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MULTIPLICATIVE PERTURBATION BOUNDS
FOR WEIGHTED UNITARY POLAR FACTOR

HU YANG, HANYU L1 AND HUA SHAO

(Communicated by S. Puntanen)

Abstract. The multiplicative perturbation bounds for weighted unitary polar factor are consid-
ered in the weighted unitary invariant norm, weighted spectral norm, and weighted Frobenius
norm in this paper. As the special cases, new bounds for subunitary and unitary polar factor are
also derived. These new bounds improve the corresponding results published recently to some
extent.

1. Introduction

Let C™, C™n, 2, and CZ denote the set of m X n complex matrices, subset
of C"™" comprising matrices with rank r, set of Hermitian positive semidefinite matri-
ces of order m, and subset of CZ consisting of positive definite matrices, respectively.
Let I, be the identity matrix of order r. Given A € C"™*"* | the symbols A*, Aff,,N, R(A),
lAll,, |AllF . and ||A]| stand for the conjugate transpose, weighted conjugate transpose,
range, spectral norm, Frobenius norm, and unitarily invariant norm of A, respectively.
The definition of Aﬁ,,N can be found in detail in [19, 23]. Moreover, without specifica-
tion, in this paper we always assume that m > n > r and the weight matrices M € CZ,
NeCL.

For a matrix A € C"*", there are an (M,N) weighted partial isometric matrix Q
[26,27] and a matrix H satisfying NH € C such that

A= QH. (1.1)

Decomposition (1.1) is called the (M,N) weighted polar decomposition [25, 26] (MN-
WPD) of A, and Q and H are called the (M,N) weighted unitary polar factor and
generalized nonnegative polar factor, respectively, of this decomposition. In general,
the MN-WPD is not unique, while it has been proved that it is unique if the decompo-
sition satisfies

R(Qn) = R(H). (1.2)
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This condition was given by Yang and Li [25]. In this paper, we assume that the con-
dition (1.2) always holds. Under this condition, the MN-WPD (1.1) can be calculated
from the (M,N) singular value decomposition (MN-SVD) (see Lemma 1.1) by

Q=U\V, H=N"'v2V;, (1.3)

where U;,V), and X are as in Lemma 1.1.

When M =1, and N = I, the MN-WPD reduces to the generalized polar de-
composition (see, e.g., [1, 21]), and Q and H reduce to the subunitary polar factor and
nonnegative polar factor. If, in addition, rank(A) = n, then the decomposition (1.1) is
the polar decomposition, and Q and H are the unitary polar factor and positive polar
factor. Therefore, the MN-WPD can be considered as a generalization of the (gen-
eralized) polar decomposition. Like the two useful decompositions, it may also have
some important applications, see [24] for detailed introduction. Furthermore, some
algorithms to compute this decomposition were given in [26].

The perturbation bounds for (generalized) polar decomposition under multiplica-
tive perturbation have been studied by some authors in various norms [2, 5, 10, 12].
The multiplicative perturbation refers to the situation when the perturbed matrix is ex-
pressed as A = DJAD,, where D; and D, are nonsingular matrices and typically close
to the identity matrices of appropriate sizes. In this paper, we focus on studying the
multiplicative perturbation bounds for weighted unitary polar factor of WPD. Listed
are several bounds for (generalized) polar decomposition, which can be used to com-
pare with the results given in this paper. N

Let A= QH,A=D]AD, = QI-I be the (generalized) polar decomposition of A A,
respectively. In the unitarily invariant norm, for unitary polar factor, i.e., when AAe
Ci*", Chen and Li presented a perturbation bound in [2] as follows

(o]
O, + Oy
+min{||f, — D} ||, ID1 — Ll }, (1.4)

|o-af < 535 Utm=Dy |+ 0 =05 )+ (ID1 = 1| + D2 = 1)

On

where o1, 81~are the biggest singular values of Aﬂ and o,, 0, are the smallest singular
values of A, A, respectively.

In the Frobenius norm, a bound for subunitary or unitary polar factor is described
in the following

00|, < /07 [ D52+ (11—l 192>
_ (1.5)
This bound was obtained by Li for A,A € C**" in [10] and by Chen, Li, and Sun for
AA e C™ in [5).

In order to make this paper more self-contained, we now introduce the definitions
of weighted norms (see Definition 1.1), and MN-SVD [19, 22] (see Lemma 1.1). Two
other lemmas needed in this paper are also listed, where Lemma 1.2 can be found in [6]
and Lemma 1.3 can be found in [11].
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DEFINITION 1.1. Let A € C/™". We call the norms [|A|| ) = ||M'/2AN"1/2||,
1A 2 pan) = [M'2AN=1/2|,, and 1Al (aany = ||[M'/2AN~1/2|| . the weighted unitary
invariant norm, weighted spectral norm, and weighted Frobenius norm of A, respec-
tively.

It is worth pointing out that the weighted spectral norm of A is synonymous with
the weighted norm of A defined as ||A||,,y = ||M1/2AN_1/2||2 in [23] and weighted
unitary invariant norm is equivalent to the (M, N)-invariant norm defined by Rao and
Rao [20] in essence.

LEMMA 1.1. Let A € C"™". There exist matrices U € C™*™ and V € C""
satisfying U*MU = I, and V*N~YV = I, such that

20\, .
AzU(OO)V, (1.6)

where ¥ = diag(01,--+,0;), 6;i =+\/A; and Ay > --- > A, > 0 are the nonzero eigen-
values of Ab;yA = (N"'A*M)A. The decomposition (1.6) is called the (M,N) singular
value decomposition of A and oy > --- > 0, > 0 are called the nonzero (M,N) sin-
gular values of A. Further, let U = (Uy,U,) and V = (Vy,V,), where Uy € C™" and
VvV, € C"™", Then

UiMU, = VN~ 'V, =1,, A=UZV}. (1.7)

LEMMA 1.2. Let Q € C*** and T’ € C™*! be two Hermitian matrices, and S €
C**, and

A=[a,B]CR, AN =R\[0—6,+6], &§>0.
Let A(Q) and A(T) denote the eigenvalues sets of Q and T, respectively. If
AQ)CA, AN CA,

then the equation QX —XT = S has a unique solution X € C**', and moreover, || X|| <

ISl rarily i .
5 for any unitarily invariant norm.

LEMMA 1.3. Let Q € C*** and T" € C'**' be two Hermitian matrices, and let
A(Q) and A(T) denote the sets of eigenvalues of Q and T, respectively. If A(Q)N
A(T) =0, then for any E,F € C**, the equation QX —XT = QE + FT has a unique
solution X € C**', and moreover,

1 2 2
HM&<5NHmb+WWp

where 1 = minye) Q) yea(r) % If, in addition, F =0, we have a better bound

1
HM#<HWM7

. w7
where 1 = minge) () yei(r) ‘ IwIYI’
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2. Main results

Let the perturbed matrix Ae Cr>r . Similar to (1.1) and (1.6), we let

X:Qﬁandi:ﬁ(ig)f/* (2.1)

be the MN-WPD and MN-SVD of A , respectively, in which

Q0=UV{, H=N'V\ZV}, (2.2)
where U = (Uy,U,) € C"™" and V = (V,V3) € C™" satisty U*MU =1, and V*N~'V
=1I,, U € C"™" V, € C"™", ¥ =diag(6y,--+,0;) and 61 > --- > 6, > 0 are the
nonzero (M,N) singular values of A. Here, we also assume that the uniqueness condi-

tion for MN-WPD of A, i.e., R(Q%,y) = R(H), is always satisfied.
Furthermore, analogous to (1.7), we have

UMU, =ViN~'Vi =1,, A=U2V;. (2.3)

Next, we first study the multiplicative perturbation bounds for weighted unitary po-
lar factor, and then present the corresponding perturbation bounds for subunitary and
unitary polar factors as the special cases.

THEOREM 2.1. Let A,A = DiAD, € CI"™", where Dy € C¥" D, € C¥". If
A, A have the MN-WPDs according to (1.1) and (2.1), respectively, then

~ 81 *—1 —1
HQ_QH(MN) S Gr+c~rr(HIm_Dl ey + [l = D2 )
(o] *
+ ot 5r(||D1 _Im”(MM) + 1Dz _I"H(NN))
+min{(\\DT—Irn\\(MM)+HI"_DEIH(NN)) ’

(=D Ml + 102 = Bl )} @:4)

where 01,0 are the biggest (M,N) singular values of AAV and ©;,0, are the smallest

(M,N) singular values of A,A, respectively.
Proof. According to the MN-SVDs of A and A , we have

7% 1 —1ys EO vin—ly 17+ 20
U*M(A — AN V—<00>VN 1% UMU(OO). 2.5)

Further, taking A= D}AD; into account, we have

UM(A—A)N"'V = U*M(D{AD, —A)N~'V
= U*M(D;AD,—D{A+D}A—AN"'V
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— UM (X(In — DY)+ (D} - Im)A> NV

- (Z 0) V(L — Dy YNV + U*M(D} — 1)U (2 0) .

00 00
(2.6)
Thus, (2.5) and (2.6) together reveal that
E 0 7Ear—1 7% 20
<00>VN V-U MU(OO)
E 0 5« —1ya7—1 r7 * 20
:<00)V (I,—D;")N V+U*M(D1—Im)U<OO . (2.7)
Using the similar argument, we have
*AATT i 0 _ 20 *a7—177
UMU(O()) (OO VINTV
_qr* _ p—I\r7 i 0 20 * _ —1y;
=U"M(I,, — D] )U(O())—l-(oo V*(Dy—LI,)N V. (2.8)
The equality (2.7) implies that
SViN“VI SNV (UTMULE 0
0 0 UsMUZ 0
(Vi =Dy NV BV (L — Dy NV, N UM(D} — 1)U\ Z 0
0 0 UsM(D; —1,)UL\Z 0

(2.9)
and the equality (2.8) implies that
UiMUE 0 _ (SViN-'V VPN~V
USMUIZ 0 0 0

UiM(l, — Dy ") U2 0) N (zvl* (D2 — L,)N~'V, 2V} (D, — In)N—%)
0 0 '

- (U;M(Im—D’;—l)ﬁlz 0
(2.10)

Then, according to (2.9), we have
SVIN“YV, - UfMUE = 3V (I, - Dy YN~V + UMD — 1)UL 2, (2.11)
VINW, = Vi (I, — Dy )Ny, (2.12)
—UsMU, = UsM(D} — 1)Uy, (2.13)
and according to (2.10), we have

UiMU\E—3SViN~'WVy = UM (L, — D} YU+ 2V (D, — L)N "'V, (2.14)
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UsMU, = Us M(I,, — D},
—ViN"W, =V (Dy — I,)N"'V3.
Subtracting (2.11) from the conjugate transpose of (2.14) leads to
s (ﬁf‘MUl - \71*N’1V> + <l~]1*MU1 - ‘71*N’1V1> >
-3 ((71*(1,,, — DYMUY — Vi (I, — D;l)N—lvl)
+ <X~/1*N_1 (D} — L)V — Ui M(D, — Im)U1> 5,
Applying Lemma 1.2 to (2.17) with Q = > T'=-%, and
X =UiMU, —V{N"'v,
S=% (ﬁl*(lm —DyYMU — Vi (I, — DEI)N’1V1>
+ (VN1 (D3 = 1)Vi = TiM(D; ~ 1)Uy ) 3
gives
1] = | gm0~ 7N | < 5l

where 8 = 0, + 0O,.
Since
~ - 7%
U'M(Q—-Q)N"'v= (lﬁ*
U2
_ (VINTVI—UMU, ViN~'V;
—~U;MU, 0 ’

)M(ﬁlf/f‘ — UV N~ (i, Va)

noting (2.18), we can obtain

| M-y <X +|

VI*N—lvzH + H@*MUl)

)

which together with (2.19) says that

|Fm@-ow1v| < slsi+]

VI*N*IVQH + HU;‘MU1 H :
Therefore, it follows from (2.21), (2.12) and (2.13) that

|Fm@ - ow—1v| < slsi+]

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

Vi (I, —D;l)N—1V2H n HUQ‘M(D’{ LU H :

(2.22)



MULTIPLICATIVE PERTURBATION BOUNDS 543

Note that
Il < || (VN (D3 = Vi = Oim(D; ~ 1)1 ) |
+[[E (T —Dl_l)MUl—Vf‘(ln—Dgl)N_1V1>H
<12l |[ViN~t (D3 — Vi = Ui M(D; — 1)U |

+Hz
2

’Ul Iy — Dy YMU; — Vi (I, —Dz’l)N’IVlH
<o (‘ ViN-U(D;— L)V H n Hﬁl*M(D’{ A H)

+5 (Hﬁf(lm—Dl’l)MUl’

*(In—Dz’l)N’IV‘D

<o (‘ NV2(Dy —In)Nl/zH + HMl/z(D’f —Im)M‘1/2H>
B [ I
=1 (102 = Ll oww) + 105 = Il ) )
81 (Il =27 aany + =23 ) (2.23)
and
[Vt = D3 W | < [N 20— Dy N2 = ([ =Dy gy 2240
|G MD; = L)on | < |M 207 = )M = 1D =l - 225)

Then, together with (2.22), (2.23), (2.24), (2.25) and the fact that

oG-t < pia-ow 7| [a-el e
we have
[0 0]y < 525 (=25 s+ 25 )
+ crroj&, <||DT = Lll (pan) + HD2_In||(NN)>
- (IID’[ — Inll oy + || 1 —D2—1|\(NN)) : (2.27)

Moreover, we also have

~ ~  (UiMU; — VN~V —VIN~V-
UM(Q—-Q)N"'v =171 "L ! 2 2.28
@-ow 7= (UM ) o
which implies
HU*M(Q— Q)N*T/H <|x* N‘1X72H + HUQ‘M@H. (2.29)
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From (2.14) and (2.15), we can obtain
HU;M&H = lusm@, — DYy 171H
<[M 20 = D2 = [l = D} (2.30)

HVI*N’IXN/QH = |vi, - 1N V2H

<|[372(p, — 1) 1/2H = (D2~ ll ) 2.31)

Therefore, according to (2.29), (2.19), (2.23), (2.30), (2.31), and noting the fact

jow-on] [0,

we have

80 1, < 52 (1im =i )+ =25 )

Gr(j:gr <||DT = Inll 3a2a) + D2 _In”(NN))
(11~ D5 gy 102~ Il i) - 2.33)

Consequently, the proof is completed combining (2.27) with (2.33).
If the weighted unitary invariant norm in Theorem 2.1 is replaced with the weighted
spectral norm, i.e., weighted norm, we have the following smaller perturbation bound.

THEOREM 2.2. Assume that the conditions of Theorem 2.1 hold. Then

[e-2],, < 5% (=D s+ 12 =5 )
(&)

+G+ ([IDT = Tl pgag + D2 = Ll ywy)
+m1n{max{||D’{ ~Inllygag [T = D3l }
max {||[Ln — D",y 1D2 = ullyn } } - (2.34)

Proof. Observe that (2.20) can be rewritten as

~ _ VEN~LV, —U*MU, 0 0 ViINTlY
MO—-0ON'v=(" 1= U MUl B | .
(©-9) ( 0 o) + (—U;MUI 0 )

Then, considering (2.18) and (2.26), we have
~ ~ ~ V*N71V
om@-on'v|, = |o-gf, < Yo
|om@-owv| =|o-o| <Ixl,+ *MU

0
2"

2
< ||XH2+max{HV1*N*1V2|

~Omu ).
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which together with (2.19), (2.23), (2.12), (2.13), (2.24), and (2.25) implies

o=l = 535 =557 =5

Tt O'r+0' (”D* Im“MM"’ HDZ_InHNN)
+max { |07~ Lullygag 11— D3 Ml }- (2.35)
Similarly, from (2.28), (2.18), and (2.32), we have

—ViN~'V,
uiMU, 0

|vm@-onv|| =|o-of ~<ixi+ H

2
<X+ max { || ~viv 1|

M0}
2

which combined with (2.19), (2.23), (2.30), and (2.31) gives

- o B -
[0-2],, < 525 (=i lys + 1= 23"y
O
+ 5 (IPT =Tl + 12 = il
+max{’|lm_DTil||MMa”DZ_InHNN}- (236)

Thus, (2.35) and (2.36) together yield the proof.
If we replace the weighted unitary invariant norm in Theorem 2.1 by the weighted
Frobenius norm, an alternative perturbation bound can be derived as follows.

THEOREM 2.3. Assume that the conditions of Theorem 2.1 hold and add a con-
dition that 1 = min 0itO; > /2 —¢, where G; is the i-th (M,N) singular value

1<6j<r \[67+07

of A, o) isthe j-th (M,N) singular value of A, and 0 < € < 1, then

~ 2 ) 1112 *
HQ_QHF(MN) S (H_?) (Hlm_Dl IHF(MM)JF“I’”_DIH%(MM)
+ 110 = D3 [ + 10 = Dl )

2— _
_ (1 _ n_;) max { (|l =D} [} g + 11— Dl )

(HI”_DEIHIZV(NN)_FHI'”_ TH%‘(MM))} (2.37)
2 w1112 .
< 2_¢ <HI’“_D1 IHF(MM) + ||Im_D1||12V(MM)
o 110 = D3 [y + 1 = D2l ) - (2.38)
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Proof. Applying Lemma 1.3 to (2.17) with Q = ¥, '=-%, X asin (2.18), and

E =U{(ln— Dy YMU, =V} (I, = Dy YN~ vy,
F=—V{N"YD; - 1,)V; + UiM(D} — 1)Uy,

. c~)',-—|—0','
N = min :

1<i,j<r /5i2+0,2
1 2 2
Xl < 2V IEIE + 1F[lF- (2.39)

From (2.20), (2.18), and the properties of the Frobenius norm, we have

>V2—¢

gives

~ ~ 2 ~ 2 -~ 2
HU*M(Q— Q)N’IVHF = IX|%+ HVI*N’1V2HF+ HU;MUlHF. (2.40)
Thus, it follows from (2.26), (2.40), (2.39), (2.12), and (2.13) that

~ 1 1 2
Vi~ D3N M|

lo-al, < (e +iriE) +|
F(MN) - 12 F F
~ 2
n HUQ‘M(D’; LU HF 2.41)
Note that

1 2 |l vty |1
o NI+ [V (=03 v va

2 7% -1 2
<2 HUl (Iy — D] )MUIHF—F‘

7% -1 -1 2
Vi(l, — Dy )N V1HF

7% 1 1 B
n ‘ Vi (L, — Dy N~ VzHF

2 |~ B 2 ¢ 2
:?HUI(L,,—D1 )MUIHFJF—nz ’ ;i

Vi (I —DEI)NA(Vth)H

€ ||y T 2 2—€\ ||y I 2
+FHV1 (I,— D3 )N IVIHFJF<1—7)|V1 (I, — D3N 1V2HF

2 1112 _12 2—¢ 12
< 2 (=i + = 25 ) + (1 2 ) o= 25 g

2 x—112 € 12
- ?Hl’" =7l aanny + (1 + p) 172 = D3 [ - (2.42)

Similarly,

1 2 7% * 2 € 2 2 2
o I+ G507 o[ < (143 ) W=Dy + 7 0= Dol
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which together with (2.41) and (2.42) leads to
~ 2 2 w—1112 ,1 2
G-0[] gy < 2l =i i+ (145 ) W =25 o
€ £112 2 2
+ 1+? [ = D1l (v +? 10 = D27 vy (2.43)
Furthermore, (2.28) combined with the properties of Frobenius norm implies

~ ~ 112 ~ 12 ~ 12
|o@ o t¥|, = i+ e W+ Jusnain]

which together with (2.32), (2.39), (2.15), and (2.16) gives
lo-of, <3 (||E||2+HFH2)+HU*M(1 Dy 0|
F(MN) N2 F F 27 m e
+HV1 D, —1, 1V2H (2.44)
Similar to (2.42), we can obtain

e 112 1 2
s IEIE+ UM, = Dy )G = — 1P+ ||usm(t— 01T |

n2|
112 2 112
< (142 W01 iy + =0 gy @249
and
1 2 * 1o |1? * -1
el S A A W HF (Ds— 1N
€ 2 %112
< (1) Vo= Dl + 2 V= Di - (2.46)

Thus, (2.44), (2.45), and (2.46) together says that

- 2 & x—1]2 2 ~192
HQ_ QHF(MN) s (1 " ?) = D7 vy + n? =22 )

2 2
2l 1f||F(MM>+(1+n)1 Dol 247)

Then, combining with (2.43), (2.47), and the condition on 717, we have (2.37) and (2.38).
When A,A € C*", the MN-SVDs of A and A are reduced to

A=U <§> V*=U,ZV*and A =U <§> V*=U,2V*.
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In this case, the MN-WPDs of A and A can be computed by
Q=U,\V*, H=N"'VIV*and 0 = U,V*, H =N"'VIV*.

Thus, X, S, E, F, U*M(Q—Q)N~'V ,and U*M(Q— Q)N 'V appearing in the proofs
of Theorem 2.1 and Theorem 2.3 are reduced to
X =UMU, —V*N"V,
S=% ((71*(1," —DYMUL V(I — DEI)N’1V>
n <I7*N‘1 (D5 — 1)V — UM(D' — Im)U1> s,
E = U; (I, — Dy YMU, —V*(I, — D; " )NV,
F =—V*N YD} — 1)V + U;M(D} — I,)Uy,
VN~V —UMU,
—UMU; ’
UfMU, —V*N~'V
UsMU, '

UM(Q—Q)N"'V = (
U*M(Q—Q)N~'V = (

In terms of above discussions and the methods to prove Theorem 2.1 and Theorem 2.3,
we can get the following theorems.

THEOREM 2.4. Let A,A =D}AD, € C™", where Dy € C™™ Dy € C'*". If A,A
have the MN-WPDs according to (1.1) and (2.1), respectively, then

16-2],,, < 2 (51 +25)

o *
+ %Tlﬁn (HDl = Inll(aanry + 1D2 _IHH(NN)>
+min{’|lm—D’1‘_lH(MM),HDT—ImH(MM)}, (2.48)

where 01,0, are the biggest (M,N) singular values ofA,g, and ©,, 0, are the small-
est (M,N) singular values of A,A, respectively.

THEOREM 2.5. Asserrne that the conditions in Theorem 2.4 hold and add a con-
0;+0;

dition that 1 = min —= > /2 —¢, where G; is the i-th (M,N) singular value
1<i,j<n 1/cr.ZJrcr}

of A, o) isthe j-th (M,N) singular value of A, and 0 < € < 1, then

~ 2 £ 112 «
HQ_QHF(MN) S <l+?) <HI’”_D1 1||F(MM>+”I’“_ 1”‘2’<MM)>

2 1112
+ ? (Hln —D; 1HF(NN) + 4 _D2H12‘7(NN)>
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2—¢ w—1112 w2
_ (1 - )max{Hlm R T 1||F(MM)} (2.49)
2 x—1|2 %112
< 2_¢ (HI’“_DI HF(MM)"’HIm_ 1||F(MM)
_1n2 2
+ HIn_D2lHF(NN)+ HIn_D2||F(NN)> : (2.50)
Four corollaries of above theorems are given as follows when M = I,, and N =

I,. These results give some new perturbation bounds for subunitary and unitary polar
factors.

COROLLARY 2.1. Let A, A= DiAD;, € CP**", where D € C,’,Q‘X’”,Dz ecrnIf
A7A have the generalized polar decompositions A = QH 7A = QH , respectively, then

5 ([t =D + [l =Dy []) +

+mm{<HDl—mH+||ln— 21||>,<Hlm— 11H+HD2—InII)},

lo-9|<; — Il + D2~ L)

2.51)

where ©1,0, are the biggest singular values of A,K , and oy, 0, are the smallest sin-
gular values of A, A, respectively.

COROLLARY 2.2. Assume that the conditions of Corollary 2.1 hold. Then

|0-0|, < 55 (=i |y + =05 |L) + 5 (D=l - [D2—1a )

oy —i—cr
+min {max {||D; - mHz»HIn—Dlez} max {Hlm— 1l 1D2= 0l )
(2.52)

COROLLARY 2.3. Assume that the conditions of Corollary 2.1 hold and add a

. . 6;+0; ~ . . . ~
condition that 1 = min —— > /2 — &, where 0; is the i-th singular value of A,
1<i,j<r cri2+crf

0j is the j-th singular value of A, and 0 < € < 1, then

60l < (145 ) (I —Di 2+ Il + 125 -+ 14 D3l

2_
= (125 max {7 + D2l

1=D3 " [[5+ D1} }
(2.53)

< 2 (1= D72+ = i+ (= D5 2+ = D).
(2.54)
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COROLLARY 2.4. Let A,A=DAD, € C!™", where Dy € C'*" and Dy € CI*",
IfA,g have the polar decompositions A = QH, A= @‘7 and n = min 919

—t >

1< j<n 67 +07 ~

V2 — €, where G; is the i-th singular value of A, C; is the j-th singular value of A,
and 0 < e < 1, then

~ 2 2
G-0f} < (152 (I I3+ 1D1l3) 5 (a5 -+ 121
- (125 Y max {05 I I 113} 255)

2
<3 (||Im — D[54 M — D13+ |1 — D3 |3+ Ik —DzH%) .
(2.56)

REMARK 2.1. When M =1, and N = I, in Theorem 2.4, the result (2.48) is
reduced to the corresponding bound for unitary polar factor, i.e., (1.4) in this paper.

REMARK 2.2. Itis not difficult to find that if the conditions in Corollary 2.3 and
Corollary 2.4 hold, i.e., n > v/2—¢€ and 0 < € < 1, and ¢ is set to be a suitable value,
the new bounds (2.53), (2.54), (2.55), and (12.56) ma}: be smaller than the corresponding

. 4(|[bn=Dy | | =D | g4 ID = £ D2~ T )
one (1.5). In fact, if 0 < & < (im—=D5 o+ [[1n=D3 [ 2+(ID1 —hul 1 Da— T )2
v/2 — €, the bounds (2.54) and (2.56) are not greater than the one (1.5). In addition, it
is easy to see that the bounds (2.53) and (2.55) are smaller than the corresponding ones
(2.54) and (2.56). However, they seem to be a little complicated in form.

and n >

REMARK 2.3. As we know, if the perturbed matrix is expressed as A=A +E,
then such perturbation is called additive perturbation. For this perturbation, many au-
thors studied various perturbation bounds for the (generalized) polar decomposition in
various norms, see e.g., [2, 3, 4,5, 7, 8,9, 13, 14, 15, 16, 17, 18, 21]. Here we only
introduce two bounds which are given in the spectral norm and Frobenius norm, re-
spectively, since they can be used to compare with the results obtained in this paper in
the following examples. The one in the special norm was derived by Li [13] recently
for subunitary polar factor, i.e., for A,A € CI"*",

1+3

HQ_QHﬁ e L 3 (2.57)

where 0,, 0, are the smallest singular values of A,g , respectively. The one in Frobenius
norm was obtained by Li and Sun [16] for A,A € C"™*",

2
o, + O,

HQ—QHF < IE| 5. (2.58)

In general, this bound was claimed to be the current best perturbation bound in Frobe-
nius norm without assuming that ||E|| is tiny [16, 17].
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When the Frobenius norm in the bound (2.58) is replaced with the unitarily invari-
ant norm, Li [9] showed that it also holds for A,A € C*". However, in this case, it is
not satisfied for more general cases [13], for example, for A,A € C"*" or CI"*".

REMARK 2.4. From Remark 2.1 in [5], we know the multiplicative perturba-
tion implies the additive perturbation. However, in general neither of the perturbation
bounds of such two perturbations for (generalized) polar decomposition is uniformly
better than the other. Two examples are provided in the following. For them, the bounds
obtained in this paper are a little better in comparison. Furthermore, it is not difficult to
see that the conclusion on (generalized) polar decomposition introduced above is also
valid for WPD.

EXAMPLE 2.1. Let

1000 0 0O
A= 8 0'%018 €Cy?, Dy=1L, D,=diag(1.0001,0.9999,1).
0 0 0

Then, we have

1+V3
i \[ |E|, = 1.366094 x 10
O, + O,

and the value of bound (2.52) 1.000151 x 102. For this example, the multiplicative
perturbation bound (2.52) is better than the additive perturbation bound (2.57).

EXAMPLE 2.2. Let

0 0

1
A= 005 5(')5 8 € Cy3, Dy =diag(0.9998,1,1.0001,0.9999),

0 2750
D> = diag (1.0002,0.9999, 1).

Then, after some computation, we can get 11 = 1.1628 and the perturbation bounds
(1.5) and (2.58), respectively, in the following:

HQ_ QHF < 6.6264 x 10~ and HQ’— QHF <7.0848 x 10°*.

If the value of ¢ is set to be 0.7,0.8,0.9, then 1 > /2 — & = 1.1402,1.0954,1.0488,
respectively. In this case, the bound (2.54) can be obtained, respectively, as follows:

HQ— QHF <58177x 104 6.0553 x 10~ and 6.3246 x 10—,
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For this example, the new bound (2.54) is better than the ones (1.5) and (2.58) when
€=0.7,0.8,0.9. Moreover, we have

4|t =Dy || [ = D3 || + 11 = Bl 1D2 = Il )

=0.9979.
(|Tm = DY + [ Tn — D3| )2+ (1D1 = Il p + ||D2 = L] )2

Consequently, the bound (2.54) is always better than the one (1.5) if € < 0.9979 and
v2—€<1.1628,1.e., 0.6479 < € < 0.9979 for this example.
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