighted unitary polar factor are consid-
ered in the weighted unitary invariant norm, weighted spectral norm, and weighted Frobenius
norm in this paper. As the special cases, new bounds for subunitary and unitary polar factor are
also derived. These new bounds improve the corresponding results published recently to some
extent.

1. Introduction

Let Cm×n , Cm×n
r , Cm

� , and Cm
> denote the set of m×n complex matrices, subset

of Cm×n comprising matrices with rank r , set of Hermitian positive semidefinite matri-
ces of order m , and subset of Cm

� consisting of positive definite matrices, respectively.
Let Ir be the identity matrix of order r . Given A∈Cm×n , the symbols A∗ , A#

MN , R(A) ,
‖A‖2 , ‖A‖F , and ‖A‖ stand for the conjugate transpose, weighted conjugate transpose,
range, spectral norm, Frobenius norm, and unitarily invariant norm of A , respectively.
The definition of A#

MN can be found in detail in [19, 23]. Moreover, without specifica-
tion, in this paper we always assume that m > n > r and the weight matrices M ∈ Cm

> ,
N ∈ Cn

> .
For a matrix A ∈ Cm×n

r , there are an (M,N) weighted partial isometric matrix Q
[26, 27] and a matrix H satisfying NH ∈ Cn

� such that

A = QH. (1.1)

Decomposition (1.1) is called the (M,N) weighted polar decomposition [25, 26] (MN-
WPD) of A , and Q and H are called the (M,N) weighted unitary polar factor and
generalized nonnegative polar factor, respectively, of this decomposition. In general,
the MN-WPD is not unique, while it has been proved that it is unique if the decompo-
sition satisfies

R(Q#
MN) = R(H). (1.2)
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This condition was given by Yang and Li [25]. In this paper, we assume that the con-
dition (1.2) always holds. Under this condition, the MN-WPD (1.1) can be calculated
from the (M,N) singular value decomposition (MN-SVD) (see Lemma 1.1) by

Q = U1V
∗
1 , H = N−1V1ΣV ∗

1 , (1.3)

where U1,V1 , and Σ are as in Lemma 1.1.
When M = Im and N = In , the MN-WPD reduces to the generalized polar de-

composition (see, e.g., [1, 21]), and Q and H reduce to the subunitary polar factor and
nonnegative polar factor. If, in addition, rank(A) = n , then the decomposition (1.1) is
the polar decomposition, and Q and H are the unitary polar factor and positive polar
factor. Therefore, the MN-WPD can be considered as a generalization of the (gen-
eralized) polar decomposition. Like the two useful decompositions, it may also have
some important applications, see [24] for detailed introduction. Furthermore, some
algorithms to compute this decomposition were given in [26].

The perturbation bounds for (generalized) polar decomposition under multiplica-
tive perturbation have been studied by some authors in various norms [2, 5, 10, 12].
The multiplicative perturbation refers to the situation when the perturbed matrix is ex-
pressed as Ã = D∗

1AD2 , where D1 and D2 are nonsingular matrices and typically close
to the identity matrices of appropriate sizes. In this paper, we focus on studying the
multiplicative perturbation bounds for weighted unitary polar factor of WPD. Listed
are several bounds for (generalized) polar decomposition, which can be used to com-
pare with the results given in this paper.

Let A = QH, Ã = D∗
1AD2 = Q̃H̃ be the (generalized) polar decomposition of A, Ã ,

respectively. In the unitarily invariant norm, for unitary polar factor, i.e., when A, Ã ∈
Cm×n

n , Chen and Li presented a perturbation bound in [2] as follows

∥∥∥Q̃−Q
∥∥∥ � σ̃1

σn + σ̃n
(
∥∥Im −D−1

1

∥∥+
∥∥In−D−1

2

∥∥)+
σ1

σn + σ̃n
(‖D1− Im‖+‖D2− In‖)

+min{∥∥Im −D−1
1

∥∥ ,‖D1 − Im‖}, (1.4)

where σ1, σ̃1 are the biggest singular values of A, Ã and σn, σ̃n are the smallest singular
values of A, Ã , respectively.

In the Frobenius norm, a bound for subunitary or unitary polar factor is described
in the following

∥∥∥Q̃−Q
∥∥∥

F
�

√
(
∥∥Im−D−1

1

∥∥
F +

∥∥In−D−1
2

∥∥
F)2 +(‖D1 − Im‖F +‖D2− In‖F)2.

(1.5)
This bound was obtained by Li for A, Ã ∈ Cm×n

n in [10] and by Chen, Li, and Sun for
A, Ã ∈ Cm×n

r in [5].
In order to make this paper more self-contained, we now introduce the definitions

of weighted norms (see Definition 1.1), and MN-SVD [19, 22] (see Lemma 1.1). Two
other lemmas needed in this paper are also listed, where Lemma 1.2 can be found in [6]
and Lemma 1.3 can be found in [11].
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DEFINITION 1.1. Let A ∈ Cm×n
r . We call the norms ‖A‖(MN) =

∥∥M1/2AN−1/2
∥∥ ,

‖A‖2(MN) =
∥∥M1/2AN−1/2

∥∥
2 , and ‖A‖F(MN) =

∥∥M1/2AN−1/2
∥∥

F the weighted unitary
invariant norm, weighted spectral norm, and weighted Frobenius norm of A , respec-
tively.

It is worth pointing out that the weighted spectral norm of A is synonymous with
the weighted norm of A defined as ‖A‖MN =

∥∥M1/2AN−1/2
∥∥

2 in [23] and weighted
unitary invariant norm is equivalent to the (M, N)-invariant norm defined by Rao and
Rao [20] in essence.

LEMMA 1.1. Let A ∈ C
m×n
r . There exist matrices U ∈ C

m×m and V ∈ C
n×n

satisfying U∗MU = Im and V ∗N−1V = In such that

A = U

(
Σ 0
0 0

)
V ∗, (1.6)

where Σ = diag(σ1, · · · ,σr) , σi =
√
λi and λ1 � · · · � λr > 0 are the nonzero eigen-

values of A#
MNA = (N−1A∗M)A. The decomposition (1.6) is called the (M,N) singular

value decomposition of A and σ1 � · · · � σr > 0 are called the nonzero (M,N) sin-
gular values of A. Further, let U = (U1,U2) and V = (V1,V2) , where U1 ∈ Cm×r and
V1 ∈ C

n×r . Then

U∗
1 MU1 = V ∗

1 N−1V1 = Ir, A = U1ΣV ∗
1 . (1.7)

LEMMA 1.2. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and S ∈
Cs×t , and

Δ= [α,β ] ⊂ R, Δ′ = R\ [α− δ ,β + δ ], δ > 0.

Let λ (Ω) and λ (Γ) denote the eigenvalues sets of Ω and Γ , respectively. If

λ (Ω) ⊂ Δ, λ (Γ) ⊂ Δ′,

then the equation ΩX −XΓ= S has a unique solution X ∈C
s×t , and moreover, ‖X‖�

‖S‖
δ for any unitarily invariant norm.

LEMMA 1.3. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let
λ (Ω) and λ (Γ) denote the sets of eigenvalues of Ω and Γ , respectively. If λ (Ω)∩
λ (Γ) = /0 , then for any E,F ∈ Cs×t , the equation ΩX −XΓ= ΩE +FΓ has a unique
solution X ∈ C

s×t , and moreover,

‖X‖F � 1
η

√
‖E‖2

F +‖F‖2
F ,

where η = minω∈λ (Ω),γ∈λ (Γ)
|ω−γ|√
|ω|2+|γ|2

. If, in addition, F = 0 , we have a better bound

‖X‖F � 1
η
‖E‖F ,

where η = minω∈λ (Ω),γ∈λ (Γ)
|ω−γ |
|ω| .
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2. Main results

Let the perturbed matrix Ã ∈ Cm×n
r . Similar to (1.1) and (1.6), we let

Ã = Q̃H̃ and Ã = Ũ

(
Σ̃ 0
0 0

)
Ṽ ∗ (2.1)

be the MN-WPD and MN-SVD of Ã , respectively, in which

Q̃ = Ũ1Ṽ
∗
1 , H̃ = N−1Ṽ1Σ̃Ṽ ∗

1 , (2.2)

where Ũ = (Ũ1,Ũ2)∈Cm×m and Ṽ = (Ṽ1,Ṽ2)∈Cn×n satisfy Ũ∗MŨ = Im and Ṽ ∗N−1Ṽ
= In , Ũ1 ∈ Cm×r , Ṽ1 ∈ Cn×r , Σ̃ = diag(σ̃1, · · · , σ̃r) and σ̃1 � · · · � σ̃r > 0 are the
nonzero (M,N) singular values of Ã . Here, we also assume that the uniqueness condi-
tion for MN-WPD of Ã , i.e., R(Q̃#

MN) = R(H̃) , is always satisfied.
Furthermore, analogous to (1.7), we have

Ũ∗
1 MŨ1 = Ṽ ∗

1 N−1Ṽ1 = Ir, Ã = Ũ1Σ̃Ṽ ∗
1 . (2.3)

Next, we first study the multiplicative perturbation bounds for weighted unitary po-
lar factor, and then present the corresponding perturbation bounds for subunitary and
unitary polar factors as the special cases.

THEOREM 2.1. Let A, Ã = D∗
1AD2 ∈ Cm×n

r , where D1 ∈ Cm×m
m ,D2 ∈ Cn×n

n . If
A, Ã have the MN-WPDs according to (1.1) and (2.1), respectively, then∥∥∥Q̃−Q

∥∥∥
(MN)

� σ̃1

σr + σ̃r
(
∥∥Im −D∗−1

1

∥∥
(MM) +

∥∥In−D−1
2

∥∥
(NN))

+
σ1

σr + σ̃r
(‖D∗

1− Im‖(MM) +‖D2− In‖(NN))

+min
{(

‖D∗
1 − Im‖(MM) +

∥∥In−D−1
2

∥∥
(NN)

)
,(∥∥Im−D∗−1

1

∥∥
(MM) +‖D2 − In‖(NN)

)}
, (2.4)

where σ1, σ̃1 are the biggest (M,N) singular values of A, Ã and σr, σ̃r are the smallest
(M,N) singular values of A, Ã , respectively.

Proof. According to the MN-SVDs of A and Ã , we have

Ũ∗M(Ã−A)N−1V =
(
Σ̃ 0
0 0

)
Ṽ ∗N−1V −Ũ∗MU

(
Σ 0
0 0

)
. (2.5)

Further, taking Ã = D∗
1AD2 into account, we have

Ũ∗M(Ã−A)N−1V = Ũ∗M(D∗
1AD2−A)N−1V

= Ũ∗M(D∗
1AD2−D∗

1A+D∗
1A−A)N−1V
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= Ũ∗M
(
Ã(In−D−1

2 )+ (D∗
1− Im)A

)
N−1V

=
(
Σ̃ 0
0 0

)
Ṽ ∗(In−D−1

2 )N−1V +Ũ∗M(D∗
1 − Im)U

(
Σ 0
0 0

)
.

(2.6)

Thus, (2.5) and (2.6) together reveal that(
Σ̃ 0
0 0

)
Ṽ ∗N−1V −Ũ∗MU

(
Σ 0
0 0

)

=
(
Σ̃ 0
0 0

)
Ṽ ∗(In−D−1

2 )N−1V +Ũ∗M(D∗
1 − Im)U

(
Σ 0
0 0

)
. (2.7)

Using the similar argument, we have

U∗MŨ

(
Σ̃ 0
0 0

)
−

(
Σ 0
0 0

)
V ∗N−1Ṽ

= U∗M(Im −D∗−1
1 )Ũ

(
Σ̃ 0
0 0

)
+

(
Σ 0
0 0

)
V ∗(D2 − In)N−1Ṽ . (2.8)

The equality (2.7) implies that(
Σ̃Ṽ ∗

1 N−1V1 Σ̃Ṽ ∗
1 N−1V2

0 0

)
−

(
Ũ∗

1 MU1Σ 0
Ũ∗

2 MU1Σ 0

)

=
(
Σ̃Ṽ ∗

1 (In−D−1
2 )N−1V1 Σ̃Ṽ ∗

1 (In −D−1
2 )N−1V2

0 0

)
+

(
Ũ∗

1 M(D∗
1 − Im)U1Σ 0

Ũ∗
2 M(D∗

1 − Im)U1Σ 0

)
,

(2.9)

and the equality (2.8) implies that(
U∗

1 MŨ1Σ̃ 0
U∗

2 MŨ1Σ̃ 0

)
−

(
ΣV ∗

1 N−1Ṽ1 ΣV ∗
1 N−1Ṽ2

0 0

)

=
(

U∗
1 M(Im −D∗−1

1 )Ũ1Σ̃ 0
U∗

2 M(Im −D∗−1
1 )Ũ1Σ̃ 0

)
+

(
ΣV ∗

1 (D2 − In)N−1Ṽ1 ΣV ∗
1 (D2 − In)N−1Ṽ2

0 0

)
.

(2.10)

Then, according to (2.9), we have

Σ̃Ṽ ∗
1 N−1V1−Ũ∗

1 MU1Σ = Σ̃Ṽ ∗
1 (In−D−1

2 )N−1V1 +Ũ∗
1 M(D∗

1 − Im)U1Σ, (2.11)

Ṽ ∗
1 N−1V2 = Ṽ ∗

1 (In−D−1
2 )N−1V2, (2.12)

−Ũ∗
2 MU1 = Ũ∗

2 M(D∗
1 − Im)U1, (2.13)

and according to (2.10), we have

U∗
1 MŨ1Σ̃−ΣV ∗

1 N−1Ṽ1 = U∗
1 M(Im −D∗−1

1 )Ũ1Σ̃+ΣV ∗
1 (D2 − In)N−1Ṽ1, (2.14)
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U∗
2 MŨ1 = U∗

2 M(Im −D∗−1
1 )Ũ1, (2.15)

−V ∗
1 N−1Ṽ2 = V ∗

1 (D2− In)N−1Ṽ2. (2.16)

Subtracting (2.11) from the conjugate transpose of (2.14) leads to

Σ̃
(
Ũ∗

1 MU1 − Ṽ ∗
1 N−1V

)
+

(
Ũ∗

1 MU1− Ṽ ∗
1 N−1V1

)
Σ

= Σ̃
(
Ũ∗

1 (Im −D−1
1 )MU1 − Ṽ ∗

1 (In−D−1
2 )N−1V1

)
+

(
Ṽ ∗

1 N−1(D∗
2− In)V1−Ũ∗

1 M(D∗
1 − Im)U1

)
Σ. (2.17)

Applying Lemma 1.2 to (2.17) with Ω = Σ̃,Γ = −Σ , and

X = Ũ∗
1 MU1 − Ṽ ∗

1 N−1V1, (2.18)

S = Σ̃
(
Ũ∗

1 (Im−D−1
1 )MU1 − Ṽ ∗

1 (In−D−1
2 )N−1V1

)
+

(
Ṽ ∗

1 N−1(D∗
2− In)V1−Ũ∗

1 M(D∗
1 − Im)U1

)
Σ

gives

‖X‖ =
∥∥∥Ũ∗

1 MU1 − Ṽ ∗
1 N−1V1

∥∥∥ � 1
δ
‖S‖ , (2.19)

where δ = σr + σ̃r .
Since

Ũ∗M(Q̃−Q)N−1V =
(

Ũ∗
1

Ũ∗
2

)
M(Ũ1Ṽ

∗
1 −U1V

∗
1 )N−1 (V1,V2)

=
(

Ṽ ∗
1 N−1V1−Ũ∗

1 MU1 Ṽ ∗
1 N−1V2

−Ũ∗
2 MU1 0

)
, (2.20)

noting (2.18), we can obtain∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥ � ‖X‖+

∥∥∥Ṽ ∗
1 N−1V2

∥∥∥+
∥∥∥Ũ∗

2 MU1

∥∥∥ ,

which together with (2.19) says that

∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥ � 1

δ
‖S‖+

∥∥∥Ṽ ∗
1 N−1V2

∥∥∥+
∥∥∥Ũ∗

2 MU1

∥∥∥ . (2.21)

Therefore, it follows from (2.21), (2.12) and (2.13) that

∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥ � 1

δ
‖S‖+

∥∥∥Ṽ ∗
1 (In−D−1

2 )N−1V2

∥∥∥+
∥∥∥Ũ∗

2 M(D∗
1 − Im)U1

∥∥∥ .

(2.22)
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Note that

‖S‖ �
∥∥∥(

Ṽ ∗
1 N−1(D∗

2− In)V1−Ũ∗
1 M(D∗

1 − Im)U1

)
Σ
∥∥∥

+
∥∥∥Σ̃(

Ũ∗
1 (Im−D−1

1 )MU1 − Ṽ ∗
1 (In−D−1

2 )N−1V1

)∥∥∥
� ‖Σ‖2

∥∥∥Ṽ ∗
1 N−1(D∗

2 − In)V1−Ũ∗
1 M(D∗

1 − Im)U1

∥∥∥
+

∥∥∥Σ̃∥∥∥
2

∥∥∥Ũ∗
1 (Im −D−1

1 )MU1 − Ṽ ∗
1 (In −D−1

2 )N−1V1

∥∥∥
� σ1

(∥∥∥Ṽ ∗
1 N−1(D∗

2− In)V1

∥∥∥+
∥∥∥Ũ∗

1 M(D∗
1 − Im)U1

∥∥∥)
+ σ̃1

(∥∥∥Ũ∗
1 (Im −D−1

1 )MU1

∥∥∥+
∥∥∥Ṽ ∗

1 (In−D−1
2 )N−1V

∥∥∥)
� σ1

(∥∥∥N−1/2(D∗
2 − In)N1/2

∥∥∥+
∥∥∥M1/2(D∗

1− Im)M−1/2
∥∥∥)

+ σ̃1

(∥∥∥M−1/2(Im−D−1
1 )M1/2

∥∥∥+
∥∥∥N1/2(In −D−1

2 )N−1/2
∥∥∥)

= σ1

(
‖D2 − In‖(NN) +‖D∗

1− Im‖(MM)

)
+ σ̃1

(∥∥Im −D∗−1
1

∥∥
(MM) +

∥∥In−D−1
2

∥∥
(NN)

)
(2.23)

and ∥∥∥Ṽ ∗
1 (In −D−1

2 )N−1V2

∥∥∥ �
∥∥∥N1/2(In−D−1

2 )N−1/2
∥∥∥ =

∥∥In−D−1
2

∥∥
(NN) , (2.24)∥∥∥Ũ∗

2 M(D∗
1 − Im)U1

∥∥∥ �
∥∥∥M1/2(D∗

1 − Im)M−1/2
∥∥∥ = ‖D∗

1 − Im‖(MM) . (2.25)

Then, together with (2.22), (2.23), (2.24), (2.25) and the fact that∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥ =

∥∥∥M1/2(Q̃−Q)N−1/2
∥∥∥ =

∥∥∥Q̃−Q
∥∥∥

(MN)
, (2.26)

we have ∥∥∥Q̃−Q
∥∥∥

(MN)
� σ̃1

σr + σ̃r

(∥∥Im−D∗−1
1

∥∥
(MM) +

∥∥In−D−1
2

∥∥
(NN)

)
+

σ1

σr + σ̃r

(
‖D∗

1 − Im‖(MM) +‖D2 − In‖(NN)

)
+

(
‖D∗

1 − Im‖(MM) +
∥∥In−D−1

2

∥∥
(NN)

)
. (2.27)

Moreover, we also have

U∗M(Q̃−Q)N−1Ṽ =
(

U∗
1 MŨ1−V ∗

1 N−1Ṽ1 −V ∗
1 N−1Ṽ2

U∗
2 MŨ1 0

)
, (2.28)

which implies∥∥∥U∗M(Q̃−Q)N−1Ṽ
∥∥∥ � ‖X∗‖+

∥∥∥V ∗
1 N−1Ṽ2

∥∥∥+
∥∥∥U∗

2 MŨ1

∥∥∥ . (2.29)
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From (2.14) and (2.15), we can obtain∥∥∥U∗
2 MŨ1

∥∥∥ =
∥∥∥U∗

2 M(Im −D∗−1
1 )Ũ1

∥∥∥
�

∥∥∥M1/2(Im −D∗−1
1 )M−1/2

∥∥∥ =
∥∥Im−D∗−1

1

∥∥
(MM) , (2.30)∥∥∥V ∗

1 N−1Ṽ2

∥∥∥ =
∥∥∥V ∗

1 (D2 − In)N−1Ṽ2

∥∥∥
�

∥∥∥N1/2(D2 − In)N−1/2
∥∥∥ = ‖D2− In‖(NN) . (2.31)

Therefore, according to (2.29), (2.19), (2.23), (2.30), (2.31), and noting the fact∥∥∥U∗M(Q̃−Q)N−1Ṽ
∥∥∥ =

∥∥∥Q̃−Q
∥∥∥

(MN)
, (2.32)

we have ∥∥∥Q̃−Q
∥∥∥

(MN)
� σ̃1

σr + σ̃r

(∥∥Im−D∗−1
1

∥∥
(MM) +

∥∥In−D−1
2

∥∥
(NN)

)
+

σ1

σr + σ̃r

(
‖D∗

1 − Im‖(MM) +‖D2 − In‖(NN)

)
+

(∥∥Im −D∗−1
1

∥∥
(MM) +‖D2− In‖(NN)

)
. (2.33)

Consequently, the proof is completed combining (2.27) with (2.33).
If the weighted unitary invariant norm in Theorem 2.1 is replaced with the weighted

spectral norm, i.e., weighted norm, we have the following smaller perturbation bound.

THEOREM 2.2. Assume that the conditions of Theorem 2.1 hold. Then∥∥∥Q̃−Q
∥∥∥

MN
� σ̃1

σr + σ̃r

(∥∥Im−D∗−1
1

∥∥
MM +

∥∥In−D−1
2

∥∥
NN

)
+

σ1

σr + σ̃r
(‖D∗

1 − Im‖MM +‖D2− In‖NN)

+min
{
max

{‖D∗
1− Im‖MM ,

∥∥In−D−1
2

∥∥
NN

}
,

max
{∥∥Im −D∗−1

1

∥∥
MM ,‖D2− In‖NN

}}
. (2.34)

Proof. Observe that (2.20) can be rewritten as

Ũ∗M(Q̃−Q)N−1V =
(

Ṽ ∗
1 N−1V1−Ũ∗

1 MU1 0
0 0

)
+

(
0 Ṽ ∗

1 N−1V2

−Ũ∗
2 MU1 0

)
.

Then, considering (2.18) and (2.26), we have

∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥

2
=

∥∥∥Q̃−Q
∥∥∥

MN
� ‖X‖2 +

∥∥∥∥
(

0 Ṽ ∗
1 N−1V2

−Ũ∗
2 MU1 0

)∥∥∥∥
2

� ‖X‖2 +max
{∥∥∥Ṽ ∗

1 N−1V2

∥∥∥
2
,
∥∥∥−Ũ∗

2 MU1

∥∥∥
2

}
,
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which together with (2.19), (2.23), (2.12), (2.13), (2.24), and (2.25) implies

∥∥∥Q̃−Q
∥∥∥

MN
� σ̃1

σr + σ̃r

(∥∥Im −D∗−1
1

∥∥
MM +

∥∥In−D−1
2

∥∥
NN

)
+

σ1

σr + σ̃r
(‖D∗

1 − Im‖MM +‖D2− In‖NN)

+max
{‖D∗

1− Im‖MM ,
∥∥In−D−1

2

∥∥
NN

}
. (2.35)

Similarly, from (2.28), (2.18), and (2.32), we have

∥∥∥U∗M(Q̃−Q)N−1Ṽ
∥∥∥

2
=

∥∥∥Q̃−Q
∥∥∥

MN
� ‖X∗‖2 +

∥∥∥∥
(

0 −V ∗
1 N−1Ṽ2

U∗
2 MŨ1 0

)∥∥∥∥
2

� ‖X‖2 +max
{∥∥∥−V ∗

1 N−1Ṽ2

∥∥∥
2
,
∥∥∥U∗

2 MŨ1

∥∥∥
2

}
,

which combined with (2.19), (2.23), (2.30), and (2.31) gives

∥∥∥Q̃−Q
∥∥∥

MN
� σ̃1

σr + σ̃r

(∥∥Im −D∗−1
1

∥∥
MM +

∥∥In−D−1
2

∥∥
NN

)
+

σ1

σr + σ̃r
(‖D∗

1 − Im‖MM +‖D2− In‖NN)

+max
{∥∥Im −D∗−1

1

∥∥
MM ,‖D2− In‖NN

}
. (2.36)

Thus, (2.35) and (2.36) together yield the proof.
If we replace the weighted unitary invariant norm in Theorem 2.1 by the weighted

Frobenius norm, an alternative perturbation bound can be derived as follows.

THEOREM 2.3. Assume that the conditions of Theorem 2.1 hold and add a con-

dition that η = min
1�i, j�r

σ̃i+σ j√
σ̃2

i +σ2
j

�
√

2− ε , where σ̃i is the i-th (M,N) singular value

of Ã , σ j is the j -th (M,N) singular value of A, and 0 � ε � 1 , then

∥∥∥Q̃−Q
∥∥∥2

F(MN)
�

(
1+

ε
η2

)(∥∥Im −D∗−1
1

∥∥2
F(MM) +‖Im −D∗

1‖2
F(MM)

+
∥∥In−D−1

2

∥∥2
F(NN) +‖In−D2‖2

F(NN)

)
−

(
1− 2− ε

η2

)
max

{(∥∥Im −D∗−1
1

∥∥2
F(MM) +‖In−D2‖2

F(NN)

)
,(∥∥In−D−1

2

∥∥2
F(NN) +‖Im−D∗

1‖2
F(MM)

)}
(2.37)

� 2
2− ε

(∥∥Im−D∗−1
1

∥∥2
F(MM) +‖Im−D∗

1‖2
F(MM)

+
∥∥In−D−1

2

∥∥2
F(NN) +‖In−D2‖2

F(NN)

)
. (2.38)
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Proof. Applying Lemma 1.3 to (2.17) with Ω= Σ̃ , Γ = −Σ , X as in (2.18), and

E = Ũ∗
1 (Im −D−1

1 )MU1 − Ṽ ∗
1 (In−D−1

2 )N−1V1,

F = −Ṽ ∗
1 N−1(D∗

2 − In)V1 +Ũ∗
1 M(D∗

1 − Im)U1,

η = min
1�i, j�r

σ̃i +σ j√
σ̃2

i +σ2
j

�
√

2− ε

gives

‖X‖F � 1
η

√
‖E‖2

F +‖F‖2
F . (2.39)

From (2.20), (2.18), and the properties of the Frobenius norm, we have

∥∥∥Ũ∗M(Q̃−Q)N−1V
∥∥∥2

F
= ‖X‖2

F +
∥∥∥Ṽ ∗

1 N−1V2

∥∥∥2

F
+

∥∥∥Ũ∗
2 MU1

∥∥∥2

F
. (2.40)

Thus, it follows from (2.26), (2.40), (2.39), (2.12), and (2.13) that

∥∥∥Q̃−Q
∥∥∥2

F(MN)
� 1

η2

(
‖E‖2

F +‖F‖2
F

)
+

∥∥∥Ṽ ∗
1 (In−D−1

2 )N−1V2

∥∥∥2

F

+
∥∥∥Ũ∗

2 M(D∗
1 − Im)U1

∥∥∥2

F
. (2.41)

Note that

1
η2 ‖E‖2

F +
∥∥∥Ṽ ∗

1 (In−D−1
2 )N−1V2

∥∥∥2

F

� 2
η2

(∥∥∥Ũ∗
1 (Im −D−1

1 )MU1

∥∥∥2

F
+

∥∥∥Ṽ ∗
1 (In−D−1

2 )N−1V1

∥∥∥2

F

)

+
∥∥∥Ṽ ∗

1 (In−D−1
2 )N−1V2

∥∥∥2

F

=
2
η2

∥∥∥Ũ∗
1 (Im−D−1

1 )MU1

∥∥∥2

F
+

2− ε
η2

∥∥∥Ṽ ∗
1 (In −D−1

2 )N−1(V1,V2)
∥∥∥2

F

+
ε
η2

∥∥∥Ṽ ∗
1 (In −D−1

2 )N−1V1

∥∥∥2

F
+

(
1− 2− ε

η2

)∥∥∥Ṽ ∗
1 (In−D−1

2 )N−1V2

∥∥∥2

F

� 2
η2

(∥∥Im−D∗−1
1

∥∥2
F(MM) +

∥∥In−D−1
2

∥∥2
F(NN)

)
+

(
1− 2− ε

η2

)∥∥In−D−1
2

∥∥2
F(NN)

=
2
η2

∥∥Im −D∗−1
1

∥∥2
F(MM) +

(
1+

ε
η2

)∥∥In−D−1
2

∥∥2
F(NN). (2.42)

Similarly,

1
η2 ‖F‖2

F +
∥∥∥Ũ∗

2 M(D∗
1 − Im)U1

∥∥∥2

F
�

(
1+

ε
η2

)
‖Im−D∗

1‖2
F(MM) +

2
η2 ‖In−D2‖2

F(NN),
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which together with (2.41) and (2.42) leads to

∥∥∥Q̃−Q
∥∥∥2

F(MN)
� 2

η2

∥∥Im −D∗−1
1

∥∥2
F(MM) +

(
1+

ε
η2

)∥∥In−D−1
2

∥∥2
F(NN)

+
(

1+
ε
η2

)
‖Im−D∗

1‖2
F(MM) +

2
η2 ‖In−D2‖2

F(NN). (2.43)

Furthermore, (2.28) combined with the properties of Frobenius norm implies

∥∥∥U∗M(Q̃−Q)N−1Ṽ
∥∥∥2

F
= ‖X∗‖2

F +
∥∥∥V ∗

1 N−1Ṽ2

∥∥∥2

F
+

∥∥∥U∗
2 MŨ1

∥∥∥2

F
,

which together with (2.32), (2.39), (2.15), and (2.16) gives

∥∥∥Q̃−Q
∥∥∥2

F(MN)
� 1

η2

(
‖E‖2

F +‖F‖2
F

)
+

∥∥∥U∗
2 M(Im −D∗−1

1 )Ũ1

∥∥∥2

F

+
∥∥∥V ∗

1 (D2 − In)N−1Ṽ2

∥∥∥2

F
. (2.44)

Similar to (2.42), we can obtain

1
η2 ‖E‖2

F +
∥∥∥U∗

2 M(Im −D∗−1
1 )Ũ1

∥∥∥2

F
=

1
η2 ‖F∗‖2

F +
∥∥∥U∗

2 M(Im −D∗−1
1 )Ũ1

∥∥∥2

F

�
(

1+
ε
η2

)∥∥Im −D∗−1
1

∥∥2
F(MM) +

2
η2

∥∥In−D−1
2

∥∥2
F(NN) (2.45)

and

1
η2 ‖F‖2

F +
∥∥∥V ∗

1 (D2− In)N−1Ṽ2

∥∥∥2

F
=

1
η2

∥∥∥F̃∗
∥∥∥2

F
+

∥∥∥V ∗
1 (D2− In)N−1Ṽ2

∥∥∥2

F

�
(

1+
ε
η2

)
‖In−D2‖2

F(NN) +
2
η2 ‖Im −D∗

1‖2
F(MM) . (2.46)

Thus, (2.44), (2.45), and (2.46) together says that

∥∥∥Q̃−Q
∥∥∥2

F(MN)
�

(
1+

ε
η2

)∥∥Im −D∗−1
1

∥∥2
F(MM) +

2
η2

∥∥In−D−1
2

∥∥2
F(NN)

+
2
η2 ‖Im−D∗

1‖2
F(MM) +

(
1+

ε
η2

)
‖In−D2‖2

F(NN) . (2.47)

Then, combiningwith (2.43), (2.47), and the condition on η , we have (2.37) and (2.38).
When A, Ã ∈ Cm×n

n , the MN-SVDs of A and Ã are reduced to

A = U

(
Σ
0

)
V ∗ = U1ΣV ∗ and Ã = Ũ

(
Σ̃
0

)
Ṽ ∗ = Ũ1Σ̃Ṽ ∗.
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In this case, the MN-WPDs of A and Ã can be computed by

Q = U1V
∗, H = N−1VΣV ∗ and Q̃ = Ũ1Ṽ

∗, H̃ = N−1Ṽ Σ̃Ṽ ∗.

Thus, X , S , E , F , Ũ∗M(Q̃−Q)N−1V , and U∗M(Q̃−Q)N−1Ṽ appearing in the proofs
of Theorem 2.1 and Theorem 2.3 are reduced to

X = Ũ∗
1 MU1− Ṽ ∗N−1V,

S = Σ̃
(
Ũ∗

1 (Im −D−1
1 )MU1− Ṽ ∗(In −D−1

2 )N−1V
)

+
(
Ṽ ∗N−1(D∗

2 − In)V −Ũ∗
1 M(D∗

1 − Im)U1

)
Σ,

E = Ũ∗
1 (Im −D−1

1 )MU1 − Ṽ ∗(In−D−1
2 )N−1V ,

F = −Ṽ ∗N−1(D∗
2− In)V +Ũ∗

1 M(D∗
1 − Im)U1,

Ũ∗M(Q̃−Q)N−1V =
(

Ṽ ∗N−1V −Ũ∗
1 MU1

−Ũ∗
2 MU1

)
,

U∗M(Q̃−Q)N−1Ṽ =
(

U∗
1 MŨ1−V ∗N−1Ṽ

U∗
2 MŨ1

)
.

In terms of above discussions and the methods to prove Theorem 2.1 and Theorem 2.3,
we can get the following theorems.

THEOREM 2.4. Let A, Ã = D∗
1AD2 ∈Cm×n

n , where D1 ∈Cm×m
m ,D2 ∈Cn×n

n . If A, Ã
have the MN-WPDs according to (1.1) and (2.1), respectively, then

∥∥∥Q̃−Q
∥∥∥

(MN)
� σ̃1

σn + σ̃n

(∥∥Im−D∗−1
1

∥∥
(MM) +

∥∥In−D−1
2

∥∥
(N,N)

)
+

σ1

σn + σ̃n

(
‖D∗

1− Im‖(MM) +‖D2 − In‖(NN)

)
+min

{∥∥Im−D∗−1
1

∥∥
(MM) ,‖D∗

1− Im‖(MM)

}
, (2.48)

where σ1, σ̃1 are the biggest (M,N) singular values of A, Ã , and σn, σ̃n are the small-
est (M,N) singular values of A, Ã , respectively.

THEOREM 2.5. Assume that the conditions in Theorem 2.4 hold and add a con-
dition that η = min

1�i, j�n

σ̃i+σ j√
σ̃2

i +σ2
j

�
√

2− ε , where σ̃i is the i-th (M,N) singular value

of Ã , σ j is the j -th (M,N) singular value of A, and 0 � ε � 1 , then

∥∥∥Q̃−Q
∥∥∥2

F(MN)
�

(
1+

ε
η2

)(∥∥Im −D∗−1
1

∥∥2
F(MM) +‖Im −D∗

1‖2
F(MM)

)
+

2
η2

(∥∥In−D−1
2

∥∥2
F(NN) +‖In−D2‖2

F(NN)

)
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−
(

1− 2− ε
η2

)
max

{∥∥Im −D∗−1
1

∥∥2
F(MM) ,‖Im−D∗

1‖2
F(MM)

}
(2.49)

� 2
2− ε

(∥∥Im−D∗−1
1

∥∥2
F(MM) +‖Im −D∗

1‖2
F(MM)

+
∥∥In−D−1

2

∥∥2
F(NN) +‖In−D2‖2

F(NN)

)
. (2.50)

Four corollaries of above theorems are given as follows when M = Im and N =
In . These results give some new perturbation bounds for subunitary and unitary polar
factors.

COROLLARY 2.1. Let A, Ã = D∗
1AD2 ∈ Cm×n

r , where D1 ∈Cm×m
m ,D2 ∈Cn×n

n . If
A, Ã have the generalized polar decompositions A = QH, Ã = Q̃H̃ , respectively, then

∥∥∥Q̃−Q
∥∥∥ � σ̃1

σr + σ̃r

(∥∥Im−D−1
1

∥∥+
∥∥In−D−1

2

∥∥)
+

σ1

σr + σ̃r
(‖D1 − Im‖+‖D2 − In‖)

+min
{(‖D1 − Im‖+

∥∥In−D−1
2

∥∥)
,
(∥∥Im −D−1

1

∥∥+‖D2− In‖
)}

,
(2.51)

where σ1, σ̃1 are the biggest singular values of A, Ã , and σn, σ̃n are the smallest sin-
gular values of A, Ã , respectively.

COROLLARY 2.2. Assume that the conditions of Corollary 2.1 hold. Then

∥∥∥Q̃−Q
∥∥∥

2
� σ̃1

σr+σ̃r

(∥∥Im−D−1
1

∥∥
2 +

∥∥In−D−1
2

∥∥
2

)
+

σ1

σr+σ̃r
(‖D1−Im‖2 +‖D2−In‖2)

+min
{
max

{‖D1−Im‖2 ,
∥∥In−D−1

2

∥∥
2

}
,max

{∥∥Im−D−1
1

∥∥
2 ,‖D2−In‖2

}}
.

(2.52)

COROLLARY 2.3. Assume that the conditions of Corollary 2.1 hold and add a

condition that η = min
1�i, j�r

σ̃i+σ j√
σ̃2

i +σ2
j

�
√

2− ε , where σ̃i is the i-th singular value of Ã ,

σ j is the j -th singular value of A, and 0 � ε � 1 , then

∥∥∥Q̃−Q
∥∥∥2

F
�

(
1+

ε
η2

)(∥∥Im −D−1
1

∥∥2
F +‖Im−D1‖2

F +
∥∥In−D−1

2

∥∥2
F +‖In−D2‖2

F

)

−
(

1−2−ε
η2

)
max

{∥∥Im−D−1
1

∥∥2
F +‖In−D2‖2

F ,
∥∥In−D−1

2

∥∥2
F +‖Im−D1‖2

F

}
(2.53)

� 2
2− ε

(∥∥Im −D−1
1

∥∥2
F +‖Im−D1‖2

F +
∥∥In−D−1

2

∥∥2
F +‖In−D2‖2

F

)
.

(2.54)
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COROLLARY 2.4. Let A, Ã = D∗
1AD2 ∈Cm×n

n , where D1 ∈Cm×m
m and D2 ∈Cn×n

n .

If A, Ã have the polar decompositions A = QH , Ã = Q̃H̃ , and η = min
1�i, j�n

σ̃i+σ j√
σ̃2

i +σ2
j

�
√

2− ε , where σ̃i is the i-th singular value of Ã , σ j is the j -th singular value of A,
and 0 � ε � 1 , then∥∥∥Q̃−Q

∥∥∥2

F
�

(
1+

ε
η2

)(∥∥Im−D−1
1

∥∥2
F +‖Im−D1‖2

F

)
+

2
η2

(∥∥In−D−1
2

∥∥2
F +‖In−D2‖2

F

)

−
(

1− 2− ε
η2

)
max

{∥∥Im −D−1
1

∥∥2
F ,‖Im −D1‖2

F

}
(2.55)

� 2
2− ε

(∥∥Im−D−1
1

∥∥2
F +‖Im −D1‖2

F +
∥∥In−D−1

2

∥∥2
F +‖In−D2‖2

F

)
.

(2.56)

REMARK 2.1. When M = Im and N = In in Theorem 2.4, the result (2.48) is
reduced to the corresponding bound for unitary polar factor, i.e., (1.4) in this paper.

REMARK 2.2. It is not difficult to find that if the conditions in Corollary 2.3 and
Corollary 2.4 hold, i.e., η �

√
2− ε and 0 � ε � 1, and ε is set to be a suitable value,

the new bounds (2.53), (2.54), (2.55), and (2.56) may be smaller than the corresponding

one (1.5). In fact, if 0 � ε � 4(‖Im−D−1
1 ‖F‖In−D−1

2 ‖F
+‖D1−Im‖F‖D2−In‖F )

(‖Im−D−1
1 ‖F

+‖In−D−1
2 ‖F

)2+(‖D1−Im‖F+‖D2−In‖F )2
and η �

√
2− ε , the bounds (2.54) and (2.56) are not greater than the one (1.5). In addition, it

is easy to see that the bounds (2.53) and (2.55) are smaller than the corresponding ones
(2.54) and (2.56). However, they seem to be a little complicated in form.

REMARK 2.3. As we know, if the perturbed matrix is expressed as Ã = A + E ,
then such perturbation is called additive perturbation. For this perturbation, many au-
thors studied various perturbation bounds for the (generalized) polar decomposition in
various norms, see e.g., [2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 16, 17, 18, 21]. Here we only
introduce two bounds which are given in the spectral norm and Frobenius norm, re-
spectively, since they can be used to compare with the results obtained in this paper in
the following examples. The one in the special norm was derived by Li [13] recently
for subunitary polar factor, i.e., for A, Ã ∈ Cm×n

r ,

∥∥∥Q̃−Q
∥∥∥

2
� 1+

√
3

σr + σ̃r
‖E‖2 , (2.57)

where σr, σ̃r are the smallest singular values of A, Ã , respectively. The one in Frobenius
norm was obtained by Li and Sun [16] for A, Ã ∈ Cm×n

r ,∥∥∥Q̃−Q
∥∥∥

F
� 2

σr + σ̃r
‖E‖F . (2.58)

In general, this bound was claimed to be the current best perturbation bound in Frobe-
nius norm without assuming that ‖E‖F is tiny [16, 17].
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When the Frobenius norm in the bound (2.58) is replaced with the unitarily invari-
ant norm, Li [9] showed that it also holds for A, Ã ∈ Cn×n

n . However, in this case, it is
not satisfied for more general cases [13], for example, for A, Ã ∈ C

m×n
r or C

m×n
n .

REMARK 2.4. From Remark 2.1 in [5], we know the multiplicative perturba-
tion implies the additive perturbation. However, in general neither of the perturbation
bounds of such two perturbations for (generalized) polar decomposition is uniformly
better than the other. Two examples are provided in the following. For them, the bounds
obtained in this paper are a little better in comparison. Furthermore, it is not difficult to
see that the conclusion on (generalized) polar decomposition introduced above is also
valid for WPD.

EXAMPLE 2.1. Let

A =

⎛
⎜⎜⎝

1000 0 0
0 0.001 0
0 0 0
0 0 0

⎞
⎟⎟⎠ ∈ C

4×3
2 , D1 = I4, D2 = diag(1.0001,0.9999,1).

Then, we have

1+
√

3
σr + σ̃r

‖E‖2 = 1.366094×102

and the value of bound (2.52) 1.000151× 102 . For this example, the multiplicative
perturbation bound (2.52) is better than the additive perturbation bound (2.57).

EXAMPLE 2.2. Let

A =

⎛
⎜⎜⎝

1 0 0
0 5.5 0

0.5 0 0
0 2.75 0

⎞
⎟⎟⎠ ∈ C

4×3
2 , D1 = diag(0.9998,1,1.0001,0.9999),

D2 = diag(1.0002,0.9999,1).

Then, after some computation, we can get η = 1.1628 and the perturbation bounds
(1.5) and (2.58), respectively, in the following:∥∥∥Q̃−Q

∥∥∥
F

� 6.6264×10−4 and
∥∥∥Q̃−Q

∥∥∥
F

� 7.0848×10−4.

If the value of ε is set to be 0.7,0.8,0.9, then η �
√

2− ε = 1.1402,1.0954,1.0488,
respectively. In this case, the bound (2.54) can be obtained, respectively, as follows:∥∥∥Q̃−Q

∥∥∥
F

� 5.8177×10−4, 6.0553×10−4, and 6.3246×10−4.
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For this example, the new bound (2.54) is better than the ones (1.5) and (2.58) when
ε = 0.7,0.8,0.9. Moreover, we have

4(
∥∥Im −D−1

1

∥∥
F

∥∥In−D−1
2

∥∥
F +‖D1 − Im‖F ‖D2− In‖F)

(
∥∥Im −D−1

1

∥∥
F +

∥∥In−D−1
2

∥∥
F)2 +(‖D1− Im‖F +‖D2− In‖F)2

= 0.9979.

Consequently, the bound (2.54) is always better than the one (1.5) if ε � 0.9979 and√
2− ε � 1.1628, i.e., 0.6479 � ε � 0.9979 for this example.
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