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HARDY INEQUALITIES WITH REMAINDER TERMS FOR THE
GENERALIZED BAOUENDI-GRUSHIN VECTOR FIELDS

JINGBO DoOU, QIANQIAO GUO AND PENGCHENG NIU

(Communicated by S. Varosanec)

Abstract. Based on the properties of vector fields and the generalized divergence formula, we
prove the Hardy inequalities with remainder terms for the generalized Baouendi-Grushin vector
fields and determine the best constants in these Hardy inequalities.

1. Introduction

Consider the generalized Baouendi-Grushin (B-G) vector fields (see [12], [15])

d 1% ) .
Zi:B_xi’ Znﬂ-:\x\aa—yj, (1<ig<n, 1< j<m)
where a2 >0, xeR", ye R™. V;, = (Z,...,Zy,Zy+1 ..., Zn+m) denotes the horizontal
gradient and divy (uy, ug, ..., Up,Upt] - Untm) = Z:’L’” Ziu; denotes the generalized

divergence. Thus, the second order degenerate elliptic operator and p-degenerate sub-
elliptic operator can be defined as

n+m
Lo = A+ [x**Ay= Y Z;=V,-V, and
i=1

Ly =divy (|VoulP2Vou) = Ve (|VeulP2Viu), p>1,

respectively, where A, and A, are Laplace operators on R" and R"™, respectively.

In general, we call %, the generalized B-G operator. When o = 0, the operator
Ly is just reduced to the standard Laplacian in RV . If « is a positive even integer,
the Z;’s satisfy Hormander’s finite rank condition. But in the general case Hormander’s
condition is meaningless since the vector fields are not sufficiently smooth and .Z;, does
not belong to the class of sub-Laplacians since it is not left-invariant. We note that %,
belongs to the wide class of sub-elliptic operators introduced and studied by Franchi
and Lanconelli in [7, 8, 9]. Clearly, .%, is elliptic if x # 0 and becomes degenerate on
the manifold {0} x R™.
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We start with some basic facts related to the generalized B-G vector fields. Recall
that the distance function is defined as

1
d(x,y) = (|2 4 (o 1)) 75D,

For d =d(x,y), it is easy to see

xOC
Vid = % (x| x1, |x) %xa, -« - o] %2, (00 4+ D) yy, (04 Dyay oo (@4 1) ym),
2a po -1
x x
‘VLd|2 = |d|2a = W20h |VLd‘I7 = |d|POC = WPOH gp,ad: QTWP(X' (11)

Let Q = B;(Ry) \BL(R;) for 0 < R} < p < Ry < oo, where Br(R) = Br(0,R) =
{(x,y) € R"™|d(x,y) < R} denotes the ball of radius R with centerin 0. If u: Q — R
is radial and satisfies u(x,y) = W,qv(d), then the change of polar coordinates in [14]
(Xlyee s XnyYV1seeesVm) = (0,0,01,...,60,_1,71,- .-, Ym—1) allows the following formula
to hold

Ry
[ utees) =sum [0 vip)a, (12)
o R,

where s, = (a+r1)m WO [2 | 5in 6] bt -1 |cos 8"~ 1d0 . The definitions of w,, Wy,
and more details can be seen in [14].

Recently, the integral inequalities related to the generalized B-G vector fields have
been paid much attention by many scholars. In [13] the following Sobolev embedding
inequality has been proved.

1 1
. 7 3 B
(/Q |u)? dxdy) <SS (/Q |VLu2dxdy> , ueDy*(Q) (1.3)

with some constant S, where 2* = % is the critical Sobolev exponent, Q = n +
(oc+ 1)m is the homogeneous dimension of R"™, Q C R"™™, D(l)’p (Q) denotes the

completion of Ci(Q) with respect to the norm ||ul[p1, = (Jg |VLu|1’dxdy)% . When
Q is a bounded open domain, the Sobolev inequality with remainder terms was also
proved. The extremal function of (1.3) in the case ¢ =1 and n = m = 1 has been
discussed by Beckner in [3].

D’ Ambrosio in [4, 5] obtained the Hardy inequalities with respect to the general-
ized B-G vector fields on a bounded domain Q C R"*™: If p # Q, then it holds

)4 po P
/ <i> [P ety wept@). (4
Q

O-p
ViulPdxdy > | ——
/Q\ Lu|Pdxdy l D d ar

If p=0Q,let R>0 and set Q:= {(x,y) € R""|d(x,y) < R}, then one has

<p—_1>17/ (M)P“de‘ly</ \VioulPdxdy, ueD\P(Q), (1.5)
p a\d (d1n(2))? " e ’ o
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where the distance function d = d(x,y) can be seen above. Furthermore, he has ex-
tended Hardy inequalities to more generic vector fields. For Q = R"*"  Garofalo in
[12] obtained inequality (1.4) with p = 2, and Zhang, Niu in [15] established the Pi-
cone identity and proved the inequality (1.4) with 1 < p < Q. For any bounded domain

p
Q C R™™ containing 0, it is known that the best constant ‘%’ in the inequality

(1.4) is never achieved for any function u € D(l)’p (). So one looks forward to have an
estimate of the error term on the right hand side of the inequality (1.4). However, up to
now, we find nothing about improvement of the inequality (1.4).

The purpose of this article is to prove some Hardy inequalities with remainder
terms on the generalized B-G vector fields. Our methold is based on the properties of
vector fields and the generalized divergence formula. We prove such Hardy inequalities
and compact embedding in weighted Sobolev spaces. The best constants in Hardy
inequalities are also determined .

Hardy inequalities and its generalizations in the Euclidean space have been ex-
tensively studied and applied to various interesting problems in PDE. We here refer
to [1, 2, 10]. But the research on Hardy inequalities in vector fields here are more
complicated and challenged than the research in Euclidean space.

This paper is organized as follows. In next section, we prove Hardy inequalities
with remainder terms. In section 3, we discuss the best constants.

In the sequel, for convenience of presentation we will use ¢, ¢, C, etc. for a
suitable positive constants usually except special narrating.

2. Hardy inequalities with remainder terms

In this section, let a bounded domain 0 € Q C R"™™.
Let us recall that

p=0
=T if
M) = {ilnld’ i ii g

is the solution of .Z), o at the origin (see [14]), that is, .Z}, oI'(d(x,y)) =0 on Q\ {0}.
This implies

(Q—p)ldZyod—(Q—1)|Vad|’] 20, onQ\{0}. (€)
It is a pivotal geometric hypothesis and a guarantee for the choice of vector fields.
For simplicity, write %(s) = — ﬁ , s€(0,1) and A = % . For R >
SUP (x.y)eqd(x,y) , there exists a constant M > 0 such that

0<93<d(%y)) <M, (xy)€Q.

Furthermore,

y+1 (d v (L y+1 (2
\ 14 (i) :y% (z)Vid 4% (g) :yﬂ (R), forallye R, (2.1)

d ’ dp
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and
/ P g % (B (b) — B (a)]. 2.2)

K
One of the main results is

THEOREM 2.1. Let 0 € Q be a bounded domain in R"™™ and 1 < p < oo,
(1) If p # Q, then there exists a positive constant Ry = sup (ry)cqd(x,y) such that

forany R>Ro and all u € Dl’p(Q\{O}),
ol

Xy

/Q\VLu\pdxdy> /u/pa—dxdy

p—1]0- p”/ u? (1 (RY)
2p » Qu/pa ' In 7 dxdy. (2.3)

In particular, if 2 < p < Q, one can take sup(x’y)egd()@y) =Ry.
(2) If p=Q, then there exists R > sup (w)egd(x,y) such that for all u € D(l)*’(Q\

(o) o »
\Vou|Pdxdy > (L> Woa—— 2 dxdy. 2.4)
/9 ’ P /9 " am(§))”

Proof. Let T be a C' vector field on Q which is specified later. For any u €
Cy(Q\ {0}), using Holder’s inequality and Young’s inequality we obtain

/(divLT)\u|pdxdy = —p/ (T, Vpu)|u|P~>udxdy
Q Q

’ » L
<o [1vutrasay)" ([ i asay)
Q Q
< [ 1Vualrdxdy+ (p~1) [ 1T ulrdxay,
Q Q

So,
/ |Viu|Pdxdy > / [div,T—(p— l)\T\%Hu\pdxdy. (2.5)
Q Q

(1) Let a be a parameter to be chosen later. Write

1(@)_1+—A,@< )+ aB (Z) Iz(%>=pp—;1%’2 (%)”"'@3 (%)’

and take T(d) = A|A|P~ 2MZ We immediately compute

VidP—2v A%y od—(p—1)|Vd|P
ivy (AAI’2|L[Z|177_1Ld) _ AlAprr e (p—1)|V.d]|

dr
_A‘A‘p72(Q_1_p+1)|de|p
_ -
Vid
IAI"| L ‘ : (2.6)
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where we use (C) and (1.1). From (2.1) and (2.6) it holds

| Ld\ 5 |V1d|P~2Vd Vid ) s (d
T = plA|P—1 +AAP " —————— —_— 2a
divy plA| |A| e - pA % R +2a%# R

|VLd\ 2 [Vid|P
pl_="1 pP—
plA| I +AlA| T
Thus,
- d V.d|P V.d
div,T— (p—1)|T|P'T = \A\P‘ L | I +AJA|P~ 2|dL—p|12—( —1)|A|”| L ‘ I”1
|de| 1 L
— p _ - — — p
= |A] gr \phtab—(p—DI ). (2.7)

_p_
Define f(s) := pIi(s)+ xh(s) — (p— 1)I] " (s). We need the following estimate which
will be proved later,

p—1,
f(s)>l+2pA2s, s€(0,M). (2.8)
Hence,
. - |Vid|P p—1 _,(d d
div,T— (p—1)|T|?-T > |A|P 1 Bl =)), 0<AB|—=)<M,
VL (p )‘ ‘p | | dr +2pA2 R < R

(2.9)

d(x,
where M = M(R) := sup (, ) co & ( (R’y)
Now we check (2.8) as follows. Arguing as in Theorem 4.1 of [1], from Taylor’s
formula we get

f(s)=f(0)+ f(0)s+ %f”(m)sz, 0< N <s<M. (2.10)

Note that f(0) =1 and

—1 p—1
,0__p__ -0
1(0) A qu )

2(p—1) p (p—1\" p-1
70) =2 N Ddap— =
f7(0) =2ap+ A2 =\ "a FYR

12a_ 6ap p—1_pR2-p)(p=1\'_6a_(2-p)p-1)
A p—1pA (p—12\ pA ) A p2A3 '

f///(o) —

Let’s distinguish three cases.

i 1<p<2<Q.NowA>0.Wecanchoosea>%>05uchthat
6p-A
""(0) > 0. Hence f" is an increasing function in the interval (0, M) for some M, > 0.
g
So, for s € (0,Mp),
p—1
pA?”

f'(ne) = f'(0) =
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It then follows from (2.10) that

p—1
szzsz7 s € (0,Mp).

F6) = FO)+ 3£ ()8 > 1+

Hence (2.8) holds in this case.
(i) 2<p<Q.Westill have A > 0. Let’s take a = 0 and then f”/(0) > 0. For

s > 0 one has
3-2p

" —2)(p—-1 -1\
f (s)=%<l+p’7s> > 0.

Hence, we can get (2.8) repeating the argument as the case (i) by picking My = oo.
(iif) p> Q. Since A < 0, we choose a such that a < % < 0, so that

f"(0) > 0 and proceed as before.

It is not difficult to choose My (small enough) in all cases such that for 0 < £ <
My, 1+ %@4—&@2 > 0. Since HAB(s) = —m , the condition & < M, is equivalent

1
to R > Ro := e™sup , ;)cqd(x,y) . The inequality (2.3) is proved.
—1 _

(2) Suppose that p = Q. By taking T(d) = (”T_ly W%l’_l (4), we

have

G, <pl—71)P—1{[Q—l—(pd—pl)]VLdpﬂp—l (%) (p—1) 2" (R) V;;ﬂp}

_ p_l P ‘VLd‘p
= (57) 7 ()

and hence

. . p—1 |Vid|P
T—(p— DT = (=) o . 211
aiveT— (-1 = () () L @1

Combining (2.11) and (2.5) follows (2.4).

REMARK 2.2. The domain Q in (2.5) may be bounded or unbounded. In addi-
-2
tion, if we select T(d) :A\A\P’2W71W, then

\VLd\ \VLd\ \VLd|

div,T— (p— D)|T|P'T = p|AJP

—(p—1)AP

= Al

Therefore, from (2.5) we conclude (1.4) on a bounded domain Q and on R"™ (see
[15]), respectively. Moreover, the constant |A|? = ‘% ’p = Cp,p is optimal (see [5]).
On the other hand, we know the conclusion of Theorem 2.1 is also true in the Heisen-
berg group, see [6].

Now, we give a Poincaré inequality using (2.5).
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THEOREM 2.3. Let Q be an open subset of R"™™, and set (x1,X2,*,Xu, Y1, * »Ym)

€ Q. If there is a constant R > 0 such that 0 < r = |x1| <R, then for u € D(l)’p(Q),
we have

c/ \u|pdxdy</ |Vu|Pdxdy, (2.12)
Q Q

1\?
where ¢ = o) -

In fact, by choosing T = —L; Vpr

171’*1 rp—1
Now, we describe a compactness result from (1.4) and (2.12). Define

in (2.5), we immediately obtain (2.12).

dar
Fpi={ri0 -] tim T ) =0, fley) € 1700 0))

THEOREM 2.4. Suppose p # Q and f(x,y) € %,. Then there exists a positive
constant Cy g ,, such that

Crop /Q FlulPdxdy < /Q VoulPdxdy, 2.13)

for any u € Dy?(Q\ {0}). Moreover, the embedding Dy" (Q) — LP(Q, fdxdy) is
compact.

Proof. Since f(x,y) € .#,, forany € > 0, there exist 6 > 0 and Cy such that

dar
SUPBL(a)ggW—f(x,Y) <e¢ and flg\p, 5) < Cs.
pa

Combining (1.4) and (2.12) yields

/ FlulPdxdy = / FlulPdxdy + / FlulPdxdy
o B.(6) Q\BL(5)

P
< 8/ wpaﬂdxdy—i—C/ |u|Pdxdy
BL(8) ar Q\B(8)

< iy [ IVuuldxdy

for some suitable constant C > 0. It follows (2.13).
Next, we discuss the compactness. Let {u;,} C D(l)’p (@) be a bounded sequence.

By reflexivity of the space D(l)’p (Q) and the Sobolev embedding theorem for vector
fields (see [11]) it gets

J

wyy —~u weaklyin Dy"(Q), (2.14)
um; —u  stronglyin LP(Q)
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for a subsequence {un;} of {un} as j— co. Write Cs = || f]l1=(0\5,(5))- BY (1.4),

/Qf\umj—u|pdxdy:/3(§)f|umj—u\pdxdy+/ f|umj—u\pdxdy
L

|tm; — ul?
<8/ ’7dxd +C, / U, — u|Pdxd
Wpa— 1 y+Cs \BL(S)\ ; — ulPdxdy

/|VL |pdxdy+C5/ |t — u|Pdxdy.
Since {uy} C D(l)*’ (Q) is bounded, we deduce

/ flttm; — u|Pdxdy < €M+C5/ |t — u|Pdxdy,
Q ' Q
where M > 0 is a constant depending on Q and p. By (2.14),

lim f\um —u|Pdxdy <

]—}oo
As ¢ is arbitrary, lim; . [q f|tm; —ulPdxdy = 0. So the embedding Dé*’(Q) — LP(Q,
fdxdy) is compact.

REMARK 2.5. The class of the functions f(§) € .%#, has lower order singularity
than d~7 at the origin. The examples of such functions include any bounded function

Ypa(E) :
e with 0 < 8 < p.

or in a small neighbourhood of 0, f(&) =

3. Proof of best constants

In this section, we discuss that the constants appearing in Theorem 2.1 are the best.
To do this, we introduce the function v¢(d) € D(l)’p (BL(1)) satisfying

0, ford < €2
In fore? <d <
A 1 orée” s ad e,
ve(d) =1 dAlni
In 5
T fore <d <1,
dA In z
with sufficiently small € >0 and A = QT In evidence, v, is continuous and differ-
entiable a.e. and its derivative is given by
0, ford < €2
1
<1—Alngi2)7 fore2 <d<e,
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LEMMA 3.1. Suppose that there exists a constant R > 0 such that
SUP (xy)ep, (14 (X,¥) < R and € > 0 small enough. Then

2
[AIPSum 1 1 1
\% Pdxdy = In— |2+ +1 — | 40| —
(a) /BL(I)\ (@) Pandy= R 2404 s =

[ve(d)|P 28mm . 1
b / dxdy = 2 1 2
®) BL(I)wpa dar ey p+1 ns

ve( )P . (d AN
2 L P , .
(c) /pra T P R dxdy ) n{ 2 1>0

Proof. (a) By (1.2),

/ |Vive(d)|Pdxdy = / )VLd|pdxdy—snm/ Ve (p)|Pp? tdp
B
— Snm Us AL Nipamt] Ly ]
(b [Ja e e ol p
snm 0 1 P 1
/ 1’ (ln—>+/ 14+AIn~| (~d(m=)|,p<0
_ € o
o n.m 1
s [/ \A\ln——H’ <1n— n——l' (—1)d <1n5)} ,p>0
s Alnl-1 Alnli1
o pds—I— spds—f—/ tPdt|, p<Q

s |A\ln +1 \A|1n§71
— s”ds+/ r”dr—i—/ dt|, p>
|A|(1ng)p/1 0 0 p>g
Sn,m

1 p+1 1 p+1
e B (Aln——l) +<Aln—+l>
(p+1)|A[(Ing)? € €

+1 p+1
1\ 7! 1’ 1
:s"—’ml<|A|ln—) [ 1+ ——
DAy \"1e AIn T AlIn

for € small enough.
Since ¢ is sufficiently small, using Taylor’s series shows

p+1 2
1 1 +1 1 1
1+ : = 14+(p+1) 1+p(p ) -] ol — |, B2

and

o\ 1 1 Y\ 1
) =iy 2 o) ol =] 63

(3.1)
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By (3.1), (3.2) and (3.3) we obtain

2
APspm . 1 1 1
Vve(d)|Pdxdy = "= 24 pp+ )| —— | +o[ —
/BL<1>| we(d)Pdxdy == FEIn G 24 p(p D) AlIn L Inl

€

Hence, it concludes (a).
(b) We have the following estimates after the change of coordinates (1.2)

ve(d)”
dxd
/BL(I)II/pa ar xay
nm/ |V€ Q ldp
Ky In LN7
= n,m —82 Q pP— 1 p Q—p—l
(lné)pl/2<pA> Y dp—l—/ ( A) Y dp]
€ p
= S"’Im [/ n% —|—/ (1 —) d_p}
(lng)l’ g2
m e +1 1 1\ 7!
s [ oyt ()
(p+1)(Ing)P |Je2dp \ € dp \' p

28pm , 1

:p—I—l ns

)

whichis (b).
(¢) For 1 >0, arguing as (b) we get

- (S [ (u(2))
o
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THEOREM 3.2. Let 0 € Q be a bounded domain in R"™ and R > 0 such that
SUP (ry)ed(x,y) < R. Suppose p # Q, and for some constants B> 0,D >0, 1 >0,
the following inequality holds for any u € Ci(Q\ {0})

‘/Wmmmw>3/wm m@+D/me$%:>mw (3.4)

Then
(i) B<IAP;
(i) 1>2if B=|A|]” and D> 0.
(iii) D<E|AP72if B=|A]P and 1 =2

Proof. Since (3.4) holds for every u € D(l)’p (©2\ {0}), we just prove the theorem
on the unit ball Bz (1) for u = ve(d).
(i) By (@) and (b) in Lemma 3.1 we derive

IA‘ Sn.m

2
: 1 1
fBL \Vive(d)|Pdxdy ~— PT1 Ini 2+p(P+l)<|Am%> +0< 1)]
e 2Snm .
fBL II/poc‘v( Idxdy pSJrll

The result is obtained by taking € — 0.
(ii) Let B=|A|?,D > 0. Assume by contradiction that 0 < 1 < 2. Invoking
(a), (b) and (c¢) of Lemma 3.1 yields

. p
fBL(l) [Vive(d)|Pdxdy — \A\prL(l) Vpa lV&[(zdp)l dxdy

0<D< Rl (4
Jo Voo "p— % (%) dxdy
2
|A‘psnm 1 1
St n W”(m) +0<1_)]

n,m -
i (n(z)

1 1-2
<C<1n<g)> —0, €—0,

which is a contradiction. Hence l =>2.
(iii) To show that D < 5— |A|1’ 2 for B = |A|” and 1 = 2, we redefine the cut-

function on By (1), that is, let vg’,((d) € Dy (Br(1)) satisfy

0, ifd < 2,
—K

(ln %)

~ "/ ife?<d<e
v&K(d) = dAl é 5 S X

(ng) "

d .
dAlil’ if € < d < 1
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where A

almost everywhere and its derivative is

<Kk < £, &>0 small. Clearly, v¢ x is continuous and differentiable

0, ifd <e?,
—K
<ln%> K
° A+ ife?<d<e
v&K(d) = d% 1 1 In - ’ ’
&
Indi)™™
ng) (& , ife<d<l
[ Ind
drIn d

Similar to the proof of Lemma 3.1, we have

|V8.K(d)|p
1;:/ v _ded—Al’/ Per Il dxd
1 BL(1)| Lvex(d)|Pdxdy —|A| i VP xdy

ot | [ () FK<A+—P |A|P>p—1dp

1 1\ 7%

8 (1115) (A——” |A|p>p1dp17 p<0,
| [Ln8) " (-

IAI”> p~'dp

1 1 —pPK K .

[ () (I e ) o tan | p> o
€ o In—-

o
Since € > 0 is sufficiently small, using Taylor’s series concludes that

(o) )
+c<1nf_2>73, <0

| < e (n ) )

+c<1nf_2>_3, >0

for p € (¢7,¢), where C is some suitable positive constant, and for p € (

P
A—

1),
-1 _ 2 -2
—|AlP < —plA)P~tk (ml) +M|A|P*2 (m 1)

o 2

1\ 3
+C (ln—) , p<0,
o

K
1
o
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p

—1 o) -2
—|AJP < plA]Px (1111) +M|A|P*2 (1111)
P 2 P

1\ 3
+C ln—> , p>0.
< p u

Then, for p < Q, we obtain

K
Al T
o

o T et (1 P )*I”H p(p—Dx* pfz( P )*PH
(lnl)p{/az |:pA K<1n£2 + ) |A| 1n£2
—pK—3
e <1n 8’)—2) } o ldp
1 —pKk—1 P(P— 1)K2 1 —pK—2
—plAP 'k (In— + = AP 2 (In=
p 2 p
1 —pKk—3 ;
+C lnE p dp
-1 2 1 —pKk—1 1 —pK—2
= MMV’_Z <1n—> -C (ln—) .
—pk—1 € €

Similarly, for p > Q,

) —pk—1 —pK—2
I Sn,ml7 plp—1)k A|P2 (ml) —C(lnl) :
()" [ —px—1 ¢ )

All in all, we infer that

N

-~ 1 K2 1 —pk—1 1 —pKk—2
I < ——mm PP DK -2 (m-) +C<ln—) .
(mé) pK+1 € €

Next, it follows
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1\ —pKk+1
Snm (ln E)

g (In 1)’ (—=px+1) <21n<é>)_2+<ln<é)>_2]
> TP (m()) """

Hence, we deduce that

Sn,m
y_ iy [P

A2 (n ) e ()

D < I ~X S, 1 7171(71
2 (lné)l’(;pk_ﬂ) (IH(E))
—DK2(prk—1 !
_ p(p )K (pK )|A|p_2+C<ln—)
pK+1 €

p—1 -2
LAY

- 2 ‘ ‘ )

1 1 1
asg—>O,K—>E<— (80— 30v6)5 + — (40+15\f6)§),
23

where 1+ 1(80— 30\/6)% + 15 (40 + 15\/6)% ~ 1.53697. Here we achieve the nu-
23

merical value by using Mathematica 4. This completes the proof of the theorem.

THEOREM 3.3. Let 0 € Q be a domain in R"™ and R > 0 such that sup (xy)eQ
d(x,y) < R. Suppose p = Q, and for some constants D > 0, 1 > 0, the following
inequality holds for all u € C(Q\ {0})

/\vLu|dedy>D/ u/paw %ﬂ( )dxdy 3.5)

Then, 1 > p for D > 0.

Proof. The proof uses the argument similar to Theorem 3.2. Taking the test func-
tions v (d) € D(l)’p(BL(l)) in the proof of (i) in Theorem 3.2 with p = Q, it is easy to
verify that

p
1 1 1
/ ‘VLVS(d)‘dedy = smm/ |V/g(p)‘pr_ldp = Sn.m/ 1 pp_ldp
By (1) 0 ’ £2 pln 3

Sum 1 1\'7
= (ln l)p In 8_2 = an,m (ln E) s (36)

€

and
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ve(d)?  (d Snm € 2
/Q‘VPOCT'% (E) ddy = (In1)” /82 (1n(§))lpdp+ ) m !

Assuming that 0 < 1 < p we have

o o [Viveld)dsay
Jo Wpa‘vg[(zﬁ%l (%)dxdy

yl-r —p
< M <C(In 1 —0, &—0.
(b)) Ve

p+1

It is a contradiction. Hence 1 > p.
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