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MODULAR INEQUALITIES FOR THE
HARDY-LITTLEWOOD AVERAGES

DAH-CHIN LUOR

(Communicated by J. Pecari¢)

Abstract. In this paper we establish general inequalities of the Hardy-Littlewood averages. We
apply our results to obtained the higher-dimensional form of a strengthened Hardy-Knopp-type
inequality. Furthermore, we discuss the inequalities given by Cizmegija et. al. [1], Cochran and
Lee [2], Heinig [5], S. Kaijser et. al. [6], Levinson [8], Love [9 10], and Xiao [12], and show
that these results are special cases of our results in this paper.

1. Introduction

Let X be a topological space and in X there is defined a continuous operation,
scalar multiplication, such that to every pair (a,x) with a € (0,00) and x € X corre-
sponds an element ax in X, in such a way that for a,b € (0,0) and x € X we have

Ix=x, a(bx)= (ab)x.

Let A be a Borel probability measure on (0,e0). For a nonnegative Borel function f
on X, we define the Hardy-Littlewood average H f as

Hf(x) = /wa(tx)d/l(t), xeX. (1.1)

In the case X = (0,o0), the function Hf is the Hausdorff transform of f if supp(A),
the support of A, is contained in (0, 1]. In particular, if dA(¢) = xo,1)()k(1 — 1) lar,
k>0, then Hf isthe (C,k) mean of f,and if dA (1) = (o 1)(t)T(k) "' (—logs)* 'dr,
k>0, then Hf isthe (H, k) meanof f. In[3, Eq.(11.18.4)], Hardy gave the following
inequality for the Hausdorff transform for 1 < p < oo :

/Om(Hf(x))pdx < (/Olzl/l’d/l(t)>p/owf(x)pdx. (12)
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In [12], Xiao considered the case X = R" and proved the higher dimensional form of
(1.2). The purpose of this paper is to extend these results to the inequality of the form

[ oHrw)ant) <€ [ o(re)av), (13)
E E

where Hf is defined by (1.1), ¢ € ®(I), u and v are o-finite Borel measures on
X, and E is a A—balanced Borel set in X. Here I is an open interval contained in
(0,00) and ®*(I) denotes the class of all nonnegative convex functions ¢ on I such
that ¢ takes its limiting values, finite or infinite, at the end of /. A Borel set £ C X is
called A —balanced if tE C E for every ¢ € supp(A), where tE = {tx:x € E}.

A considerable number of works are devoted to the study of inequalities of the
type (1.2). We just mention the following, all of which to some extent have guided
us in our research: [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], and the references
given there. In particular, in paper [8], Levinson considered the case X = E = (0,),
dA (1) = xo.1)(t)dt, dp(x) = dv(x) = dx,and ¢¢" > (1—1/p)(¢')*, where 1 < p <
oo, He proved (1.3) with C = (p/(p—1))? for 1 < p < and C = e for p = . This
result generalized the classical Hardy’s inequality (cf. [4, Theorem 327])

/Ow G/Oxf(t)dt>pdx< (%)p/owf(x)pdx’ (1.4)

and the Knopp’s inequality (cf. [4, Theorem 335])

/Oooexp (%/jlogf(t)dt) dxée/omf(x)dx. (1.5)

In [5, Theorem 2.2], Heinig generalized Levinson’s result to the case dp(x) = u(x)dx
and dv(x) = v(x)dx. On the other hand, in [6], Kaijser et. al. proved the Hardy-Knopp-

type inequality
< (1 [* d = d
[0 (3 roa) < [“otren®, (16)

They also pointed out that (1.4) and (1.5) can be obtained by (1.6). In [1], A.
CizmeSija et. al. generalized (1.6) to the so-called strengthened Hardy-Knopp-type
inequality. Our results in this paper are generalizations of the results of Cizmesija et.
al. [1], Cochran and Lee [2], Heinig [5], S. Kaijser et. al. [6], Levinson [8], Love [9
10], and Xiao [12].

Throughout this paper we assume that all functions are Borel measurable on their
domains. We also take exp(—ee) =0, log0 = —oo, and 0-e0 = 0.

2. Main Theorems

In the following theorems, u and v are o -finite Borel measures on X, A is a
Borel probability measure on (0,c0), and E is a A —balanced Borel set in X . For each
t >0, we also define a Borel measure u, by u, (D) = u(t~'D) for all Borel set D in
X.
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THEOREM 2.1. Suppose ¢ € ®(I) and y, < v for each t € supp(A). If the
range of values of f lies in the closure of 1, then we have

JLotrenane < o ([ Seane Jave. @)

Moreover, if log¢ is also convex and p is a positive function on (0,0) such that
Gy =exp [y logp(t)dA(t) exists and 0 < Gy < oo, then

JLotreyant) <6, [ o) ([ o0 e are) Jave. @2

Proof of Theorem 2.1. By Jensen’s inequality and Fubini’s theorem, we have

/q)Hf Yl (x //q> F(x))dA (1) (x //q> (1)) d e (x)dA (1),

Since tE C E and y, < v foreach t € supp(A),

[ouenau = [ otoaue < [oronEmave).  @3)

Therefore

o) < [ [ 000N avian()
E
—/q> (Od“’mdx()) Vo)

If log ¢ is also convex, then

O(HF () <exp [ “log (f(1x))dA (1) = G, (exp / " loglp (1) (f(1x))]dA <r>)
<G, /0 () o (f(1x)dA (1)

forall x € E. This implies

Lot reNane) <6, [ [ o) o(s(ex)arwduty

Gy [ ([ 0reant) o) anc

Then (2.2) is followed by (2.3) and Fubini’s theorem. This completes the proof. [

Consider the case X = R", du(x) = |x|~!xg(x)u(x)dx, and dv(x) = dx in The-
orem 2.1, where u is a nonnegative function on R” and |x| denotes the Euclidean
norm of x € R". Then (du,/dv)(x) = t' x| 'y (x)u(t~'x) for each t > 0. If
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supp(A)C (0,1], E=E ={x=§0:0€A,0<& < b}, where A is a Borel sub-
set of the unit sphere in R" and 0 < b < oo, then (2.1) can be reduced to

[0 ([ reaie)un < [ on ([ fruenarn) & ea)

and (2.2) can be reduced to

/El ¢ (/Olf(tx)d/l(t)> u(x)ic—)T (2.5)

couf, ([ o)

Choose n =1, E; = (0,b), and dA(t) = xo,1)(t)dt. Then (2.4) can be reduced to
the strengthened Hardy-Knopp-type inequality [1, Eq.(4)]. If b =0, p(¢t) =¢~%, and
replacing u(x) by xu(x), then G, = e® and (2.5) can be reduced to the result of [5,
Theorem 2.2(ii)]. On the other hand, if supp(A) C[l,0), E=E;={x=£,0:0¢
A€ > b}, where A is a Borel subset of the unit sphere in R” and 0 < b < oo, then
(2.1) can be reduced to

/Ez ¢ (Awf(tx)dx (I)) u(x)\c% S /E2 O(/(x) (/IX/btl‘"u(t_lx)d)L (I)) %

(2.6)
and (2.2) can be reduced to
/52 0 (/lmf(tx)d/l (t)) u(x)% (2.7)
]/ .
<Gy [ otr) ( [ 00 e ant >) <

Inequalities (2.6) and (2.7) may be seen as a dual relation to (2.4) and (2.5), respec-
tively. If n=1, E; = (b,), and dA(t) = t‘zx(lﬂw) (t)dt, then (2.6) can be reduced to
[1, Eq.(6)].

We can also obtain [10, Theorem 1] by our Theorem 2.1. Let X = (0,°0), u and
w are positive functions on (0,e°), w is integrable on (0,1),and W = fol w(t)dt. Con-
sider the case E = (0,b), 0 <b < oo, dA(t) = x(oﬁl)(t)W_lw(t)dt, du = xop)(x)u(x)dx,
and dv = u(x)dx in Theorem 2.1. Then (di; /dv)(x) =1~ u(x) " u(t ™ x) x0 ) (x) . If

i _ du, / w(t)
1
t ————~dt < M for almost all x € (0,b),
JAGRE~E o PO (0,)

then (2.2) can be reduced to

/Obq) (% /Olf(tx)W(t)dt> u(x)dx < MG, /th)(f(x))u(x)dx. (2.8)
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Choosing ¢(x) = ¢* and replacing f by log f, we have [10, Theorem 1].
If to the hypotheses of Theorem 2.1 is added that

sup — (x) < a(t) for each t € supp(A) (2.9)

for some positive function o on (0,e0), then we have the following theorem.

THEOREM 2.2. Suppose ¢ € @ (I), w, < v for each t € supp(A), condition
(2.9) holds, and the range of values of f lies in the closure of I.

(i) If 9P € dT(I) and 0 < [ ou(t)/PdA(t) < o0, where 1 < p < o, then

/ ¢<Hf<x>>du<x><(/o NVPdA ) [ ot (2.10)

(i) If log¢ is convex, Gy = exp [, loga(t)dA(t) exists, and 0 < Gy < oo, then

/Eq)(Hf(x))du(x)g(exp/ log x(t)dA. (1 >/¢ V(). (2.11)

Proof of Theorem 2.2. We first prove case (i). Since ¢'/P is convex, we have

ots) < ([ o risenare)’

for all x € E. By Minkowski inequality for integrals, we see that

/¢Hf e {/ </¢ (1)) dp (x )Upd/l(t)}p. (2.12)

y (2.3) and (2.9), we see that for each 7 € supp(1),

/¢ f(ex))du(x /¢ (2.13)

Putting (2.12) and (2.13) together, we have (2.10). The result of case (ii) can be
obtained by choosing p = « in Theorem 2.1. [

In the case X = E = (0,00), du =dv =dx, and dA(t) = y(t)dt, where v is a
nonnegative function on (0,%0) such that ;" w(¢)dt = 1, we may choose a(t) =1""
and Theorem 2.2(i) can be reduced to [5, Corollary 2.1].

In the following corollaries, we consider the case X = R" and the inequality

Lotrmmieisiax<c [ o(renisetids,  (2.14)

where ¢ € ®T(I), n:(0,00) — (0,0) is submultiplicative, T : (0,%0) — (0, ) is mono-
tone, and the range of values of f lies in the closure of I. Here n is called submulti-
plicative if n(ab) < n(a)n(b) forall a and b in (0,0).
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COROLLARY 2.3. Suppose supp(A) C (0,1] and 7 is decreasing.

() If 917 e (), 1 < p <ooand 0 < [y (n(t=")™")/PdA(t) < o, then (2.14)
holds with C = (f3 (n(t=" )= /PdA(1))P.

(i) If log¢ is also convex and 0 < exp [y log[n(t=" )t "|dA (1) < oo, then (2.14)
holds with C = exp [y log[n(t~")t~™dA(1).

Proof of Corollary 2.3. Let du = dv = n(|x|)7(|x|)dx in Theorem 2.2. Then
t < v and (du,/dv)(x) <n( 1)t foreach 0 < < 1. Define a(t) =n(t ') ™.
Then Corollary 2.3 can be obtained by Theorem 2.2. [

Corollary 2.3(i) was also obtained by Xiao [12, Theorem(i)] for the case E = R",
O(x) =x", 1 <p<ee, n=1=1, and dA(t) = y(r)dt, where y is a nonnegative
function on (0,1]. Inthe case n =1, E = (0,00), 1 < p <o, dA(t) = x(0,1)(t)dt, and
n = 1 = 1, the constant given in Corollary 2.3(i) is C = (p/(p — 1))? and we have [8,
Theorem 1].

Let w be a nonnegative function on (0,e0) such that 0 < W = fol w(t)dt < oo.
Consider the case n =1, E = (0,b), 0 < b < oo, and dA(t) = yo,1)(1)W 'w(r)dt
in Corollary 2.3. Then the result of (i) with ¢(x) = x? implies [9, Theorem 1]. By
choosing ¢(x) = ¢* and replacing f by log f, the result of (ii) implies [9, Theorem
2] and [10, Theorem 2]. In particular, choosing w(t) = at®*~', o >0, n(t) =7, and
7(t) = 1, we have the inequality proved by Cochran and Lee (cf. [2]).

Analogous to Corollary 2.3 we have the following result which can be obtained by
a similar proof to that given in Corollary 2.3, .

COROLLARY 2.4. Suppose supp(A) C [1,0) and T is increasing.

(i) If /P e @ (1), 1< p<ooand 0< [[°(n(t~ )™ /PdA(t) < oo, then (2.14)
holds with C = ([{°(n(t~")t™")\/PdA(t))P.

(i) If log¢ is also convex and 0 < exp [;"log[n(t~1)t"dA(t) < oo, then (2.14)
holds with C = exp [;"log[n(t~1)t™"|dA(¢).

Let E=R", ¢(x) =xP, 1 < p<e,and n=1=1 in Corollary 2.4(i). If dA(¢) =
A1 00) (t1)w(t~1)t"2dt, where v is a nonnegative function on (0, 1], then we have [12,
Corollary(i)].

Let w be a nonnegative function on (0,e) such that 0 < W = [["w(t)dr < eo.
Consider the case n =1, E = (b,), 0 < b <o, and dA(t) = () ) ()W~ tw(t)dt in
Corollary 2.4. Then the result of (i) with ¢(x) = x implies [9, Theorem 7] and [9,
Theorem 6] can be obtained by choosing ¢(x) = ¢* and replacing f by logf in the
result of (ii). In particular, choosing w(t) = —ot®~!, a <0, n(t) =1t¥, and 7(¢) =1,
we have the inequality proved by Love (cf. [9, Corollary 6]).
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3. Best possible constants

In this section, we discuss the best possible constants in our theorems. Consider

the case that (X,||-||) is a real norm linear space and u = v. Let ¢(x) = x”, where
1 < p < o, in Theorem 2.2. Then (2.10) can be reduced to
faswra < ([[awran) [reraw. G
E 0

If we choose ¢ (x) = ¢* and replace f by log f, inequality (2.11) then can be reduced

to

freo ([ 10erear0) anto < G [ rwauto.  @2)
The following Theorem 3.1 is concerned with the best possible constants in (3.1) and
(3.2).

THEOREM 3.1. Let the hypotheses of Theorem 2.2 hold with u = v and o be
multiplicative. Suppose that there exist a A— balanced Borel set D in E and a se-
quence of positive multiplicative functions {0y }men defined on (0,00) such that 0 <
Jp 0 (|1x]))dp(x) < oo for all sufficiently large m.

(i) If liminfy, .o 04 (¢) = at(t) for each t € supp(L), then (fy a(t)'/PdA(t))P in
(3.1) is the best possible constant.

(i1) Suppose that G, exists and 0 < Gg,, < o for all sufficiently large m. If
liminfy,—e Gg,, = Gq, then the constant Gy, in (3.2) is the best possible.

Proof of Theorem 3.1. For large m € N, choose f(x) = xp(x) o (|lx[)/? in (3.1)
and (3.2). Inequality (3.1) then gives rise to

"o ar0) [ anlilduo) " o)t PaA () ) du()
0
oo p
> ( / am<z>1/w<r>) [ i)

Therefore (5 ou(t) /PdA(t))? > (5 0t (z)'/PdA())P. By the Fatou’s lemma and the

condition in (i), we readily deduce that ( [y’ c(f)"/PdA(¢))? in (3.1) must be the best
possible. On the other hand, by (3.2) we have

G /D (1) (x) > /E exp ( /0 wlogm(rx)am(znx>]er>)du<x>
> G, /D (2]t (x).

Therefore G > Gy, . By (ii) we see that G, in (3.2) must be the best possible. [

Consider the case (X, -||) = (R",|-]) and du(x) = n(|x|)(jx|)dx in (3.1) —
(3.2). The following Corollary 3.2 and Corollary 3.3 are concerned with the best pos-
sible constants in Corollary 2.3 and Corollary 2.4, respectively.
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COROLLARY 3.2. Ifto the hypotheses of Corollary 2.3 is added that n is multi-
plicative and fol EE1T(E)dE is finite for all sufficiently small € > 0, then for ¢(x) =
xP, 1 < p < oo, the constant C given in Corollary 2.3(i) is the best possible. More-
over, if fol log[n (t=1)te="dA (¢) is also finite for all sufficiently small € > 0, then for
¢ (x) = € and replacing f by log f, the constant C given in Corollary 2.3(ii) is the
best possible.

Proof of Corollary 3.2. Since 7 is multiplicative, the function « given in the
proof of Corollary 2.3 is also multiplicative. Let D = {x € E : |x| < 1} and o, (¢) =
n(t=")t'/"=" m € N. Then conditions given in Theorem 3.1 are satisfied and hence
the constants given in Corollary 2.3 are the best possible. [

COROLLARY 3.3. If to the hypotheses of Corollary 2.4 is added that M is mul-
tiplicative and [ E~¢711(E)dE is finite for all sufficiently small € > 0, then for
d(x) =xP, 1 < p < oo, the constant C given in Corollary 2.4(i) is the best possible.
Moreover; if [{"log[n(t=1)t=¢"dA(t) is also finite for all sufficiently small € > 0,
then for ¢ (x) = e* and replacing f by log f, the constant C given in Corollary 2.4(ii)
is the best possible.

Corollary 3.3 can be proved by choosing D = {x € E : |x| > 1} and oy,(t) =
n(=")e~1/m" m e N in Theorem 3.1.
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