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WEIGHTED VERSION OF GENERAL

INTEGRAL FORMULA OF EULER TYPE

S. KOVAČ AND J. PEČARIĆ

(Communicated by I. Perić)

Abstract. The weighted generalization of the integral formula with m nodes is introduced, and
some sharp and the best possible inequalities for the functions whose higher order derivatives
belong to Lp spaces are given. Specially, the general one-point integral formula is established.
Special cases of the well known weights are considered and generalizations of the Gaussian
quadrature formulae with one node are obtained.

1. Introduction

J.Pečarić and S.Varošanec considered in [8] the following situation. Let m,n ∈ N

be fixed and let {Pjk}k∈N be harmonic sequences of polynomials, i.e. P′
jk = Pj,k−1 ,

k ∈ N , Pj0 = 1, j = 1, . . . ,m . Let σ = {a = x0 < x1 < · · · < xm = b} be a subdivision
of the interval [a,b] . Set

Sn(t,σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1n(t), t ∈ [a,x1]
P2n(t), t ∈ (x1,x2]
...
Pmn(t), t ∈ (xm−1,b].

(1.1)

By successive integration by parts they proved the following formula:

(−1)n
∫ b

a
Sn(t,σ)d f (n−1)(t) =

∫ b

a
f (t)dt +

n

∑
k=1

(−1)k
[
Pmk(b) f (k−1)(b)

+
m−1

∑
j=1

(Pjk(x j)−Pj+1,k(x j)) f (k−1)(x j)−P1k(a) f (k−1)(a)
]
. (1.2)

The aim of this paper is to establish the general weighted version of the identity
(1.2). Further, we observe functions f whose higher order derivatives belong to Lp

spaces, and for such functions we obtain error estimates.
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Now, let f : [a,b] → R be an arbitrary function such that f (n−1) is continuous
function of bounded variation on [a,b] for some n � 1 and let x ∈ [a,b] . The following
two identities hold ([3]):

f (x) =
1

b−a

∫ b

a
f (t)dt +Tn(x)+R1

n(x), (1.3)

and

f (x) =
1

b−a

∫ b

a
f (t)dt +Tn−1(x)+R2

n(x), (1.4)

where

Tl(x) =
l

∑
k=1

(b−a)k−1

k!
Bk

(
x−a
b−a

)(
f (k−1)(b)− f (k−1)(a)

)
, l ∈ N

T0(x) = 0 (1.5)

R1
n(x) = − (b−a)n−1

n!

∫ b

a
B∗

n

(
x− t
b−a

)
d f (n−1)(t),

R2
n(x) = − (b−a)n−1

n!

∫ b

a

[
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)]
d f (n−1)(t).

Here Bk(t) , k � 0 are Bernoulli polynomials, Bk = Bk(0) , k � 0 Bernoulli numbers,
and B∗

k(t) , k � 0 are periodic function of period 1, related to Bernoulli polynomials as

B∗
k(t) = Bk(t), 0 � t < 1, B∗

k(t +1) = B∗
k(t), t ∈ R.

From the properties of Bernoulli polynomials B∗
0(t) = 1, B∗

1(t) is a discontinuous func-
tion with the jump −1 at each t ∈ N , and B∗

k(t) are continuous functions, for k � 2 .
Further, B2k+1 = B2k+1(0) = 0, for k � 1 and B1 = − 1

2 (see [6]).

Identities (1.3) and (1.4) are called extended Euler identities. In this paper we will
show that these identities can be obtained from a more general result (1.2).

Let w : [a,b] → R+ be some probability density function, i.e. integrable func-
tion satisfying

∫ b
a w(t)dt = 1. A. Aglić Aljinović and J. Pečarić ([2]) have proved the

following two identities

f (x) =
∫ b

a
w(t) f (t)dt +

n

∑
k=1

(b−a)k−1

k!
× (1.6)

×
(

Bk

(
x−a
b−a

)
−

∫ b

a
w(t)Bk

(
t−a
b−a

)
dt

)[
f (k−1)(b)− f (k−1)(a)

]

− (b−a)n−1

n!

∫ b

a

(
B∗

n

(
x− t
b−a

)
−

∫ b

a
w(s)B∗

n

(
s− t
b−a

)
ds

)
d f (n−1)(t)
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and

f (x) =
∫ b

a
w(t) f (t)dt +

n−1

∑
k=1

(b−a)k−1

k!
× (1.7)

×
(

Bk

(
x−a
b−a

)
−

∫ b

a
w(t)Bk

(
t−a
b−a

)
dt

)[
f (k−1)(b)− f (k−1)(a)

]

− (b−a)n−1

n!

∫ b

a

(
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)

−
∫ b

a
w(s)

(
B∗

n

(
s− t
b−a

)
−Bn

(
s−a
b−a

))
ds

)
d f (n−1)(t),

which are the weighted generalization of (1.3) and (1.4).
In this paper we will show that identities (1.6) and (1.7) can be obtained as special

cases of the general m−point weighted integral formula, for the particular three-point
subdivision {a < x < b} . Also, we will consider the general one-point formulae of
Matić, Pečarić and Ujević [7] where in the approximation of the integral, the values of
the higher order derivatives in the node x are used. From this general formula we will
get the generalizations of the quadrature formulae of the Gaussian type (see [6]) for the
special choices of the weight function w and the node x .

2. The weighted generalization of the integral formula via w-harmonic
sequences and related inequalities

Let us assume that wk : [a,b]→R , k = 1, . . . ,n are absolutely continuous functions
and w : [a,b] → R is integrable functions. We say that {wk}k=1,...,n is w-harmonic
sequence of functions (see [1]) if the following conditions are satisfied:

w′
1(t) = w(t), for t ∈ [a,b], (2.1)

w′
k(t) = wk−1(t), for t ∈ [a,b], for all k = 2, . . . ,n, .

LEMMA 1. Let w : [a,b]→ R be an integrable function on [a,b] and {wk}k=1,...,n

be w-harmonic sequence of functions on [a,b] . If g : [a,b] → R is such that g(n−1) is
absolutely continuous on [a,b] , then the following identity holds∫ b

a
w(t)g(t)dt = An(w,g;a,b)+Rn(w,g;a,b), (2.2)

An(w,g;a,b) =
n

∑
k=1

(−1)k−1[wk(b)g(k−1)(b)−wk(a)g(k−1)(a)]

Rn(w,g;a,b) = (−1)n
∫ b

a
wn(t)g(n)(t)dt.

Proof. We prove (2.2) by mathematical induction. For n = 1 integration by parts
gives ∫ b

a
w(t)g(t)dt = w1(b)g(b)−w1(a)g(a)−

∫ b

a
w1(t)g′(t)dt. (2.3)
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Let us assume that for l = 1, . . . ,n−1 we have

∫ b

a
w(t)g(t)dt =

l

∑
k=1

(−1)k−1[wk(b)g(k−1)(b)−wk(a)g(k−1)(a)]

+(−1)l
∫ b

a
wl(t)g(l)dt. (2.4)

Further, integration by parts yields

∫ b

a
wl(t)g(l)(t)dt = wl+1(b)g(l)(b)−wl+1(a)g(l)(a)−

∫ b

a
wl+1(t)g(l+1)(t)dt. (2.5)

Finally, we impose identity (2.5) to the relation (2.4) and obtain

∫ b

a
w(t)g(t)dt =

l

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]

+(−1)l
[
wl+1(b)g(l)(b)−wl+1(a)g(l)(a)

−
∫ b

a
wl+1(t)g(l+1)(t)dt

]

=
l+1

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]

+(−1)l+1
∫ b

a
wl+1(t)g(l+1)(t)dt,

so the assertion is valid for l +1. �

REMARK 1. Dragomir proved in [4] a similar result as (2.2) for the case of w-
Appell sequences of functions.

Let us consider the subdivision σ = {a = x0 < x1 < .. . < xm = b} of the interval
[a,b] , for some m ∈ N . Let w : [a,b] → R be an integrable function. On each inter-
val [xk−1,xk] , k = 1, . . . ,m we consider different w-harmonic sequences of functions
{wk j} j=1,...,n , i.e. we have

w′
k1(t) = w(t) for t ∈ [xk−1,xk]

(wk j)′(t) = wk, j−1(t) for t ∈ [xk−1,xk], for all j = 2, . . . ,n. (2.6)

Further, let us define

Wn,w(t,σ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1n(t) for t ∈ [a,x1],

w2n(t) for t ∈ (x1,x2],
...
wmn(t) for t ∈ (xm−1,b].

(2.7)
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THEOREM 1. If g : [a,b] → R is such that g(n−1) is absolutely continuous on
(xk−1,xk) for k ∈ {1, . . . ,m} , then the following identity holds∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (2.8)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]

+(−1)n
∫ b

a
Wn,w(t,σ)g(n)(t)dt.

Proof. Using relation (2.2) on each interval (xk−1,xk] for appropriate w-harmonic
sequence, we get the following identity∫ xk

xk−1

w(t)g(t)dt = An(w,g;xk−1,xk)+Rn(w,g;xk−1,xk). (2.9)

By summing relation (2.9) from k = 1 to m we obtain∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (2.10)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]

+
m

∑
k=1

Rn(w,g;xk−1,xk)

=
n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]

+(−1)n
∫ b

a
Wn,w(t,σ)g(n)(t)dt. �

The next theorem establishes more general identity (2.8).

THEOREM 2. Let g : [a,b] → R be such that g(n−1) is continuous function of
bounded variation on [a,b] , for some n ∈ N . Then the following identity holds∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (2.11)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]

+(−1)n
∫ b

a
Wn,w(t,σ)dg(n−1)(t).
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Proof. Let us fix k = 1, . . . ,m . For j = 1, . . . ,n we define

Ik j = (−1) j
∫ xk

xk−1

wk j(t)d f ( j−1)(t)

and let

Ik0 =
∫ xk

xk−1

w(t) f (t)dt.

By integration by parts formula we obtain

Ik j = (−1) j
(
wk j(xk) f ( j−1)(xk)−wk j(xk−1) f ( j−1)(xk−1)

)
+ Ik, j−1.

Summing last identity from j = 1 to n we obtain

Ikn =
n

∑
j=1

(−1) j
[
wk j(xk) f ( j−1)(xk)−wk j(xk−1) f ( j−1)(xk−1)

]
+

∫ xk

xk−1

f (t)w(t)dt.

Finally, summing this identity from k = 1 to m we get (2.11) since
m

∑
k=1

Ikn = (−1)n
∫ b

a
Wn,w(t,σ)d f (n−1)(t). �

REMARK 2. Let us suppose w : [a,b] → [0,∞) is some integrable function such
that

∫ b
a w(t) = 1, f (n−1) is a continuous function of bounded variation on [a,b] for

some n ∈ N and let x ∈ [a,b] be some fixed point. We consider three-point subdivision
of the segment [a,b] : x0 = a, x1 = x and x2 = b. Let us define function Wj,w(t,x) ,
j ∈ N in the following way

Wj,w(t,x) :=

⎧⎨
⎩

w1 j(t) = (−1) j−1(b−a) j−1

j!

∫ b
a

(
B∗

j(
s−t
b−a)−Bj( x−t

b−a )
)

w(s)ds, t ∈ [a,x]

w2 j(t) = (−1) j−1(b−a) j−1

j!

∫ b
a

(
B∗

j(
s−t
b−a)−Bj(1+ x−t

b−a)
)

w(s)ds, t ∈ (x,b].
(2.12)

Obviously, function Wn,w(·,x) can be represent in the following way using periodic
functions B∗

n

Wn,w(t,x) =
(−1)n−1(b−a)n−1

n!

∫ b

a

(
B∗

n

(
s− t
b−a

)
−B∗

n

(
x− t
b−a

))
w(s)ds.

Then the identity (2.11) becomes (1.6). In particular, for w(t) = 1
b−a , identity (2.11)

becomes (1.3).

For each k = 1, . . . ,m and n ∈ N we define functions uk j : [xk−1,xk] → R by
relation

uk j(t) :=
1

( j−1)!
·
∫ t

xk−1

(t− s) j−1 ·w(s)ds, t ∈ [xk−1,xk]. (2.13)

It is easy to check that u(n)
kn (t) = w(t) and ukn(xk−1) = 0.

Further, sequences {uk j} j=0,...,n are the examples of w-harmonic sequences of
functions on [xk−1,xk], for k = 1, . . . ,m .

Now we can give the general representation of the w-harmonic sequences.
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LEMMA 2. Let {wk j} j=0,...,n be w-harmonic sequences on [xk−1,xk] , for k =
1, . . . ,m. Then there exist unique sequences {Qk j} j=0,...,n of polynomials satisfying

Q′
k j(t) = Qk, j−1(t), t ∈ [xk−1,xk], degQk j � j−1, Qk0 = 0, j = 1, . . . ,n

(2.14)
such that

wk j(t) = uk j(t)+Qk j(t), j � 0, (2.15)

for k = 1, . . . ,m.

Proof. For j � 1 and k = 1 . . . ,m the j− th derivative of the function wk j(t)−
uk j(t) is zero by definition of the function uk j . So, there must exist a polynomial
Qk j(t) of degree at most j−1 such that

wk j(t) = uk j(t)+Qk j(t).

Evidently, Qk j satisfies properties (2.14), so we have proved the existence. The unique-
ness of Qk j is obvious. �

REMARK 3. The case m = 1 in Lemma 2 was obtained in [1].

REMARK 4. If we put in (2.8) w ≡ 1 and wk j = Pk j , where {Pk j} j=0,...,n are
sequences of harmonic polynomials on [xk−1,xk] , for k = 1, . . . ,m , then we recapture
relation (1.2).

Now we will give the general Lp theorem.

THEOREM 3. Let us suppose w : [a,b] → R is an integrable function and
{wk j} j=1,...,n w-harmonic sequences of functions on [xk−1,xk] , for k = 1, . . . ,m. If
g : [a,b] → R is a function such that g(n−1) is absolutely continuous and g(n) ∈ Lp for
some 1 � p � ∞, then the following inequality holds∣∣∣∫ b

a
w(t)g(t)dt−

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (2.16)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]∣∣∣
� C(n, p,w) · ‖g(n)‖p,

where

C(n, p,w) =

⎧⎨
⎩

[∫ b
a |Wn,w(t,σ)|q dt

] 1
q
, 1 < p � ∞, 1

p + 1
q = 1

supt∈[a,b] |Wn,w(t,σ)| , p = 1.
(2.17)

The inequality is the best possible for p = 1 and sharp for 1 < p � ∞ . Equality is
attained for every function g such that

g(t) = M ·g∗(t)+ pn−1(t),
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where M ∈ R , pn−1 is an arbitrary polynomial of degree at most n− 1 and g∗(t) is
function on [a,b] defined by

g∗(t) =
∫ t

a

(t− ξ )n−1

(n−1)!
· sgnWn,w(ξ ,σ) · |Wn,w(ξ ,σ)| 1

p−1 dξ , (2.18)

for 1 < p < ∞ , and

g∗(t) =
∫ t

a

(t− ξ )n−1

(n−1)!
· sgnWn,w(ξ ,σ)dξ , (2.19)

for p = ∞ .

Proof. Relation (2.8) implies∫ b

a
w(t)g(t)dt−

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (2.20)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]

= (−1)n
∫ b

a
Wn,w(t,σ)g(n)(t)dt.

so, by Hölder inequality we get (2.16). For the proof of the sharpness, we need to find
function g such that∣∣∣∫ b

a
Wn,w(t,σ)g(n)(t)dt

∣∣∣ = C(n, p,w) · ‖g(n)‖p,

for 1 < p � ∞ and 1 � q < ∞ such that 1
p + 1

q = 1. The function g∗ defined by (2.18)
and (2.19) is n times differentiable, and its n− th derivative is piecewise continuous
function. Further, g∗ is a solution of the differential equation

Wn,w(t,σ)g(n)(t) = |Wn,w(t,σ)|q,
so the above identity holds.
For p = 1 we shall prove that∣∣∣∫ b

a
Wn,w(t,σ)g(n)(t)dt

∣∣∣ � sup
t∈[a,b]

|Wn,w(t,σ)| ·
∫ b

a
|g(n)(t)|dt (2.21)

is the best possible inequality. Obviously, because of the continuity of the functions
wkn(t) on [xk−1,xk], for k ∈ {1, . . . ,n}, there exists t0 ∈ [a,b] and k = 1, . . . ,n such
that supt∈[a,b] |Wn(t)| = |wkn(t0)| . First, let us assume that wkn(t0) > 0. For ε small

enough define g(n−1)
ε (t) by

g(n−1)
ε (t) =

⎧⎨
⎩

0, t � t0 − ε
t−t0+ε

ε , t ∈ [t0 − ε,t0]
1, t � t0,
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if t0 ∈ (xk−1,xk] . Then, for ε small enough,

∣∣∣∫ b

a
Wn,w(t,σ)g(n)

ε dt
∣∣∣ =

∣∣∣∫ t0

t0−ε
wkn(t)

1
ε
dt

∣∣∣ =
1
ε

∫ t0

t0−ε
wkn(t)dt. (2.22)

Now, relation (2.21) implies

1
ε

∫ t0

t0−ε
wkn(t)dt � wkn(t0)

∫ t0

t0−ε
1
ε
dt = wkn(t0). (2.23)

Since

lim
ε→0

1
ε

∫ t0

t0−ε
wkn(t)dt = wkn(t0),

the statement follows.
If to = xk−1, then we define, for ε > 0 small enough, function g(n−1)

ε (t) by

g(n−1)
ε (t) =

⎧⎨
⎩

0, t � t0
t−t0
ε , t ∈ [t0,t0 + ε]

1, t � t0 + ε.

Then, for ε small enough,

∣∣∣∫ b

a
Wn,w(t,σ)g(n)

ε dt
∣∣∣ =

∣∣∣∫ t0+ε

t0
Wn,w(t,σ))

1
ε
dt

∣∣∣ =
1
ε

∫ t0+ε

t0
wkn(t)dt. (2.24)

Now, relation (2.21) implies

1
ε

∫ t0+ε

t0
wkn(t)dt � wkn(t0)

∫ t0+ε

t0

1
ε
dt = wkn(t0). (2.25)

Since

lim
ε→0

1
ε

∫ t0+ε

t0
wkn(t)dt = wkn(t0),

the statement follows.
For the case wkn(t0) < 0 the proof is similar. �

COROLLARY 1. For an integrable function w : [a,b] → R and {wk}k=0,...,n w-
harmonic sequence on [a,b] , and g : [a,b] → R such that g(n) ∈ Lp[a,b] , for some
1 � p � ∞ , we have the following inequalitiy

|Rn(w,g;a,b)| � ||wn||q||g(n)||p, (2.26)

if wn ∈ Lq[a,b] and 1
p + 1

q = 1, p � 1.

Proof. The assertion follows from the Theorem 3 for the case m = 1. This result
was also obtained in [4] for the w-Appell sequences. �
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3. Weighted one-point formula of Matić, Pečarić and Ujević

In this section we develop the weighted one-point formula for numerical integra-
tion. Let g : [a,b] → R be some function and x ∈ [a,b] . Let w : [a,b] → R be some
integrable function. The approximation of the integral

∫ b
a w(t)g(t)dt will involve the

values of the higher order derivatives of g in the node x . We consider subdivision
σ = {x0 < x1 < x2} of the interval [a,b] , where x0 = a, x1 = x and x2 = b . Further, let
{wk j} j=0,1,...,n be w-harmonic sequences on each subinterval [xk−1,xk] , k = 1,2, such
that w1 j(a) = 0 and w2 j(b) = 0, for j = 1, . . . ,n .
By Lemma 2 we have that

wk j(t) = uk j(t)+Qk j(t),

for k = 1,2 and j = 0,1, . . . ,n , where Qk j satisfy properties (2.14). No we can state
the following theorem

THEOREM 4. Let w : [a,b]→ R be an integrable function and x ∈ [a,b] . Further,
let us suppose {wk j} j=1...,n are w-harmonic sequences of functions on [xk−1,xk] , for
k = 1,2 and some n ∈ N , defined by the following relations:

w1 j(t) :=
1

( j−1)!

∫ t

a
(t− s) j−1w(s)ds, t ∈ [a,x]

w2 j(t) :=
1

( j−1)!

∫ t

b
(t− s) j−1w(s)ds, t ∈ (x,b],

for j = 1, . . . ,n. If g : [a,b] → R is such that g(n−1) is absolutely continuous function,
then we have∫ b

a
w(t)g(t)dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ b

a
Wn,w(t,x)g(n)(t)dt, (3.1)

where for j = 1, . . . ,n

Aj(x) =
(−1) j−1

( j−1)!

∫ b

a
(x− s) j−1w(s)ds (3.2)

and

Wn,w(t,x) =

{
w1n(t) = 1

(n−1)!
∫ t
a(t− s)n−1w(s)ds for t ∈ [a,x],

w2n(t) = 1
(n−1)!

∫ t
b(t− s)n−1w(s)ds for t ∈ (x,b].

(3.3)

Proof. We apply identity (2.8) for m = 2 and x1 = x to get

∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1[w1 j(x)−w2 j(x)
]
g( j−1)(x)

+(−1)n
∫ b

a
Wn,w(t,x)g(n)(t)dt,
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since w1 j(a) = 0 and w2 j(b) = 0, for j = 1, . . . ,n. Further, we calculate

w1 j(x)−w2 j(x) =
1

( j−1)!

∫ b

a
(x− s) j−1w(s)ds = (−1) j−1Aj(x),

so the assertion of the Theorem follows. �

REMARK 5. The identity in Theorem 4. was obtained in [7], so we may call it an
integral formula of Matić,Pečarić and Ujević.

REMARK 6. If we want formula (3.1) to be exact for the polynomials of degree at
most 1, such that approximation formula doesn’t include the first derivative, the extra
condition A2(x) = 0 is required. From this condition we get

x =
∫ b
a sw(s)ds∫ b
a w(s)ds

.

The solution x of this equation yields the generalization of the Gaussian quadrature
formula with one node.

THEOREM 5. Let w : [a,b]→ [0,∞) be an integrable function and x∈ [a,b] . Fur-
ther, let {wk j} j=1,...,2n+1 be w-harmonic sequences of functions for k = 1,2 and some
n ∈ N , defined by the following relations:

w1 j(t) :=
1

( j−1)!

∫ t

a
(t− s) j−1w(s)ds, t ∈ [a,x]

w2 j(t) :=
1

( j−1)!

∫ t

b
(t− s) j−1w(s)ds, t ∈ (x,b],

for j = 1, . . . ,2n+ 1 . If g : [a,b] → R is such that g(2n) is continuous function, then
there exists η ∈ [a,b] such that

∫ b

a
w(t)g(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x) ·g(2n)(η). (3.4)

Proof. It is easy to check that W2n,w(t,x) � 0, for t ∈ [a,b] , so we can apply
integral mean value theorem to the

∫ b
a W2n,w(t,x)g(2n)(t)dt to obtain

∫ b

a
w(t)g(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = g(2n)(η) ·
∫ b

a
W2n,w(t,x)dt. (3.5)

We calculate∫ b

a
W2n(t,x)dt =

∫ x

a
w1,2n(t)dt +

∫ b

x
w2,2n(t)dt = w1,2n+1(x)−w2,2n+1(x) = A2n+1(x),

so we get the assertion. �
Now we can state the Lp− inequality for weighted one-point formula
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THEOREM 6. Let g : [a,b] → R and {wk j} j=1,...,n be as in Theorem 4, let g(n−1)

be absolutely continuous on (xk−1,xk), for k ∈ {1,2} and let g(n) ∈ Lp for some 1 �
p � ∞. Then we have∣∣∣∫ b

a
w(t)g(t)dt−

n

∑
j=1

Aj(x)g( j−1)(x)
∣∣∣ � C1(n, p,x,w) · ‖g(n)‖p,

for 1
p + 1

q = 1, where

C1(n, p,x,w) =
1

(n−1)!

[∫ x

a

∣∣∣∣
∫ t

a
(t−s)n−1w(s)ds

∣∣∣∣
q

dt+
∫ b

x

∣∣∣∣
∫ t

b
(t−s)n−1w(s)ds

∣∣∣∣
q

dt

] 1
q

,

(3.6)
for 1 < p � ∞, and

C1(n,1,x,w)=
1

(n−1)!
max

{
sup

t∈[a,x]

∣∣∣∣
∫ t

a
(t− s)n−1w(s)ds

∣∣∣∣ , sup
t∈[x,b]

∣∣∣∣
∫ t

b
(t − s)n−1w(s)ds

∣∣∣∣
}

.

(3.7)
The inequality is the best possible for p = 1 and sharp for 1 < p � ∞ . Equality is
attained for some function g(t) = Mg∗(t)+ pn−1(t) where M ∈R , pn−1 is an arbitrary
polynomial of degree at most n−1 and g∗ is function on [a,b] defined by

g∗(t) =
∫ t

a

(t− ξ )n−1

(n−1)!
· sgnWn,w(ξ ,x) · |Wn,w(ξ ,x)| 1

p−1 dξ , (3.8)

for 1 < p < ∞ , and

g∗(t) =
∫ t

a

(t− ξ )n−1

(n−1)!
· sgnWn,w(ξ ,x)dξ , (3.9)

for p = ∞.

Proof. This theorem is special case of the Theorem 3. �

4. Special cases of weight function w for one-point formulae

In this section we will give some examples of the general one-point formula by
choosing different interesting weight functions w . Further, we will show that such
formulae are the generalizations of the well known Gaussian quadrature formulae.

4.1. w(t) = 1, t ∈ [a,b]

For this case we have by Theorem 4

Wn,w(t,x) =

⎧⎪⎨
⎪⎩

w1n(t) = (t−a)n
n! for t ∈ [a,x],

w2n(t) = (t−b)n
n! for t ∈ (x,b].
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Further, by Theorem 4 we get

Aj(x) =
(b− x) j − (a− x) j

j!
,

so the one-point formula states∫ b

a
g(t)dt =

n

∑
j=1

(b− x) j − (a− x) j

j!
g( j−1)(x) (4.1)

+
(−1)n

n!

[∫ x

a
(t −a)ng(n)(t)dt +

∫ b

x
(t−b)ng(n)(t)dt

]
.

The Lp inequality for the general case of the one-point formula states∣∣∣∣∣
∫ b

a
g(t)dt−

n

∑
j=1

Bjg
( j−1)(x)

∣∣∣∣∣ � C1(n, p,x,1) · ‖g(n)‖p, (4.2)

where

C1(n, p,x,1) =

⎧⎪⎪⎨
⎪⎪⎩

1
n!

[
(x−a)nq+1+(b−x)nq+1

nq+1

] 1
q

for 1 < p � ∞, 1
p + 1

q = 1

1
n! max{(x−a)n,(b− x)n} for p = 1.

(4.3)

If the assumptions of Theorem 5 hold,we can state the following identity

∫ b

a
g(t)dt =

2n

∑
j=1

(b− x) j − (a− x) j

j!
g( j−1)(x) (4.4)

+
(b− x)2n+1− (a− x)2n+1

(2n+1)!
g(2n)(η) for some η ∈ (a,b).

Specially, according to the Remark 6, from the condition A2(x) = 0 we get x = a+b
2

which gives the generalization of the midpoint rule ([5])∫ b

a
g(t)dt−

n

∑
j=1

(b−a)2 j−1

22 j−2(2 j−1)!
g(2 j−2)

(
a+b

2

)
=

(b−a)2n+1

22n(2n+1)!
g(2n)(η) (4.5)

Specially, for n = 1 this formula becomes the well known midpoint rule∫ b

a
g(t)dt = (b−a)g

(
a+b

2

)
+

(b−a)3

24
g′′(η). (4.6)

4.2. w(t) = (b− t)α(t−a)β , t ∈ (a,b), α,β > −1

The general one-point formula for this case is∫ b

a
(b− t)α(t−a)βg(t)dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ b

a
Wn,w(t,x)g(n)(t)dt, (4.7)
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where, according to the Theorem 4, we have

Aj(x) =

⎧⎪⎪⎨
⎪⎪⎩

(a−x) j−1(b−a)α+β+1

( j−1)! B(α +1,β +1)F(1− j,β +1,α+β +2; b−a
x−a ), x �= a,

(b−a)α+β+ j

( j−1)! B(α+1,β + j), x = a

and

Wn,w(t,x) =

⎧⎪⎪⎨
⎪⎪⎩

(b−a)α (t−a)n+β

(n−1)! B(β +1,n)F(−α,β +1,β +n+1; t−a
b−a) for t ∈ [a,x],

(−1)n (b−a)β (b−t)n+α

(n−1)! B(α +1,n)F(−β ,α +1,α+n+1; b−t
b−a) for t ∈ (x,b],

where

B(u,v) =
∫ 1

0
su−1(1− s)v−1ds

is the Beta function, and

F(α,β ,γ;z) =
1

B(β ,γ−β )

∫ 1

0
tβ−1(1− t)γ−β−1(1− zt)−αdt,

for γ > β > 0 and z < 1 is the hypergeometric function. We also use notation of
the hypergeometric function when integral

∫ 1
0 tβ−1(1− t)γ−β−1(1−zt)−αdt converges.

Specially, when α < 0, then any z ∈ R is allowed.
Further, if the assumptions of the Theorem 5 hold, we get

∫ b

a
(b−t)α(t−a)βg(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x)= A2n+1(x)g(2n)(η), for some η ∈ (a,b).

(4.8)
Specially, for [a,b] = [−1,1] and from the condition A2(x) = 0, we get x = β−α

α+β+2 , so
we have for n = 1∫ 1

−1
(1− t)α(t +1)βg(t)dt = 2α+β+1B(α +1,β +1) ·g(x)

+
2α+β+2(β +1)B(α+2,β +1)

(α +β +3)(α+β +2)
·g′′(η), (4.9)

which is the Jacobi-Gaussian quadrature formula with 1 node (see [6]).
Now we consider special cases for α and β :

4.2.1. α = β = − 1
2 , w(t) = 1√

1−t2
, t ∈ (−1,1)

For this case we have

Aj(x) =

⎧⎪⎨
⎪⎩

(−1−x) j−1π
( j−1)! F(1− j, 1

2 ,1; 2
x+1 ), x �= −1,

2 j−1

( j−1)!B( 1
2 , j− 1

2 ), x = −1
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and

Wn,w(t,x) =

⎧⎪⎪⎨
⎪⎪⎩

2−
1
2 (t+1)n−

1
2

(n−1)! B( 1
2 ,n)F( 1

2 , 1
2 , 1

2 +n; t+1
2 ) for t ∈ [−1,x],

(−1)n 2−
1
2 (1−t)n−

1
2

(n−1)! B( 1
2 ,n)F( 1

2 , 1
2 , 1

2 +n; 1−t
2 ) for t ∈ (x,1],

so we have∫ 1

−1

g(t)√
1− t2

dt =
n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.10)

If the assumptions of Theorem 5 hold, then we have

∫ 1

−1

g(t)√
1− t2

dt−
2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (−1,1).

(4.11)
Specially, from the condition A2(x) = 0 we get x = 0, so we have for n = 1∫ 1

−1

g(t)√
1− t2

dt = πg(0)+
π
4

g′′(η), for some η ∈ (a,b), (4.12)

which coincides with the Chebyshev-Gaussian quadrature formula with 1 node ([6]).
If g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣

∫ 1

−1

g(t)√
1− t2

dt−πg(0)
∣∣∣∣ � C1(1, p,0,w)‖g′‖p. (4.13)

Specially,

C1(1,∞,0,w) = 2, C1(1,1,0,w) =
π
2
≈ 1.570796

C2(2,∞,0,w) =
π
4
≈ 0.785398, C1(2,1,0,w) = 1.

4.2.2. α = β = 1
2 , w(t) =

√
1− t2, t ∈ [−1,1]

For this case we have

Aj(x) =

⎧⎪⎨
⎪⎩

4(−1−x) j−1

( j−1)! B( 3
2 , 3

2)F(1− j, 3
2 ,3; 2

x+1 ), x �= −1,

2 j+1

( j−1)!B( 3
2 , j + 1

2 ), x = −1

and

Wn,w(t,σ) =

⎧⎪⎪⎨
⎪⎪⎩

2
1
2 (t+1)n+ 1

2

(n−1)! B( 3
2 ,n)F(− 1

2 , 3
2 , 3

2 +n; t+1
2 ) for t ∈ [−1,x],

(−1)n 2
1
2 (1−t)n+ 1

2

(n−1)! B( 3
2 ,n)F(− 1

2 , 3
2 , 3

2 +n; 1−t
2 ) for t ∈ (x,1],
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so we have∫ 1

−1
g(t)

√
1− t2dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.14)

If the assumptions of Theorem 5 hold, then we have

∫ 1

−1

√
1− t2g(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (−1,1).

(4.15)
Specially, from the condition A2(x) = 0, we get x = 0, so we have for n = 1

∫ 1

−1

√
1− t2g(t)dt =

π
2

g(0)+
π
16

g′′(η), for some η ∈ (−1,1), (4.16)

which coincides with the Chebyshev-Gaussian quadrature formula of the second kind
with one node ([6]). If g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣

∫ 1

−1
g(t)

√
1− t2dt− π

2
g(0)

∣∣∣∣ � C1(n, p,0,w)‖g′‖p. (4.17)

Specially,

C1(1,∞,0,w) =
2
3
≈ 0.66667, C1(1,1,0,w) =

π
4
≈ 0.78538

C1(2,∞,0,w) =
π
16

≈ 0.19635, C1(2,1,0,w) =
1
3
≈ 0.33333.

4.2.3. α = 1
2 , β = − 1

2 w(t) =
√

1−t
1+t , t ∈ (−1,1)

For this case we have

Aj(x) =

⎧⎪⎨
⎪⎩

2(−1−x) j−1

( j−1)! B( 3
2 , 1

2 )F(1− j, 1
2 ,2, 2

x+1 ), x �= −1

2 j

( j−1)!B( 3
2 , j− 1

2 ), x = −1,

and

Wn,w(t,σ) =

⎧⎪⎪⎨
⎪⎪⎩

2
1
2 (t+1)n−

1
2

(n−1)! B( 1
2 ,n)F(− 1

2 , 1
2 , 1

2 +n; t+1
2 ) for t ∈ [−1,x],

(−1)n 2−
1
2 (1−t)n+ 1

2

(n−1)! B( 3
2 ,n)F( 1

2 , 3
2 , 3

2 +n; 1−t
2 ) for t ∈ (x,1],

so we have

∫ 1

−1
g(t)

√
1− t
1+ t

dt =
n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,σ)g(n)(t)dt. (4.18)
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If the assumptions of Theorem 5 hold, then we have

∫ 1

−1

√
1− t
1+ t

g(t)dt−
2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (−1,1).

(4.19)
Specially, from the condition A2(x) = 0 we get x = − 1

2 , so we have for n = 1

∫ 1

−1

√
1− t
1+ t

g(t)dt = πg

(
−1

2

)
+
π
8

g′′(η), for some η ∈ (−1,1), (4.20)

which coincides with the well known quadrature formula with n nodes, with the highest
degree of precision 2n−1, for the special case n = 1 ([6]). If g(n) ∈ Lp , for n∈ {1,2} ,
then Theorem 6 implies∣∣∣∣∣

∫ 1

−1
g(t)

√
1− t
1+ t

dt−πg

(
−1

2

)∣∣∣∣∣ � C1(n, p,−1
2
,w)‖g′‖p. (4.21)

Specially,

C1

(
1,∞,−1

2
,w

)
=

3
√

3
4

≈ 1.29904, C1

(
1,1,−1

2
,w

)
=

π
3

+
√

3
2

≈ 1.91322

C1

(
2,∞,−1

2
,w

)
=

π
8
≈ 0.392699, C1

(
2,1,−1

2
,w

)
=

3
√

3
8

≈ 0.649519.

4.2.4. α = 0, β = 1
2 w(t) =

√
t, t ∈ [0,1]

For this case we have

Aj(x) =

⎧⎪⎨
⎪⎩

(−x) j

( j−1)!B(1, 3
2 )F(1− j, 3

2 , 5
2 , 1

x ), x �= 0

1
( j−1)!B(1, j + 1

2 ), x = 0

Wn,w(t,x) =

⎧⎪⎨
⎪⎩

tn+1/2

(n−1)!B(n, 3
2) for t ∈ [0,x],

(t−1)n
n! F(− 1

2 ,1,n+1;1− t) for t ∈ (x,1],

so we have∫ 1

0

√
tg(t)dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.22)

If the assumptions of Theorem 5 hold, then we have

∫ 1

0

√
tg(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (0,1). (4.23)
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Specially, from the condition A2(x) = 0 we get x = 3
5 , so we have for n = 1

∫ 1

0

√
tg(t)dt =

2
3
g

(
3
5

)
+

4
175

g′′(η), for some η ∈ (0,1). (4.24)

If g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣
∫ 1

0
g(t)

√
tdt− 2

3
g(

3
5
)
∣∣∣∣ � C1(n, p,

3
5
,w)‖g′‖p. (4.25)

Specially,

C1

(
1,∞,

3
5
,w

)
=

24
125

√
3
5
≈ 0.148722, C1

(
1,1,

3
5
,w

)
=

2
3
− 2

5

√
3
5
≈ 0.35682

C1

(
2,∞,

3
5
,w

)
=

4
175

≈ 0.02285, C1

(
2,1,

3
5
,w

)
=

12
125

√
3
5
≈ 0.07436

4.2.5. α = 0, β = − 1
2 w(t) = 1√

t
, t ∈ (0,1]

For this case we have

Aj(x) =

⎧⎪⎨
⎪⎩

2(−x) j

( j−1)!F(1− j, 1
2 , 3

2 , 1
x ), x �= 0

2
(2 j−1)( j−1)! , x = 0

and

Wn,w(t,x) =

⎧⎪⎨
⎪⎩

tn−1/2

(n−1)!B(n, 1
2 ) for t ∈ [0,x],

(t−1)n
n! F( 1

2 ,1,n+1;1− t) for t ∈ (x,1],

so we have
∫ 1

0

g(t)√
t

dt =
n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.26)

If the assumptions of Theorem 5 hold, then we have

∫ 1

0

g(t)√
t

dt−
2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (0,1). (4.27)

Specially, from the condition A2(x) = 0 we get x = 1
3 , so we have for n = 1

∫ 1

0

g(t)√
t

dt = 2g

(
1
3

)
+

4
45

g′′(η), for some η ∈ (0,1). (4.28)
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If g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣
∫ 1

0

g(t)√
t

dt−2g

(
1
3

)∣∣∣∣ � C1(n, p,
1
3
,w)‖g′‖p. (4.29)

Specially,

C1

(
1,∞,

1
3
,w

)
=

8

9
√

3
≈ 0.5132 C1

(
1,1,

1
3
,w

)
=

2√
3
≈ 1.1547

C1

(
2,∞,

1
3
,w

)
=

4
45

≈ 0.08889 C1

(
2,1,

1
3
,w

)
=

4

9
√

3
≈ 0.25666.

4.3. w(t) = e−t2 , t ∈ R

For this case we have

Aj(x) =
(−1) j−1

( j−1)!

∫ ∞

−∞
(x− s) j−1e−s2ds (4.30)

and

Wn,w(t,x) =

⎧⎪⎨
⎪⎩

1
(n−1)!

∫ t
−∞(t− s)n−1e−s2ds for t ∈ (−∞,x],

1
(n−1)!

∫ t
∞(t− s)n−1e−s2ds for t ∈ (x,∞),

so we have∫ ∞

−∞
g(t)e−t2dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.31)

If the assumptions of Theorem 5 hold, then we have∫ ∞

−∞
e−t2g(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ R. (4.32)

Specially, from the condition A2(x) = 0 we get x = 0, so we have for n = 1∫ ∞

−∞
e−t2g(t)dt =

√
πg(0)+

√
π

4
g′′(η), for some η ∈ R, (4.33)

which coincides with the Hermite-Gaussian quadrature formula with 1 node ([6]). If
g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣

∫ ∞

−∞
g(t)e−t2dt−√

πg(0)
∣∣∣∣ � C1(n, p,0,w)‖g′‖p. (4.34)

Specially,

C1(1,∞,0,w) = 1, C1(1,1,0,w) =
√
π

2
≈ 0.88622

C1(1,∞,0,w) =
√
π

4
≈ 0.44311, C1(1,1,0,w) =

1
2
.
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4.4. w(t) = tαe−t , α > −1, t ∈ (0,∞)

For this case we have

Aj(x) =
j−1

∑
k=0

(−x)kΓ( j− k+α)
k!( j− k−1)!

(4.35)

and

Wn,w(t,x) =

⎧⎪⎨
⎪⎩
∑n−1

k=0
tkγ(n−k+α ,t)
k!(n−k−1)! for t ∈ (0,x],

−∑n−1
k=0

tkΓ(n−k+α ,t)
k!(n−k−1)! for t ∈ (x,∞),

where
Γ(z) =

∫ ∞

0
tz−1e−tdt, z > 0

is Gamma function,

γ(z,a) =
∫ a

0
tz−1e−tdt, z > 0

is the ”lower” incomplete Gamma function and

Γ(z,a) =
∫ ∞

a
tz−1e−tdt, z > 0

is ”upper” incomplete Gamma function, so we have∫ ∞

0
g(t)tαe−t dt =

n

∑
j=1

Aj(x)g( j−1)(x)+ (−1)n
∫ 1

−1
Wn,w(t,x)g(n)(t)dt. (4.36)

If the assumptions of Theorem 5 hold, then we have

∫ ∞

0
tαe−t g(t)dt−

2n

∑
j=1

Aj(x)g( j−1)(x) = A2n+1(x)g(2n)(η), for some η ∈ (0,∞).

(4.37)
Specially, from the condition A2(x) = 0 we get x = α+1, so we have for n = 1∫ ∞

0
tαe−tg(t)dt = Γ(α +1)g(α+1)+

Γ(α +2)
2

g′′(η), for some η ∈ (0,∞),

(4.38)
which coincides with the Laguerre-Gaussian quadrature formula with 1 node ([6]). If
g(n) ∈ Lp , for n ∈ {1,2} , then Theorem 6 implies∣∣∣∣

∫ ∞

0
g(t)te−tdt−g(2)

∣∣∣∣ � C1(n, p,2,w)‖g′‖p. (4.39)

Specially,

C1(1,∞,2,w) =
8
e2 ≈ 1.08268, C1(1,1,2,w) = 1− 3

e2 ≈ 0.59399

C1(2,∞,2,w) = 1, C1(2,1,2,w) =
4
e2 ≈ 0.54134.
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