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HARDY INEQUALITIES WITH REMAINDER TERMS FOR THE

GENERALIZED BAOUENDI–GRUSHIN VECTOR FIELDS

JINGBO DOU, QIANQIAO GUO AND PENGCHENG NIU

(Communicated by S. Varošanec)

Abstract. Based on the properties of vector fields and the generalized divergence formula, we
prove the Hardy inequalities with remainder terms for the generalized Baouendi-Grushin vector
fields and determine the best constants in these Hardy inequalities.

1. Introduction

Consider the generalized Baouendi-Grushin (B-G) vector fields (see [12], [15])

Zi =
∂
∂xi

, Zn+ j = |x|α ∂
∂y j

, (1 � i � n, 1 � j � m)

where α > 0, x∈R
n , y∈R

m . ∇L = (Z1, . . . ,Zn,Zn+1 . . . ,Zn+m) denotes the horizontal
gradient and divL(u1, u2, . . . , un,un+1 . . . , un+m) = ∑n+m

i=1 Ziui denotes the generalized
divergence. Thus, the second order degenerate elliptic operator and p -degenerate sub-
elliptic operator can be defined as

Lα = Δx + |x|2αΔy =
n+m

∑
i=1

Zi =∇L ·∇L, and

Lp,αu = divL
(|∇Lu|p−2∇Lu

)
= ∇L

(|∇Lu|p−2∇Lu
)
, p > 1,

respectively, where Δx and Δy are Laplace operators on R
n and R

m , respectively.
In general, we call Lα the generalized B-G operator. When α = 0, the operator

Lα is just reduced to the standard Laplacian in R
N . If α is a positive even integer,

the Zj ’s satisfy Hörmander’s finite rank condition. But in the general case Hörmander’s
condition is meaningless since the vector fields are not sufficiently smooth and Lα does
not belong to the class of sub-Laplacians since it is not left-invariant. We note that Lα
belongs to the wide class of sub-elliptic operators introduced and studied by Franchi
and Lanconelli in [7, 8, 9]. Clearly, Lα is elliptic if x �= 0 and becomes degenerate on
the manifold {0}×R

m .
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We start with some basic facts related to the generalized B-G vector fields. Recall
that the distance function is defined as

d(x,y) = (|x|2(α+1) + (α+1)2|y|2) 1
2(α+1) .

For d = d(x,y) , it is easy to see

∇Ld =
|x|α

d2α+1 (|x|αx1, |x|αx2, . . . , |x|αxn,(α +1)y1,(α +1)y2, . . . ,(α +1)ym) ,

|∇Ld|2 =
|x|2α
d2α = ψ2α , |∇Ld|p =

|x|pα
dpα = ψpα , Lp,αd =

Q−1
d

ψpα . (1.1)

Let Ω = BL(R2)\BL(R1) for 0 � R1 < ρ < R2 � ∞ , where BL(R) = BL(0,R) =
{(x,y) ∈ R

n+m|d(x,y) < R} denotes the ball of radius R with center in 0. If u :Ω→ R

is radial and satisfies u(x,y) = ψpαv(d), then the change of polar coordinates in [14]
(x1, . . . ,xn,y1, . . . ,ym) → (ρ ,θ ,θ1, . . . ,θn−1,γ1, . . . ,γm−1) allows the following formula
to hold ∫

Ω
u(x,y) = sn,m

∫ R2

R1

ρQ−1v(ρ)dρ , (1.2)

where sn,m =
(

1
α+1

)mωnωm
∫ a2
a1

|sinθ | n+pα
α+1 −1|cosθ |m−1dθ . The definitions of ωn, ωm

and more details can be seen in [14].
Recently, the integral inequalities related to the generalized B-G vector fields have

been paid much attention by many scholars. In [13] the following Sobolev embedding
inequality has been proved.

(∫
Ω
|u|2∗dxdy

) 1
2∗

� S

(∫
Ω
|∇Lu|2dxdy

) 1
2

, u ∈ D1,2
0 (Ω) (1.3)

with some constant S , where 2∗ = 2Q
Q−2 is the critical Sobolev exponent, Q = n +

(α + 1)m is the homogeneous dimension of R
n+m , Ω ⊂ R

n+m , D1,p
0 (Ω) denotes the

completion of C∞
0 (Ω) with respect to the norm ‖u‖D1,p = (

∫
Ω |∇Lu|pdxdy)

1
p . When

Ω is a bounded open domain, the Sobolev inequality with remainder terms was also
proved. The extremal function of (1.3) in the case α = 1 and n = m = 1 has been
discussed by Beckner in [3].

D’Ambrosio in [4, 5] obtained the Hardy inequalities with respect to the general-
ized B-G vector fields on a bounded domain Ω⊂ R

n+m : If p �= Q , then it holds

∫
Ω
|∇Lu|pdxdy �

∣∣∣∣Q− p
p

∣∣∣∣
p ∫

Ω

( |x|
d

)pα |u|p
dp dxdy, u ∈ D1,p

0 (Ω). (1.4)

If p = Q , let R > 0 and set Ω := {(x,y) ∈ R
n+m |d(x,y) < R} , then one has(

p−1
p

)p∫
Ω

( |x|
d

)pα |u|p(
d ln
(

R
d

))p dxdy �
∫
Ω
|∇Lu|pdxdy, u ∈ D1,p

0 (Ω), (1.5)
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where the distance function d = d(x,y) can be seen above. Furthermore, he has ex-
tended Hardy inequalities to more generic vector fields. For Ω = R

n+m , Garofalo in
[12] obtained inequality (1.4) with p = 2, and Zhang, Niu in [15] established the Pi-
cone identity and proved the inequality (1.4) with 1 < p < Q . For any bounded domain

Ω ⊂ R
n+m containing 0, it is known that the best constant

∣∣∣Q−p
p

∣∣∣p in the inequality

(1.4) is never achieved for any function u ∈ D1,p
0 (Ω) . So one looks forward to have an

estimate of the error term on the right hand side of the inequality (1.4). However, up to
now, we find nothing about improvement of the inequality (1.4).

The purpose of this article is to prove some Hardy inequalities with remainder
terms on the generalized B-G vector fields. Our methold is based on the properties of
vector fields and the generalized divergence formula. We prove such Hardy inequalities
and compact embedding in weighted Sobolev spaces. The best constants in Hardy
inequalities are also determined .

Hardy inequalities and its generalizations in the Euclidean space have been ex-
tensively studied and applied to various interesting problems in PDE. We here refer
to [1, 2, 10]. But the research on Hardy inequalities in vector fields here are more
complicated and challenged than the research in Euclidean space.

This paper is organized as follows. In next section, we prove Hardy inequalities
with remainder terms. In section 3, we discuss the best constants.

In the sequel, for convenience of presentation we will use c, c1, C, etc. for a
suitable positive constants usually except special narrating.

2. Hardy inequalities with remainder terms

In this section, let a bounded domain 0 ∈Ω⊂ R
n+m .

Let us recall that

Γ(d(x,y)) =

{
d

p−Q
p−1 , if p �= Q,

− lnd, if p = Q

is the solution of Lp,α at the origin (see [14]), that is, Lp,αΓ(d(x,y)) = 0 on Ω\{0} .
This implies

(Q− p)[dLp,αd− (Q−1)|∇Hd|p] � 0, on Ω\ {0}. (C)

It is a pivotal geometric hypothesis and a guarantee for the choice of vector fields.
For simplicity, write B(s) = − 1

ln(s) , s ∈ (0,1) and A = Q−p
p . For R >

sup (x,y)∈Ωd(x,y) , there exists a constant M > 0 such that

0 � B

(
d(x,y)

R

)
� M, (x,y) ∈Ω.

Furthermore,

∇LB
γ
(

d
R

)
= γ

Bγ+1
(

d
R

)
∇Ld

d
,

dBγ (ρ
R

)
dρ

= γ
Bγ+1

(ρ
R

)
ρ

, for all γ ∈ R, (2.1)
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and ∫ b

a

Bγ+1(s)
s

ds =
1
γ

[Bγ (b)−Bγ(a)] . (2.2)

One of the main results is

THEOREM 2.1. Let 0 ∈Ω be a bounded domain in R
n+m and 1 < p < ∞ .

(1) If p �= Q, then there exists a positive constant R0 � sup (x,y)∈Ωd(x,y) such that

for any R > R0 and all u ∈ D1,p
0 (Ω\ {0}) ,∫

Ω
|∇Lu|pdxdy �

∣∣∣∣Q− p
p

∣∣∣∣
p∫

Ω
ψpα

|u|p
dp dxdy

+
p−1
2p

∣∣∣∣Q− p
p

∣∣∣∣
p−2∫

Ω
ψpα

|u|p
dp

(
ln

(
R
d

))−2

dxdy. (2.3)

In particular, if 2 � p < Q, one can take sup (x,y)∈Ωd(x,y) = R0 .

(2) If p = Q, then there exists R > sup (x,y)∈Ωd(x,y) such that for all u∈D1,p
0 (Ω\

{0}) ∫
Ω
|∇Lu|pdxdy �

(
p−1

p

)p ∫
Ω
ψpα

|u|p(
d ln
(

R
d

))p dxdy. (2.4)

Proof. Let T be a C1 vector field on Ω which is specified later. For any u ∈
C∞

0 (Ω\ {0}) , using Hölder’s inequality and Young’s inequality we obtain∫
Ω
(divLT)|u|pdxdy = −p

∫
Ω
〈T,∇Lu〉|u|p−2udxdy

� p

(∫
Ω
|∇Lu|pdxdy

) 1
p
(∫

Ω
|T| p

p−1 |u|pdxdy

) p−1
p

�
∫
Ω
|∇Lu|pdxdy+(p−1)

∫
Ω
|T| p

p−1 |u|pdxdy.

So, ∫
Ω
|∇Lu|pdxdy �

∫
Ω
[divLT− (p−1)|T| p

p−1 ]|u|pdxdy. (2.5)

(1) Let a be a parameter to be chosen later. Write

I1(B) = 1+
p−1
pA

B

(
d
R

)
+aB2

(
d
R

)
, I2(B) =

p−1
pA

B2
(

d
R

)
+2aB3

(
d
R

)
,

and take T(d) = A|A|p−2 |∇Ld|p−2∇Ld
dp−1 I1. We immediately compute

divL

(
A|A|p−2 |∇Ld|p−2∇Ld

dp−1

)
= A|A|p−2 dLp,αd− (p−1)|∇Ld|p

dp

= A|A|p−2 (Q−1− p+1)|∇Ld|p
dp

= p|A|p |∇Ld|p
dp , (2.6)
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where we use (C) and (1.1). From (2.1) and (2.6) it holds

divLT = p|A|p |∇Ld|p
dp I1 +A|A|p−2 |∇Ld|p−2∇Ld

dp−1

∇Ld
d

[
p−1
pA

B2
(

d
R

)
+2aB3

(
d
R

)]

= p|A|p |∇Ld|p
dp I1 +A|A|p−2 |∇Ld|p

dp I2.

Thus,

divLT− (p−1)|T| p
p−1 = p|A|p |∇Ld|p

dp I1 +A|A|p−2 |∇Ld|p
dp I2− (p−1)|A|p |∇Ld|p

dp I
p

p−1
1

= |A|p |∇Ld|p
dp

(
pI1 +

1
A

I2− (p−1)I
p

p−1
1

)
. (2.7)

Define f (s) := pI1(s)+ 1
AI2(s)−(p−1)I

p
p−1
1 (s). We need the following estimate which

will be proved later,

f (s) � 1+
p−1
2pA2 s2, s ∈ (0,M). (2.8)

Hence,

divLT− (p−1)|T| p
p−1 � |A|p |∇Ld|p

dp

(
1+

p−1
2pA2 B2

(
d
R

))
, 0 < B

(
d
R

)
� M,

(2.9)

where M = M(R) := sup (x,y)∈ΩB
(

d(x,y)
R

)
.

Now we check (2.8) as follows. Arguing as in Theorem 4.1 of [1], from Taylor’s
formula we get

f (s) = f (0)+ f ′(0)s+
1
2

f ′′(ηs)s2, 0 � ηs � s � M. (2.10)

Note that f (0) = 1 and

f ′(0) =
p−1

A
− p

p−1
pA

= 0,

f ′′(0) = 2ap+
2(p−1)

pA2 −2ap− p
p−1

(
p−1
pA

)2

=
p−1
pA2 ,

f ′′′(0) =
12a
A

− 6ap
p−1

p−1
pA

− p(2− p)
(p−1)2

(
p−1
pA

)3

=
6a
A

− (2− p)(p−1)
p2A3 .

Let’s distinguish three cases.
(i) 1 < p < 2 < Q . Now A > 0. We can choose a > (2−p)(p−1)

6p2A2 > 0 such that

f ′′′(0) > 0. Hence f ′′ is an increasing function in the interval (0,M0) for some M0 > 0.
So, for s ∈ (0,M0) ,

f ′′(ηs) � f ′′(0) =
p−1
pA2 .
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It then follows from (2.10) that

f (s) = f (0)+
1
2

f ′′(ηs)s2 � 1+
p−1
2pA2 s2, s ∈ (0,M0).

Hence (2.8) holds in this case.
(ii) 2 � p < Q . We still have A > 0. Let’s take a = 0 and then f ′′′(0) > 0. For

s > 0 one has

f ′′′(s) =
(p−2)(p−1)

p2A3

(
1+

p−1
pA

s

) 3−2p
p−1

> 0.

Hence, we can get (2.8) repeating the argument as the case (i) by picking M0 =∞ .

(iii) p > Q . Since A < 0, we choose a such that a < (2−p)(p−1)
6p2A2 < 0, so that

f ′′′(0) > 0 and proceed as before.
It is not difficult to choose M0 (small enough) in all cases such that for 0 < B <

M0 , 1+ p−1
pA B +aB2 > 0. Since B(s) = − 1

ln(s) , the condition B � M0 is equivalent

to R � R0 := e
1

M0 sup (x,y)∈Ωd(x,y) . The inequality (2.3) is proved.

(2) Suppose that p = Q . By taking T(d) =
(

p−1
p

)p−1 |∇Ld|p−2∇Ld
dp−1 Bp−1

(
d
R

)
, we

have

divLT =
(

p−1
p

)p−1{ [Q−1−(p−1)]|∇Ld|p
dp Bp−1

(
d
R

)
+(p−1)Bp

(
d
R

) |∇Ld|p
dp

}

= p

(
p−1

p

)p

Bp
(

d
R

) |∇Ld|p
dp ,

and hence

divLT− (p−1)|T| p
p−1 =

(
p−1

p

)p

Bp
(

d
R

) |∇Ld|p
dp . (2.11)

Combining (2.11) and (2.5) follows (2.4).

REMARK 2.2. The domain Ω in (2.5) may be bounded or unbounded. In addi-

tion, if we select T(d) = A|A|p−2 |∇Ld|p−2∇Ld
dp−1 , then

divLT− (p−1)|T| p
p−1 = p|A|p |∇Ld|p

dp − (p−1)|A|p |∇Ld|p
dp = |A|p |∇Ld|p

dp .

Therefore, from (2.5) we conclude (1.4) on a bounded domain Ω and on R
n+m (see

[15]), respectively. Moreover, the constant |A|p =
∣∣∣ p−Q

p

∣∣∣p = CQ,p is optimal (see [5]).

On the other hand, we know the conclusion of Theorem 2.1 is also true in the Heisen-
berg group, see [6].

Now, we give a Poincaré inequality using (2.5).
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THEOREM 2.3. Let Ω be an open subset of R
n+m , and set (x1,x2, · · · ,xn,y1, · · · ,ym)

∈ Ω . If there is a constant R > 0 such that 0 < r = |x1| � R, then for u ∈ D1,p
0 (Ω) ,

we have

c
∫
Ω
|u|pdxdy �

∫
Ω
|∇Lu|pdxdy, (2.12)

where c =
(

1
pR

)p
.

In fact, by choosing T = 1
pp−1

∇Lr
rp−1 in (2.5), we immediately obtain (2.12).

Now, we describe a compactness result from (1.4) and (2.12). Define

Fp :=
{

f : Ω→ R
+ | lim

d(x,y)→0

dp(x,y)
ψpα

f (x,y) = 0, f (x,y) ∈ L∞loc(Ω\ {0})
}

.

THEOREM 2.4. Suppose p �= Q and f (x,y) ∈ Fp . Then there exists a positive
constant Cf ,Q,p such that

Cf ,Q,p

∫
Ω

f |u|pdxdy �
∫
Ω
|∇Lu|pdxdy, (2.13)

for any u ∈ D1,p
0 (Ω \ {0}) . Moreover, the embedding D1,p

0 (Ω) ↪→ Lp(Ω, f dxdy) is
compact.

Proof. Since f (x,y) ∈ Fp , for any ε > 0, there exist δ > 0 and Cδ such that

supBL(δ )⊆Ω
dp

ψpα
f (x,y) � ε and f |Ω\BL(δ ) � Cδ .

Combining (1.4) and (2.12) yields

∫
Ω

f |u|pdxdy =
∫

BL(δ )
f |u|pdxdy+

∫
Ω\BL(δ )

f |u|pdxdy

� ε
∫

BL(δ )
ψpα

|u|p
dp dxdy+C

∫
Ω\BL(δ )

|u|pdxdy

� C−1
f ,Q,p

∫
Ω
|∇Lu|pdxdy

for some suitable constant C > 0. It follows (2.13).
Next, we discuss the compactness. Let {um} ⊂ D1,p

0 (Ω) be a bounded sequence.

By reflexivity of the space D1,p
0 (Ω) and the Sobolev embedding theorem for vector

fields (see [11]) it gets {
umj ⇀ u weakly in D1,p

0 (Ω),
umj → u strongly in Lp(Ω)

(2.14)
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for a subsequence {umj} of {um} as j → ∞ . Write Cδ = ‖ f‖L∞(Ω\BL(δ )) . By (1.4),∫
Ω

f |umj −u|pdxdy =
∫

BL(δ )
f |umj −u|pdxdy+

∫
Ω\BL(δ )

f |umj −u|pdxdy

� ε
∫

BL(δ )
ψpα

|umj −u|p
dp dxdy+Cδ

∫
Ω\BL(δ )

|umj −u|pdxdy

� εC−1
Q,p

∫
Ω
|∇L(umj −u)|pdxdy+Cδ

∫
Ω
|umj −u|pdxdy.

Since {um} ⊆ D1,p
0 (Ω) is bounded, we deduce∫

Ω
f |umj −u|pdxdy � εM +Cδ

∫
Ω
|umj −u|pdxdy,

where M > 0 is a constant depending on Q and p . By (2.14),

lim
j→∞

∫
Ω

f |umj −u|pdxdy � εM.

As ε is arbitrary, lim j→∞
∫
Ω f |umj −u|pdxdy = 0. So the embedding D1,p

0 (Ω) ↪→ Lp(Ω,
f dxdy) is compact.

REMARK 2.5. The class of the functions f (ξ ) ∈ Fp has lower order singularity
than d−p at the origin. The examples of such functions include any bounded function

or in a small neighbourhood of 0, f (ξ ) = ψpα (ξ )
dβ (ξ )

with 0 < β < p .

3. Proof of best constants

In this section, we discuss that the constants appearing in Theorem 2.1 are the best.
To do this, we introduce the function vε(d) ∈ D1,p

0 (BL(1)) satisfying

vε (d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for d � ε2,

ln d
ε2

dA ln 1
ε
, for ε2 � d � ε,

ln 1
d

dA ln 1
ε
, for ε � d � 1,

with sufficiently small ε > 0 and A = Q−p
p . In evidence, vε is continuous and differ-

entiable a.e. and its derivative is given by

v′ε (d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, for d � ε2,

1

d
Q
p ln 1

ε

(
1−A ln d

ε2

)
, for ε2 � d � ε,

− 1

d
Q
p ln 1

ε

(
1+A ln 1

d

)
, for ε � d � 1.
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LEMMA 3.1. Suppose that there exists a constant R > 0 such that
sup (x,y)∈BL(1)d(x,y) � R and ε > 0 small enough. Then

(a)
∫

BL(1)
|∇Lvε (d)|pdxdy =

|A|psn,m

p+1
ln

1
ε

⎡
⎣2+p(p+1)

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)⎤⎦ .

(b)
∫

BL(1)
ψpα

|vε(d)|p
dp dxdy =

2sn,m

p+1
ln

1
ε
.

(c)
∫
Ω
ψpα

|vε(d)|p
dp Bι

(
d
R

)
dxdy � sn,m

p+1

(
ln

(
1
ε

))1−ι
, ι > 0.

Proof. (a) By (1.2),∫
BL(1)

|∇Lvε(d)|pdxdy =
∫

BL(1)
|v′ε(d)∇Ld|pdxdy = sn,m

∫ 1

0
|v′ε (ρ)|pρQ−1dρ

=
sn,m

(ln 1
ε )

p

[∫ ε

ε2

∣∣∣A ln
ρ
ε2 −1

∣∣∣p 1
ρ

dρ+
∫ 1

ε

∣∣∣∣1+A ln
1
ρ

∣∣∣∣
p 1
ρ

dρ
]

=

⎧⎪⎪⎨
⎪⎪⎩

sn,m

(ln 1
ε )

p

[∫ ε

ε2

∣∣∣A ln
ρ
ε2 −1

∣∣∣p d
(
ln

ρ
ε2

)
+
∫ 1

ε

∣∣∣∣1+A ln
1
ρ

∣∣∣∣
p

(−1)d
(

ln
1
ρ

)]
, p < Q

sn,m

(ln 1
ε )

p

[∫ ε

ε2

∣∣∣|A| ln ρ
ε2 +1

∣∣∣p d
(
ln

ρ
ε2

)
+
∫ 1

ε

∣∣∣∣|A| ln 1
ρ
−1

∣∣∣∣
p

(−1)d
(

ln
1
ρ

)]
, p > Q

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sn,m

A(ln 1
ε )

p

[∫ 1

0
spds+

∫ A ln 1
ε−1

0
spds+

∫ A ln 1
ε +1

1
τ pdτ

]
, p < Q

sn,m

|A|(ln 1
ε )

p

[∫ |A| ln 1
ε +1

1
spds+

∫ |A| ln 1
ε−1

0
τ pdτ +

∫ 1

0
τ pdτ

]
, p > Q

=
sn,m

(p+1)|A|(ln 1
ε )

p

[(
|A| ln 1

ε
−1

)p+1

+
(
|A| ln 1

ε
+1

)p+1
]

=
sn,m

(p+1)|A|(ln 1
ε )

p

(
|A| ln 1

ε

)p+1
⎡
⎣(1− 1

|A| ln 1
ε

)p+1

+

(
1+

1

|A| ln 1
ε

)p+1
⎤
⎦

(3.1)

for ε small enough.
Since ε is sufficiently small, using Taylor’s series shows(
1+

1

|A| ln 1
ε

)p+1

= 1+(p+1)
1

|A| ln 1
ε
+

p(p+1)
2

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)
, (3.2)

and(
1− 1

|A| ln 1
ε

)p+1

= 1−(p+1)
1

|A| ln 1
ε
+

p(p+1)
2

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)
. (3.3)
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By (3.1), (3.2) and (3.3) we obtain

∫
BL(1)

|∇Lvε(d)|pdxdy =
|A|psn,m

p+1
ln

1
ε

⎡
⎣2+ p(p+1)

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)⎤⎦ .

Hence, it concludes (a) .
(b) We have the following estimates after the change of coordinates (1.2)

∫
BL(1)

ψpα
|vε(d)|p

dp dxdy

= sn,m

∫ 1

0

|vε(ρ)|p
ρ p ρQ−1dρ

=
sn,m

(ln 1
ε )

p

[∫ ε

ε2

(
ln ρ

ε2

ρA

)p

ρQ−p−1dρ +
∫ 1

ε

(
ln 1

ρ

ρA

)p

ρQ−p−1dρ

]

=
sn,m

(ln 1
ε )

p

[∫ ε

ε2

(
ln

ρ
ε2

)p dρ
ρ

+
∫ 1

ε

(
ln

1
ρ

)p dρ
ρ

]

=
sn,m

(p+1)(ln 1
ε )p

[∫ ε

ε2

d
dρ

(
ln

ρ
ε2

)p+1
−
∫ 1

ε

d
dρ

(
ln

1
ρ

)p+1
]

=
2sn,m

p+1
ln

1
ε
,

which is (b) .
(c) For ι > 0, arguing as (b) we get

∫
Ω
ψpα

|vε(d)|p
dp Bι

(
d
R

)
dxdy = sn,m

∫ 1

0

|vε(ρ)|p
ρ p

(
ln

(
R
ρ

))−ι
ρQ−1dρ

=
sn,m(
ln 1

ε
)p

⎡
⎢⎣∫ ε

ε2

(
ln ρ

ε2

)p

(
ln
(

R
ρ

))ι
ρ

dρ+
∫ 1

ε

(
ln 1

ρ

)p

(
ln
(

R
ρ

))ι
ρ

dρ

⎤
⎥⎦

� sn,m(
ln 1

ε
)p

⎡
⎣(ln

(
R
ε2

))−ι ∫ ε

ε2

(
ln ρ

ε2

)p

ρ
dρ +

(
ln

(
R
ε

))−ι ∫ 1

ε

(
ln 1

ρ

)p

ρ
dρ

⎤
⎦

=
sn,m ln 1

ε
p+1

[(
ln

(
R
ε2

))−ι
+
(

ln

(
R
ε

))−ι]

�
sn,m ln 1

ε
p+1

[(
2ln

(
1
ε

))−ι
+
(

ln

(
1
ε

))−ι]

� sn,m

p+1

(
ln

(
1
ε

))1−ι
.
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THEOREM 3.2. Let 0 ∈ Ω be a bounded domain in R
n+m and R > 0 such that

sup (x,y)∈Ωd(x,y) < R. Suppose p �= Q, and for some constants B > 0, D � 0 , ι > 0 ,
the following inequality holds for any u ∈C∞

0 (Ω\ {0})
∫
Ω
|∇Lu|pdxdy � B

∫
Ω
ψpα

|u|p
dp dxdy+D

∫
Ω
ψpα

|u|p
dp Bι

(
d
R

)
dxdy. (3.4)

Then
(i) B � |A|p ;
(ii) ι � 2 if B = |A|p and D > 0 .
(iii) D � p−1

2p |A|p−2 if B = |A|p and ι = 2 .

Proof. Since (3.4) holds for every u ∈ D1,p
0 (Ω \ {0}) , we just prove the theorem

on the unit ball BL(1) for u = vε(d) .
(i) By (a) and (b) in Lemma 3.1 we derive

B �
∫
BL(1) |∇Lvε(d)|pdxdy∫
BL(1)ψpα

|vε (d)|p
dp dxdy

�

|A|psn,m
p+1 ln 1

ε

[
2+ p(p+1)

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)]
2sn,m
p+1 ln 1

ε

.

The result is obtained by taking ε → 0.
(ii) Let B = |A|p, D > 0. Assume by contradiction that 0 < ι < 2. Invoking

(a), (b) and (c) of Lemma 3.1 yields

0 < D �
∫
BL(1) |∇Lvε(d)|pdxdy−|A|p∫BL(1)ψpα

|vε (d)|p
dp dxdy∫

Ωψpα
|vε (d)|p

dp Bι
(

d
R

)
dxdy

�

|A|psn,m
p+1 ln 1

ε

[
p(p+1)

(
1

|A| ln 1
ε

)2

+O

(
1

ln 1
ε

)]

sn,m
p+1

(
ln
( 1
ε
))1−ι

� C

(
ln

(
1
ε

))ι−2

→ 0, ε → 0,

which is a contradiction. Hence ι � 2.
(iii) To show that D � p−1

2p |A|p−2 for B = |A|p and ι = 2, we redefine the cut-

function on BL(1) , that is, let vε,κ(d) ∈ D1,p
0 (BL(1)) satisfy

vε,κ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if d � ε2,(
ln d

ε2

)−κ
dA ln 1

ε
, if ε2 � d � ε,

(
ln 1

d

)−κ
dA ln 1

ε
, if ε � d � 1,
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where A = Q−p
p , 1

p < κ < 2
p , ε > 0 small. Clearly, vε,κ is continuous and differentiable

almost everywhere and its derivative is

v′ε,κ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if d � ε2,

−
(
ln d

ε2

)−κ
d

Q
p ln 1

ε

(
A+

κ
ln d

ε2

)
, if ε2 � d � ε,

−
(
ln 1

d

)−κ
d

Q
p ln 1

ε

(
A− κ

ln 1
d

)
, if ε � d � 1.

Similar to the proof of Lemma 3.1, we have

I1 :=
∫

BL(1)
|∇Lvε,κ(d)|pdxdy−|A|p

∫
BL(1)

ψpα
|vε,κ(d)|p

dp dxdy

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sn,m(
ln 1

ε
)p

[∫ ε

ε2

(
ln

ρ
ε2

)−pκ
(
|A+

κ
ln ρ

ε2

|p−|A|p
)
ρ−1dρ

+
∫ 1

ε

(
ln

1
ρ

)−pκ
(
|A− κ

ln 1
ρ
|p−|A|p

)
ρ−1dρ

]
, p < Q,

sn,m(
ln 1

ε
)p

[∫ ε

ε2

(
ln

ρ
ε2

)−pκ
(
||A|− κ

ln ρ
ε2

|p−|A|p
)
ρ−1dρ

+
∫ 1

ε

(
ln

1
ρ

)−pκ
(
||A|+ κ

ln 1
ρ
|p−|A|p

)
ρ−1dρ

]
, p > Q.

Since ε > 0 is sufficiently small, using Taylor’s series concludes that∣∣∣∣∣A+
κ

ln ρ
ε2

∣∣∣∣∣
p

−|A|p � p|A|p−1κ
(
ln

ρ
ε2

)−1
+

p(p−1)κ2

2
|A|p−2

(
ln

ρ
ε2

)−2

+C
(
ln

ρ
ε2

)−3
, p < Q,∣∣∣∣∣|A|− κ

ln ρ
ε2

∣∣∣∣∣
p

−|A|p � −p|A|p−1κ
(
ln

ρ
ε2

)−1
+

p(p−1)κ2

2
|A|p−2

(
ln

ρ
ε2

)−2

+C
(
ln

ρ
ε2

)−3
, p > Q

for ρ ∈ (ε2,ε) , where C is some suitable positive constant, and for ρ ∈ (ε,1) ,∣∣∣∣∣A− κ
ln 1

ρ

∣∣∣∣∣
p

−|A|p � −p|A|p−1κ
(

ln
1
ρ

)−1

+
p(p−1)κ2

2
|A|p−2

(
ln

1
ρ

)−2

+C

(
ln

1
ρ

)−3

, p < Q,
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∣∣∣∣∣|A|+ κ
ln 1

ρ

∣∣∣∣∣
p

−|A|p � p|A|p−1κ
(

ln
1
ρ

)−1

+
p(p−1)κ2

2
|A|p−2

(
ln

1
ρ

)−2

+C

(
ln

1
ρ

)−3

, p > Q.

Then, for p < Q , we obtain

I1 � sn,m(
ln 1

ε
)p

{∫ ε

ε2

[
p|A|p−1κ

(
ln

ρ
ε2

)−pκ−1
+

p(p−1)κ2

2
|A|p−2

(
ln

ρ
ε2

)−pκ−2

+C
(
ln

ρ
ε2

)−pκ−3
]
ρ−1dρ

+
∫ 1

ε

[
−p|A|p−1κ

(
ln

1
ρ

)−pκ−1

+
p(p−1)κ2

2
|A|p−2

(
ln

1
ρ

)−pκ−2

+C

(
ln

1
ρ

)−pκ−3
]
ρ−1dρ

}

=
p(p−1)κ2

−pκ−1
|A|p−2

(
ln

1
ε

)−pκ−1

−C

(
ln

1
ε

)−pκ−2

.

Similarly, for p > Q ,

I1 � sn,m(
ln 1

ε
)p

[
p(p−1)κ2

−pκ−1
|A|p−2

(
ln

1
ε

)−pκ−1

−C

(
ln

1
ε

)−pκ−2
]

.

All in all, we infer that

I1 � − sn,m(
ln 1

ε
)p

[
p(p−1)κ2

pκ +1
|A|p−2

(
ln

1
ε

)−pκ−1

+C

(
ln

1
ε

)−pκ−2
]

.

Next, it follows

I2 :=
∫
Ω
ψpα

|vε,κ(d)|p
dp B2

(
d
R

)
dxdy

=
sn,m(
ln 1

ε
)p

⎡
⎢⎣∫ ε

ε2

(
ln ρ

ε2

)−pκ

(
ln
(

R
ρ

))2
ρ

dρ +
∫ 1

ε

(
ln 1

ρ

)−pκ

(
ln
(

R
ρ

))2
ρ

dρ

⎤
⎥⎦

� sn,m(
ln 1

ε
)p

⎡
⎣(ln

(
R
ε2

))−2 ∫ ε

ε2

(
ln ρ

ε2

)p

ρ
dρ+

(
ln

(
R
ε

))−2 ∫ 1

ε

(
ln 1

ρ

)p

ρ
dρ

⎤
⎦
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�
sn,m

(
ln 1

ε
)−pκ+1(

ln 1
ε
)p (−pκ+1)

[(
2ln

(
1
ε

))−2

+
(

ln

(
1
ε

))−2
]

� sn,m(
ln 1

ε
)p (−pκ+1)

(
ln

(
1
ε

))−pκ−1

.

Hence, we deduce that

D � I1
I2

�
− sn,m

(ln 1
ε )

p

[
p(p−1)κ2

pκ+1 |A|p−2
(
ln 1

ε
)−pκ−1 +C

(
ln 1

ε
)−pκ−2

]
sn,m

(ln 1
ε )

p
(−pκ+1)

(
ln
(

1
ε
))−pκ−1

=
p(p−1)κ2(pκ−1)

pκ +1
|A|p−2 +C

(
ln

1
ε

)−1

→ p−1
2p

|A|p−2,

as ε → 0,κ → 1
p

(
1
3

+
1
6
(80−30

√
6)

1
3 +

1

2
10
3

(40+15
√

6)
1
3

)
,

where 1
3 + 1

6 (80− 30
√

6)
1
3 + 1

2
10
3

(40 + 15
√

6)
1
3 ≈ 1.53697. Here we achieve the nu-

merical value by using Mathematica 4. This completes the proof of the theorem.

THEOREM 3.3. Let 0 ∈Ω be a domain in R
n+m and R > 0 such that sup (x,y)∈Ω

d(x,y) < R. Suppose p = Q, and for some constants D � 0 , ι > 0 , the following
inequality holds for all u ∈C∞

0 (Ω\ {0})
∫
Ω
|∇Lu|pdxdy � D

∫
Ω
ψpα

|u|p
dp Bι

(
d
R

)
dxdy. (3.5)

Then, ι � p for D > 0 .

Proof. The proof uses the argument similar to Theorem 3.2. Taking the test func-
tions vε(d) ∈ D1,p

0 (BL(1)) in the proof of (i) in Theorem 3.2 with p = Q , it is easy to
verify that

∫
BL(1)

|∇Lvε(d)|pdxdy = sn,m

∫ 1

0
|v′ε(ρ)|pρQ−1dρ = sn,m

∫ 1

ε2

(
1

ρ ln 1
ε

)p

ρ p−1dρ

=
sn,m(
ln 1

ε
)p ln

1
ε2 = 2sn,m

(
ln

1
ε

)1−p

, (3.6)

and
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∫
Ω
ψpα

|vε(d)|p
dp Bι

(
d
R

)
dxdy =

sn,m(
ln 1

ε
)p

⎡
⎢⎣∫ ε

ε2

(
ln ρ

ε2

)p

(
ln
(

R
ρ

))ι
ρ

dρ +
∫ 1

ε

(
ln 1

ρ

)p

(
ln
(

R
ρ

))ι
ρ

dρ

⎤
⎥⎦

� sn,m

p+1

(
ln

(
1
ε

))1−ι
.

Assuming that 0 < ι < p we have

0 < D �
∫
BL(1) |∇Lvε(d)|pdxdy∫

Ωψpα
|vε (d)|p

dp Bι
(

d
R

)
dxdy

�
2sn,m

(
ln 1

ε
)1−p

sn,m
p+1

(
ln
(

1
ε
))1−ι � C

(
ln

(
1
ε

))ι−p

→ 0, ε → 0.

It is a contradiction. Hence ι � p .
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