
Mathematical
Inequalities

& Applications
Volume 13, Number 3 (2010), 571–578

FUNCTIONAL CHARACTERIZATION OF A

SHARPENING OF THE TRIANGLE INEQUALITY

WŁODZIMIERZ FECHNER

(Communicated by L. Maligranda)

Abstract. Motivated by recent refinements of the classical triangle inequality in normed spaces
proved by Lech Maligranda we deal with related functional equation and inequality and with the
corresponding stability problem.

1. Introduction

Alfred Tarski in [11] posed as a question (or an exercise) and then proved the
following identity for real numbers x,y :

∣∣ |x|− |y| ∣∣ = |x+ y|+ |x− y|− |x|− |y|. (1)

One may check that this equality fails to hold in a higher dimension. Recently, Lech
Maligranda in [9] presented the following multi-dimensional analogue of identity (1):

∣∣‖x‖−‖y‖ ∣∣ � ‖x+ y‖+‖x− y‖−‖x‖−‖y‖� min{‖x+ y‖,‖x− y‖} (2)

for any elements x,y from an arbitrary normed space. Clearly, (2) strengthen both
inequalities ∣∣‖x‖−‖y‖∣∣ � ‖x− y‖
and

‖x+ y‖� ‖x‖+‖y‖.
Some interesting related estimations were obtained by Lech Maligranda in [8].

Motivated by foregoing results we discuss the following problems:

A) the functional inequality:

| f (x)− f (y)|� f (x+y)+ f (x−y)− f (x)− f (y) � min{ f (x+y), f (x−y)}; (3)

B) the functional equation:

| f (x)− f (y)| = f (x+ y)+ f (x− y)− f (x)− f (y); (4)
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C) stability of functional equation (4):
∣∣ |F(x)−F(y)|−F(x+ y)−F(x− y)+F(x)+F(y)

∣∣ � ε (‖x‖p +‖y‖p) . (5)

It is clear that the mapping R � x �→ |x| ∈ R satisfies (3), (4) and (5) and for every
normed space (X ,‖ · ‖) the mapping X � x �→ ‖x‖ ∈ R satisfies (3). Our purpose is to
determine all solutions of these problems under some reasonable assumptions.

2. Results

We begin with solving (3) for mappings acting on Abelian groups with the aid of
the following theorem from paper [6] of Roman Ger, which is a generalization of a
result obtained earlier by Edgar Berz [3].

THEOREM A. Assume that (G,+) is an Abelian group and p : G → R has the
following properties:

(p1) p(x+ y) � p(x)+ p(y) for each x,y ∈ G;
(p2) p(2x) = 2p(x) for each x ∈ G;
(p3) p is even.

Then there exist a normed space X and an additive mapping A : G → X such that

p(x) = ‖A(x)‖, x ∈ G.

Moreover, the space X may be taken as the space B(T,R) of all bounded functions on
T with the supremum norm, where T is the set of all additive real functionals on G
majorized by p, the mapping A is defined by

A(x)(a) := a(x), a ∈ T, x ∈ G

and for each x ∈ G the supremum

‖A(x)‖ = sup{|a(x)| : a is additive and a � p}

is realized by some additive mapping ax , i.e. ‖A(x)‖ = |ax(x)| .

THEOREM 1. Assume that (G,+) is an Abelian group and f : G → R is an arbi-
trary mapping such that f (0) = 0 . Then f is a solution of (3) if and only if there exist
a normed space (X ,‖ · ‖) and an additive mapping A : G → X such that

f (x) = ‖A(x)‖, x ∈ G.

Proof. The “only if” part follows easily from inequality (2). We will prove the
“if” part.

Substitute y = x in (3) to obtain

0 � f (2x)−2 f (x) � min{ f (2x), f (0)} � 0, x ∈ G.
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Thus f (2x) = 2 f (x) for each x ∈ G .
In the remaining part of the proof we will be using the first inequality from (3)

only. Put x = 0 in (3). We get | f (y)| � f (−y) for each y ∈ G , which applied twice
leads to

| f (y)| � f (−y) � | f (−y)| � f (y) � | f (y)|, x ∈ G.

Since we have obtained equality, then each estimation holds with equality. In particular,
f is even.

Clearly, (3) implies that

f (x)− f (y) � f (x+ y)+ f (x− y)− f (x)− f (y), x,y ∈ G,

i.e.
2 f (x) � f (x+ y)+ f (x− y), x,y ∈ G.

From this, after replacing x by x+ y and y by x− y , we deduce the inequality

2 f (x+ y) � f (2x)+ f (2y), x,y ∈ G,

which, jointly with the already proved 2-homogeneity of f , means that f is subaddi-
tive.

We have shown that f satisfies all the assumptions of Theorem A. Therefore f
is of the form f (x) = ‖A(x)‖ , where A : G → X is an additive mapping and X is a
normed space. �

Now, applying the foregoing theorem we deduce the form of solutions of equation
(4). We will show that in this case the space X can be replaced by R .

THEOREM 2. Assume that (G,+) is an Abelian group and f : G → R is an arbi-
trary mapping. Then f is a solution of (4) if and only if there exist an additive mapping
A : G → R and a constant c ∈ R such that

f (x) = |A(x)|+ c, x ∈ G.

Proof. Again, the “only if” part follows from equality (1). Therefore, we will
confess ourselves to the “if” part.

We may assume that f (0) = 0. Substitution y = x in (4) leads to

0 = f (2x)−2 f (x), x ∈ G,

i.e. f (2x) = 2 f (x) for each x ∈ G .
Next part of the proof is a repetition of the later part of the proof of the previous

theorem. We get the representation of f as the norm of an additive mapping having
values in a normed space X .

It remains to prove that X may be replaced by R . We will deduce that the image
A(G)⊂ X is contained in a one-dimensional subspace. For arbitrarily fixed x,y ∈G let
us denote ξ = A(x) , η = A(y) . We may assume that ‖ξ‖ � ‖η‖ . From the form of f
and from equation (4) we get

‖ξ‖−‖η‖= ‖ξ +η‖+‖ξ−η‖−‖ξ‖−‖η‖,
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i.e.
2‖ξ‖= ‖ξ +η‖+‖ξ−η‖,

which can be equivalently written as

‖(ξ +η)+ (ξ −η)‖ = ‖ξ +η‖+‖ξ−η‖.
In other words, we have shown that for each s,t ∈ G either

‖A(s)+A(t)‖= ‖A(s)‖+‖A(t)‖ (6)

or
‖A(s)−A(t)‖= ‖A(s)‖+‖A(t)‖ (7)

(we used the fact that the set A(G) forms a subgroup of X ). On the other hand, by
Theorem A for each x ∈ G we have

‖A(x)‖ = sup{|a(x)| : a is additive and a � f}
and there exists an additive mapping ax � f such that |ax(x)| = ‖A(x)‖ . From (6) and
(7) we will deduce that for arbitrary s,t ∈ G the supremum is realized by the same
additive mapping. Indeed, if for instance (6) holds then

|as+t(s+ t)|= |as(s)|+ |at(t)|,
where as , at and as+t are additive mappings which realize the respective suprema.
Clearly, |as+t(s)|� |as(s)| and |as+t(t)|� |at(t)| . On joining this with the above equal-
ity we obtain

|as(s)|+ |at(t)| = |as+t(s+ t)|� |as+t(s)|+ |as+t(t)| �
� |as(s)|+ |at(t)|.

This proves that |as+t(s)| = |as(s)| and |as+t(t)| = |at(t)| , which means that as+t re-
alizes suprema for s and t . Therefore, we may find an additive mapping a∗ : G → R

such that for each x ∈ G the following equality is valid:

sup{|a(x)| : a is additive and a � f} = |a∗(x)|.
Therefore, we may replace A by a∗ and thus the space X can be replaced by R . �

I am thankful to professor Peter Volkmann for an observation that functional equa-
tion (4) for mapping f vanishing at zero can be transformed equivalently to the follow-
ing equation:

max{ f (x+ y), f (x− y)} = f (x)+ f (y),

which was first discussed by Alice Chaljub-Simon and Peter Volkmann in [4]. To show
that this equation and (4) are equivalent it suffices to make use of the fact that f (2x) =
2 f (x) is true for both equations and then apply the identity

2max{s,t} = s+ t + |s− t|
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for s, t ∈R . However, the method we use to solve (4) is quite different from the method
used in [4].

Now, let us discuss the stability of equation (4). The stability problem (5) corre-
sponding to this equation is called the Hyers-Ulam-Aoki stability problem (terminology
is in accordance with a recent survey paper [10] of Lech Maligranda). We will show
that each solution F of inequality (5) is in a sense close to a unique solution f of equa-
tion (4), which has been already solved in Theorem 2. We apply a standard technique
known as the direct method or the Hyers method, which is discussed in [10]. Therefore,
we provide only a sketch of the proof.

THEOREM 3. Assume that (X ,‖ · ‖) is a normed space, ε � 0 and p ∈ R is a
real number such that p 	= 1 . If F : X → R satisfies (5) (for each x,y ∈ X or each
x,y ∈ X \{0} if p < 0 ) then there exists a unique mapping f : X → R such that f is a
solution of (4) and: if p > 1 then

|F(x)− f (x)| � 2ε
2p−2

· ‖x‖p, x ∈ X (8)

or if p < 1 then

|F(x)− f (x)| � 2ε
2−2p · ‖x‖p, x ∈ X . (9)

Proof. The proof differs slightly from the proof of the analogous result for the
Cauchy functional equation, which is due to Donald H. Hyers [7] and Tosio Aoki [2].
We need to observe that if F satisfies (5) then F −F(0) satisfies it, too. Further, if
F(0) = 0 then substitution y = x in (5) leads to the estimation

|F(x)− 1
2
F(2x)| � ε‖x‖p, x ∈ X .

From this, by some elementary calculations, we derive that if p < 1 then the sequence
2−nF(2nx) is pointwise convergent and if p > 1 then the sequence 2nF(2−nx) is point-
wise convergent. Further, a standard reasoning (which relies on replacing arguments x
and y in (5) by 2nx and 2ny , multiplying (5) side by side by 2−n and tending with
n to −∞ or +∞ respectively) allow us to prove that the limit function f of both se-
quences satisfies (4) and, after replacing f by f +F(0) , the desired estimation (8) or
(9) respectively, holds true.

It remains to show the uniqueness of solution. If f and f ′ are two solutions of (4)
and both satisfy one of estimations (8) or (9) then by adding them side by side we get

| f (x)− f ′(x)| � 4ε
2p−2

· ‖x‖p, x ∈ X

if p > 1 or

| f (x)− f ′(x)| � 4ε
2−2p · ‖x‖p, x ∈ X

if p < 1. Now, fix n ∈ N arbitrarily. In the first case replace x by 2−nx and multiply
the estimation side by side by 2n and in the second case replace x by 2nx and divide it
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side by side by 2n . In both resulting inequalities the left hand side remains unchanged
(by the 2-homogeneity of solutions of (4)) whereas the right hand side will always
tend to zero as n tends to infinity. Therefore, necessarily f = f ′ , which we wanted to
show. �

As a straightforward corollary we get that equation (4) is stable in a sense of Hyers-
Ulam (case p = 0 in the previous theorem). It is worth to note that in case p = 0 the
structure of normed space in the domain is not really needed in its full strength. An
inspection of the proof allows us to state the following corollary.

COROLLARY 4. Assume that (G,+) is an Abelian group and ε � 0 . If F : G→R

satisfies ∣∣ |F(x)−F(y)|−F(x+ y)−F(x− y)+F(x)+F(y)
∣∣ � ε

for each x,y∈G then there exists a unique mapping f : G→R such that f is a solution
of (4) and

|F(x)− f (x)| � ε, x ∈ G.

An example due to Zbigniew Gajda [5] shows that the Cauchy functional equation
is not stable for the “critical case” p = 1. In what follows we provide a modification of
this example in order to show that the stability effect for (5) fails if p = 1.

EXAMPLE 5. Fix arbitrary ε > 0 and put μ := 1
12ε . Next, define a mapping

φ : R → R by

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

μ if x � 1,
μx if 0 � x < 1,

−μx if −1 � x < 0,
μ if x � −1,

Observe that a mapping F : R → R is well defined by

F(x) :=
∞

∑
n=0

φ(2nx)
2n , x ∈ R.

Moreover, F , as a sum of an uniformly convergent series of continuous mappings, is
continuous. Further, for each x ∈ R we have

0 � F(x) �
∞

∑
n=0

μ
2n = 2μ . (10)

Now, we will check that (5) is satisfied with p = 1. Obviously, (5) is true for
x = y = 0. Let us assume that 0 < |x|+ |y| < 1. Take N as a nonnegative integer for
which we have

1
2N � |x|+ |y|� 1

2N−1 .

From this we easily deduce that each of the values

2nx, 2ny, 2n(x+ y), 2n(x− y)
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belong to the open interval (−1,1) for each n = 0,1, . . . ,N−1. Consequently, by the
definition of φ we have

|φ(2nx)−φ(2ny)|−φ(2n(x+ y))−φ(2n(x− y))+φ(2nx)+φ(2ny) = 0

for each n = 0,1, . . . ,N − 1. Now, we may calculate that the expected estimation is
valid:∣∣ |F(x)−F(y)|−F(x+ y)−F(x− y)+F(x)+F(y)

∣∣
|x|+ |y|

�
∞

∑
n=N

∣∣ |φ(2nx)−φ(2ny)|−φ(2n(x+ y))−φ(2n(x− y))+φ(2nx)+φ(2ny)
∣∣

2n(|x|+ |y|)

�
∞

∑
k=0

6μ
2k+N(|x|+ |y|) � ε.

If |x|+ |y|� 1 then from (10) we immediately get that
∣∣ |F(x)−F(y)|−F(x+ y)−F(x− y)+F(x)+F(y)

∣∣ � 12μ = ε � ε(|x|+ |y|).
Therefore, (5) is satisfied by F with p = 1 for each x,y ∈ R .

Now, we will show that there is no solution f of (4) which is close to F is a sense
that there exists a constant δ > 0 such that

|F(x)− f (x)| � δ |x|, x ∈ R. (11)

Assume for a contrary that such a map exists. From Theorem 2 there exists an additive
mapping A : R → R such that

f (x) = |A(x)|, x ∈ R.

Since F is bounded then (11) forces that A is continuous (see e.g. Janos Aczél [1,
Chapter 2.1.1., Theorem 1]) which means that f is of the form

f (x) = c|x|, x ∈ R

with a certain constant c � 0. Therefore,
∣∣F(x)− c|x| ∣∣ � δ |x|, x ∈ R,

i.e. ∣∣∣∣
F(x)

x

∣∣∣∣ � δ + c, x ∈ R.

Next, take N := [ δ+c
μ ]+1 and x ∈ (0, 1

2N−1 ) . We have

F(x)
x

=
∞

∑
n=0

φ(2nx)
2nx

�
N−1

∑
n=0

φ(2nx)
2nx

�
N−1

∑
n=0

μ ·2nx
2nx

= Nμ > δ + c,

which is a contradiction. Therefore, for p = 1 we cannot expect the stability effect for
equation (4).
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