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Abstract. We present an elementary proof for the above inequality. This in particular leads us
easily to see that the maximal linearly independent sets of commuting n×n matrices, for n � 4 ,
necessarily consist of either nilpotent elements or units.

1. Introduction

In [7], Schur proved that the cardinality of any linearly independent set of com-
muting n× n complex matrices is less than or equal to g(n) = � n2

4 �+ 1. He also
determined linearly independent sets with cardinality g(n) , consisting of commuting
matrices. Later, Jacobson [4] proved the same inequality for any field K . Using repre-
sentation theoretic methods, Gustafson in [2] gives an elegant proof of this inequality
and by applying the same methods he also finds a lower bound for the dimensions of
maximal commutative subalgebras of n× n matrices over a field K . Some authors
have proved Schur’s inequality by explicit manipulation of matrices, see [8], [9] and
for a more recent one see [5]. Using the methods in [2] and in answering a question in
[2], Cowsik [1] gives an upper bound for the length of a commutative Artinian ring in
terms of the length of a faithful module and automatically provides a short proof for a
generalization of Schur’s inequality. Our aim in this short note is to give a very simple
proof of this inequality. But before presenting the proof, let us give some reasons for
our claim of its simplicity. Suppose that S is a maximal linearly independent set of
commuting linear transformations on a finite-dimensional vector space V over a field
K . Let I be the identity transformation and R = K[S∪{I}] be the algebra generated
by S∪{I} over K . R is a commutative K -subalgebra of HomK(V,V ) and Schur’s in-
equality asserts that dimKR � g(dimKV ) . Generally, in proofs of this inequality which
are not by manipulation of matrices, the authors first consider the case that R is a local
ring and then go to the general case. In order to be allowed to do so, they usually apply
the result which says every commutative Artinian ring R is a direct product of Artinian
local rings and also decompose each faithful finitely generated R-module as a direct
sum of submodules which are faithful over local components of R , see for example [1],
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[2], for two clever proofs of this kind. But in our proof, by just using some elemen-
tary facts from linear algebra we are left with the case that R is forced to be local and
we make no use of its Artinian property. Finally, as a consequence of this proof, we
trivially observe that if S is a maximal linearly independent set of commuting n× n
matrices, where n � 4, then its elements must be either nilpotent or units. The latter
fact can also be obtained essentially, from Theorem 2, Lemma 3 and Theorem 3 in [4].

2. Schur’s inequality revisited

We need the following trivial fact, see also [2], [4].

LEMMA. Let g(n) = � n2

4 �+ 1 and n = d1 + d2 + ... + dk , where each di is a
positive integer. Then g(n) � g(d1)+g(d2)+ ...+g(dk) .

Proof. An easy induction on k . �

THEOREM. (Schur) Let S be a set of mutually commuting linearly independent
matrices of order n over a field K . Then | S |� g(n) .

Proof. First we recall that if K is a subfield of a field L , then whenever a sys-
tem of homogeneous linear equations with coefficients in K , has a nontrivial solution
in L , it has also a nontrivial solution in K . This immediately implies that S is also
linearly independent over L . Thus without loss of generality one can assume that
K is algebraically closed and S is maximal with respect to the above property. Let
V = Kn and R = K[S∪ {I}] ⊆ HomK(V,V ) . Clearly, R is a maximal commutative
subalgebra of HomK(V,V ) . We proceed by induction on n . For n = 1 the claim is
trivial. Suppose that the theorem is true for matrices of order less than n . First, let
us assume that an element A ∈ S has at least two distinct characteristic values and
P(x) = (x−λ1)r1(x−λ2)r2 ...(x−λk)rk be its minimal polynomial, where we assume
the λi distinct. Then we can write V = W1 ⊕W2 ⊕ ...⊕Wk , where each Wi is the null
space of (A−λiI)ri . Clearly, each Wi is invariant under every element of R . Now for
each element x ∈V we have the unique representation x = w1 + ...+wk with wi ∈Wi .
Given B ∈ R define Bi = Bi(B) by Bi(x) = B(wi) . If C ∈ R the fact C(Wl) ⊆Wl for all
l = 1, ...,k implies for all admissible i �= j , BiC |Wi=CBi |Wi and BiC |Wj= 0 =CBi |Wj .
So Bi ∈R . Letting Ri = the span of all Bi(B) as B ranges over R , we have R =⊕k

i=1Ri .
So by induction hypothesis, dimK(R) =∑k

1 dimK(Ri) �∑k
1 g(dimK(Wi)) � g(n) and we

are done. Therefore we may assume that no element of S has two distinct character-
istic values. This means that for each A ∈ S there exists ra ∈ K such that A− raI is
nilpotent. But each element T of R is of the form T = λ0I +∑Aj∈Sλ jA j , where λ0 ,
λ j ∈ K . Hence T may be written as T = μ0I +∑Aj∈Sλ j(Aj − r jI) , where μ0 ∈ K and
Aj − r jI is nilpotent. Clearly ∑λ j(Aj − r jI) , as a finite sum of commuting nilpotent
elements, is nilpotent. Consequently, T is either nilpotent or a unit element of R . This
immediately implies that R is a local ring and in fact its maximal ideal, M say, is its
only prime ideal which consists of the nilpotent elements of R . We also note that V
is a faithful R-module and it is well-known (by a variant of Nakayama’s lemma) that
whenever {v1 +MV , v2 +MV ,..., vm +MV} is a basis for V

MV as a vector space over
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R
M then v1 ,v2 ,...,vm generate V as an R-module, see for example [6, Proposition 9.3]
or [3, p390]. Observe that R

M is a finite extension of K , i.e., K ∼= R
M or, more sim-

ply, even without invoking that K is algebraically closed, we have R = KI +M ; hence
R
M
∼= K . Thus dimKMV = dimKV−dimK

V
MV = n−m. We also note that for each vi ,

i = 1, ...,m , Mvi is a K -subspace of MV and therefore dimKMvi � n−m . Now con-

sider Mv1 ⊕Mv2⊕ ...⊕Mvm as a subspace of

m
︷ ︸︸ ︷

V ⊕V ⊕ ...⊕V and define the K -linear
map ϕ : M →Mv1⊕Mv2⊕ ...⊕Mvm by ϕ(A) = Av1 +Av2 + ...Avm for all A ∈ M and
note that we might have Mvi = 0 for some i . Inasmuch as V is a faithful R-module, we
infer that ϕ is injective and therefore dimKM � m(n−m) � n2

4 , i.e., dimKM � � n2

4 � .

But dimKR = 1+dimKM � 1+ � n2

4 � and this completes the proof. �

REMARK. In the second part of the previous proof we note that every element of
R is of the form λ I +A , where A is nilpotent. Motivated by this, we see easily that for
each 0 �= λi j , 0 �= λ , μi j ∈ K , the set S = { μi jI +λi jEi j : 1 � i � m,m+1 � j � n}∪
{λ I} , where m = � n

2� and {Ei j} are matrix units, is a maximal linearly independent
set of commuting n× n matrices over a field K and | S |= g(n) . Therefore R = K[S]
is a maximal commutative local subalgebra of HomK(V,V ) with dimKR = g(n) . From
this and the simple fact that if n = d1 +d2 � 4, where d1 and d2 are positive integers,
then g(n) > g(d1)+g(d2) ; we infer that no commutative subalgebra R′ of HomK(V,V )
of dimension g(n) is decomposable, that is to say, R′ must be local (note, here we are
using the fact that R′ is Artinian), see also [2], [4]. Consequently, every maximal set of
linearly independent commutative elements in HomK(V,V ) consists only of nilpotent
elements or units.

Acknowledgements. I am grateful to three anonymous referees for reading this
article carefully and giving useful comments. I would also like to thank Professor O.
A. S. Karamzadeh who taught me both linear algebra and ring theory.

RE F ER EN C ES

[1] ] R. C. COWSIK, A short note on the Schur-Jacobson theorem, Proc. Amer. Math. Soc., 2, 118 (1993),
675–676.

[2] W. H. GUSTAFSON, On maximal commutative algebras of linear transformation, J. Algebra, 1, 42
(1976), 557–563.

[3] T. HUNGERFORD, Algebra, GTM 73, Springer, 1974.
[4] N. JACOBSON, Schur’s theorems on commutative matrices, Bull. Amer. Math. Soc., 50 (1946), 431–

436.
[5] M. MIRZAKHANI,A simple proof of a theorem of Schur, Amer. Math. Monthly, 3, 105 (1998), 260–261.
[6] R. Y. SHARP, Steps in Commutative Algebra, Cambridge university press, 1990.
[7] I. SCHUR, Zur theorie vertauschbaren matrizen, Crelle’s J., 130 (1905), 66–76.
[8] D. A. SUPRUNENKO AND R. I. TYSHKEVICH, Perestanovochnyye Matrisy, Nauk and Tekhnika press,

Minsk, 1966. English translation: Commutative Matrices, Academic press, New York, 1968.



628 N. S. KARAMZADEH

[9] WAN ZHE-XIAN AND LI GEN-DAO, The two theorems of Schur on commutative matrices, Chinese
Math., 5 (1964), 156–165.

(Received July 17, 2007) N. S. Karamzadeh
Department of Mathematics

Faculty of Mathematical Science
Shahid Beheshti University

Tehran, Iran
e-mail: n-shahni@cc.sbu.ac.ir

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


