
Mathematical
Inequalities

& Applications
Volume 13, Number 3 (2010), 635–642

MODULAR INEQUALITIES FOR THE

HARDY–LITTLEWOOD AVERAGES

DAH-CHIN LUOR

(Communicated by J. Pečarić)

Abstract. In this paper we establish general inequalities of the Hardy-Littlewood averages. We
apply our results to obtained the higher-dimensional form of a strengthened Hardy-Knopp-type
inequality. Furthermore, we discuss the inequalities given by Čižmešija et. al. [1], Cochran and
Lee [2], Heinig [5], S. Kaijser et. al. [6], Levinson [8], Love [9 10], and Xiao [12], and show
that these results are special cases of our results in this paper.

1. Introduction

Let X be a topological space and in X there is defined a continuous operation,
scalar multiplication, such that to every pair (a,x) with a ∈ (0,∞) and x ∈ X corre-
sponds an element ax in X , in such a way that for a,b ∈ (0,∞) and x ∈ X we have

1x = x, a(bx) = (ab)x.

Let λ be a Borel probability measure on (0,∞) . For a nonnegative Borel function f
on X , we define the Hardy-Littlewood average H f as

H f (x) =
∫ ∞

0
f (tx)dλ (t), x ∈ X . (1.1)

In the case X = (0,∞) , the function H f is the Hausdorff transform of f if supp(λ ) ,
the support of λ , is contained in (0,1] . In particular, if dλ (t) = χ(0,1)(t)k(1− t)k−1dt ,
k > 0, then H f is the (C,k) mean of f , and if dλ (t) = χ(0,1)(t)Γ(k)−1(− log t)k−1dt ,
k > 0, then H f is the (H,k) mean of f . In [3, Eq.(11.18.4)], Hardy gave the following
inequality for the Hausdorff transform for 1 < p < ∞ :

∫ ∞

0
(H f (x))pdx <

(∫ 1

0
t−1/pdλ (t)

)p ∫ ∞

0
f (x)pdx. (1.2)
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In [12], Xiao considered the case X = R
n and proved the higher dimensional form of

(1.2) . The purpose of this paper is to extend these results to the inequality of the form∫
E
φ(H f (x))dμ(x) � C

∫
E
φ( f (x))dν(x), (1.3)

where H f is defined by (1.1) , φ ∈ Φ+(I) , μ and ν are σ -finite Borel measures on
X , and E is a λ−balanced Borel set in X . Here I is an open interval contained in
(0,∞) and Φ+(I) denotes the class of all nonnegative convex functions φ on I such
that φ takes its limiting values, finite or infinite, at the end of I . A Borel set E ⊆ X is
called λ−balanced if tE ⊆ E for every t ∈ supp(λ ) , where tE = {tx : x ∈ E} .

A considerable number of works are devoted to the study of inequalities of the
type (1.2) . We just mention the following, all of which to some extent have guided
us in our research: [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], and the references
given there. In particular, in paper [8], Levinson considered the case X = E = (0,∞) ,
dλ (t) = χ(0,1)(t)dt , dμ(x) = dν(x) = dx , and φφ ′′ � (1−1/p)(φ ′)2 , where 1 < p �
∞ . He proved (1.3) with C = (p/(p−1))p for 1 < p <∞ and C = e for p = ∞ . This
result generalized the classical Hardy’s inequality (cf. [4, Theorem 327])

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p ∫ ∞

0
f (x)pdx, (1.4)

and the Knopp’s inequality (cf. [4, Theorem 335])

∫ ∞

0
exp

(
1
x

∫ x

0
log f (t)dt

)
dx � e

∫ ∞

0
f (x)dx. (1.5)

In [5, Theorem 2.2], Heinig generalized Levinson’s result to the case dμ(x) = u(x)dx
and dν(x) = v(x)dx . On the other hand, in [6], Kaijser et. al. proved the Hardy-Knopp-
type inequality ∫ ∞

0
φ

(
1
x

∫ x

0
f (t)dt

)
dx
x

�
∫ ∞

0
φ( f (x))

dx
x

. (1.6)

They also pointed out that (1.4) and (1.5) can be obtained by (1.6) . In [1], A.
Čižmešija et. al. generalized (1.6) to the so-called strengthened Hardy-Knopp-type
inequality. Our results in this paper are generalizations of the results of Čižmešija et.
al. [1], Cochran and Lee [2], Heinig [5], S. Kaijser et. al. [6], Levinson [8], Love [9
10], and Xiao [12].

Throughout this paper we assume that all functions are Borel measurable on their
domains. We also take exp(−∞) = 0, log0 = −∞ , and 0 ·∞= 0.

2. Main Theorems

In the following theorems, μ and ν are σ -finite Borel measures on X , λ is a
Borel probability measure on (0,∞) , and E is a λ−balanced Borel set in X . For each
t > 0, we also define a Borel measure μt by μt(D) = μ(t−1D) for all Borel set D in
X .
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THEOREM 2.1. Suppose φ ∈ Φ+(I) and μt � ν for each t ∈ supp(λ ) . If the
range of values of f lies in the closure of I , then we have

∫
E
φ(H f (x))dμ(x) �

∫
E
φ( f (x))

(∫ ∞

0

dμt

dν
(x)dλ (t)

)
dν(x). (2.1)

Moreover, if logφ is also convex and ρ is a positive function on (0,∞) such that
Gρ = exp

∫ ∞
0 logρ(t)dλ (t) exists and 0 < Gρ < ∞ , then

∫
E
φ(H f (x))dμ(x) � Gρ

∫
E
φ( f (x))

(∫ ∞

0
ρ(t)−1 dμt

dν
(x)dλ (t)

)
dν(x). (2.2)

Proof of Theorem 2.1. By Jensen’s inequality and Fubini’s theorem, we have∫
E
φ(H f (x))dμ(x) �

∫
E

∫ ∞

0
φ( f (tx))dλ (t)dμ(x) =

∫ ∞

0

∫
E
φ( f (tx))dμ(x)dλ (t).

Since tE ⊆ E and μt � ν for each t ∈ supp(λ ) ,
∫

E
φ( f (tx))dμ(x) =

∫
tE
φ( f (y))dμt (y) �

∫
E
φ( f (y))

dμt

dν
(y)dν(y). (2.3)

Therefore ∫
E
φ(H f (x))dμ(x) �

∫ ∞

0

∫
E
φ( f (y))

dμt

dν
(y)dν(y)dλ (t)

=
∫

E
φ( f (y))

(∫ ∞

0

dμt

dν
(y)dλ (t)

)
dν(y).

If logφ is also convex, then

φ(H f (x)) � exp
∫ ∞

0
logφ( f (tx))dλ (t) = Gρ

(
exp

∫ ∞

0
log[ρ(t)−1φ( f (tx))]dλ (t)

)

�Gρ

∫ ∞

0
ρ(t)−1φ( f (tx))dλ (t)

for all x ∈ E . This implies∫
E
φ(H f (x))dμ(x) �Gρ

∫
E

∫ ∞

0
ρ(t)−1φ( f (tx))dλ (t)dμ(x)

=Gρ

∫ ∞

0

(∫
E
φ( f (tx))dμ(x)

)
ρ(t)−1dλ (t).

Then (2.2) is followed by (2.3) and Fubini’s theorem. This completes the proof. �

Consider the case X = R
n , dμ(x) = |x|−1χE(x)u(x)dx , and dν(x) = dx in The-

orem 2.1, where u is a nonnegative function on R
n and |x| denotes the Euclidean

norm of x ∈ R
n . Then (dμt/dν)(x) = t1−n|x|−1χtE(x)u(t−1x) for each t > 0. If
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supp(λ ) ⊆ (0,1] , E = E1 = {x = ξσ : σ ∈ A,0 < ξ < b} , where A is a Borel sub-
set of the unit sphere in R

n and 0 < b � ∞ , then (2.1) can be reduced to

∫
E1

φ
(∫ 1

0
f (tx)dλ (t)

)
u(x)

dx
|x| �

∫
E1

φ( f (x))
(∫ 1

|x|/b
t1−nu(t−1x)dλ (t)

)
dx
|x| (2.4)

and (2.2) can be reduced to

∫
E1

φ
(∫ 1

0
f (tx)dλ (t)

)
u(x)

dx
|x| (2.5)

� Gρ

∫
E1

φ( f (x))
(∫ 1

|x|/b
t1−nρ(t)−1u(t−1x)dλ (t)

)
dx
|x| .

Choose n = 1, E1 = (0,b) , and dλ (t) = χ(0,1)(t)dt . Then (2.4) can be reduced to
the strengthened Hardy-Knopp-type inequality [1, Eq.(4)]. If b = ∞ , ρ(t) = t−α , and
replacing u(x) by xu(x) , then Gρ = eα and (2.5) can be reduced to the result of [5,
Theorem 2.2(ii)]. On the other hand, if supp(λ ) ⊆ [1,∞) , E = E2 = {x = ξσ : σ ∈
A,ξ > b} , where A is a Borel subset of the unit sphere in R

n and 0 � b < ∞ , then
(2.1) can be reduced to

∫
E2

φ
(∫ ∞

1
f (tx)dλ (t)

)
u(x)

dx
|x| �

∫
E2

φ( f (x))
(∫ |x|/b

1
t1−nu(t−1x)dλ (t)

)
dx
|x|

(2.6)
and (2.2) can be reduced to

∫
E2

φ
(∫ ∞

1
f (tx)dλ (t)

)
u(x)

dx
|x| (2.7)

� Gρ

∫
E2

φ( f (x))
(∫ |x|/b

1
t1−nρ(t)−1u(t−1x)dλ (t)

)
dx
|x| .

Inequalities (2.6) and (2.7) may be seen as a dual relation to (2.4) and (2.5) , respec-
tively. If n = 1, E2 = (b,∞) , and dλ (t) = t−2χ(1,∞)(t)dt , then (2.6) can be reduced to
[1, Eq.(6)].

We can also obtain [10, Theorem 1] by our Theorem 2.1. Let X = (0,∞) , u and
w are positive functions on (0,∞) , w is integrable on (0,1) , and W =

∫ 1
0 w(t)dt . Con-

sider the case E = (0,b) , 0 < b �∞ , dλ (t)= χ(0,1)(t)W−1w(t)dt , dμ = χ(0,b)(x)u(x)dx ,
and dν = u(x)dx in Theorem 2.1. Then (dμt/dν)(x) = t−1u(x)−1u(t−1x)χ(0,tb)(x) . If

∫ ∞

0
ρ(t)−1 dμt

dν
(x)dλ (t) =

1
W

∫ 1

x/b

u(t−1x)w(t)
ρ(t)tu(x)

dt � M for almost all x ∈ (0,b),

then (2.2) can be reduced to

∫ b

0
φ

(
1
W

∫ 1

0
f (tx)w(t)dt

)
u(x)dx � MGρ

∫ b

0
φ( f (x))u(x)dx. (2.8)
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Choosing φ(x) = ex and replacing f by log f , we have [10, Theorem 1].
If to the hypotheses of Theorem 2.1 is added that

sup
x∈E

dμt

dν
(x) � α(t) for each t ∈ supp(λ ) (2.9)

for some positive function α on (0,∞) , then we have the following theorem.

THEOREM 2.2. Suppose φ ∈ Φ+(I) , μt � ν for each t ∈ supp(λ ) , condition
(2.9) holds, and the range of values of f lies in the closure of I .

(i) If φ1/p ∈Φ+(I) and 0 <
∫ ∞
0 α(t)1/pdλ (t) < ∞ , where 1 � p < ∞ , then

∫
E
φ(H f (x))dμ(x) �

(∫ ∞

0
α(t)1/pdλ (t)

)p ∫
E
φ( f (x))dν(x). (2.10)

(ii) If logφ is convex, Gα = exp
∫ ∞
0 logα(t)dλ (t) exists, and 0 < Gα < ∞ , then

∫
E
φ(H f (x))dμ(x) �

(
exp

∫ ∞

0
logα(t)dλ (t)

)∫
E
φ( f (x))dν(x). (2.11)

Proof of Theorem 2.2. We first prove case (i). Since φ1/p is convex, we have

φ(H f (x)) �
(∫ ∞

0
φ1/p( f (tx))dλ (t)

)p

for all x ∈ E . By Minkowski inequality for integrals, we see that

∫
E
φ(H f (x))dμ(x) �

{∫ ∞

0

(∫
E
φ( f (tx))dμ(x)

)1/p

dλ (t)

}p

. (2.12)

By (2.3) and (2.9) , we see that for each t ∈ supp(λ ) ,∫
E
φ( f (tx))dμ(x) � α(t)

∫
E
φ( f (x))dν(x). (2.13)

Putting (2.12) and (2.13) together, we have (2.10) . The result of case (ii) can be
obtained by choosing ρ = α in Theorem 2.1. �

In the case X = E = (0,∞) , dμ = dν = dx , and dλ (t) = ψ(t)dt , where ψ is a
nonnegative function on (0,∞) such that

∫ ∞
0 ψ(t)dt = 1, we may choose α(t) = t−1

and Theorem 2.2(i) can be reduced to [5, Corollary 2.1].
In the following corollaries, we consider the case X = R

n and the inequality∫
E
φ(H f (x))η(|x|)τ(|x|)dx � C

∫
E
φ( f (x))η(|x|)τ(|x|)dx, (2.14)

where φ ∈Φ+(I) , η : (0,∞) �→ (0,∞) is submultiplicative, τ : (0,∞) �→ (0,∞) is mono-
tone, and the range of values of f lies in the closure of I . Here η is called submulti-
plicative if η(ab) � η(a)η(b) for all a and b in (0,∞) .
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COROLLARY 2.3. Suppose supp(λ ) ⊆ (0,1] and τ is decreasing.

(i) If φ1/p ∈ Φ+(I) , 1 � p < ∞ and 0 <
∫ 1
0 (η(t−1)t−n)1/pdλ (t) < ∞ , then (2.14)

holds with C = (
∫ 1
0 (η(t−1)t−n)1/pdλ (t))p .

(ii) If logφ is also convex and 0 < exp
∫ 1
0 log[η(t−1)t−n]dλ (t) < ∞ , then (2.14)

holds with C = exp
∫ 1
0 log[η(t−1)t−n]dλ (t) .

Proof of Corollary 2.3. Let dμ = dν = η(|x|)τ(|x|)dx in Theorem 2.2. Then
μt � ν and (dμt/dν)(x) � η(t−1)t−n for each 0 < t � 1. Define α(t) = η(t−1)t−n .
Then Corollary 2.3 can be obtained by Theorem 2.2. �

Corollary 2.3(i) was also obtained by Xiao [12, Theorem(i)] for the case E = R
n ,

φ(x) = xp , 1 � p < ∞ , η = τ = 1, and dλ (t) = ψ(t)dt , where ψ is a nonnegative
function on (0,1] . In the case n = 1, E = (0,∞) , 1 < p < ∞ , dλ (t) = χ(0,1)(t)dt , and
η = τ = 1, the constant given in Corollary 2.3(i) is C = (p/(p−1))p and we have [8,
Theorem 1].

Let w be a nonnegative function on (0,∞) such that 0 < W =
∫ 1
0 w(t)dt < ∞ .

Consider the case n = 1, E = (0,b) , 0 < b � ∞ , and dλ (t) = χ(0,1)(t)W−1w(t)dt
in Corollary 2.3. Then the result of (i) with φ(x) = xp implies [9, Theorem 1]. By
choosing φ(x) = ex and replacing f by log f , the result of (ii) implies [9, Theorem
2] and [10, Theorem 2]. In particular, choosing w(t) = αtα−1 , α > 0, η(t) = tγ , and
τ(t) = 1, we have the inequality proved by Cochran and Lee (cf. [2]).

Analogous to Corollary 2.3 we have the following result which can be obtained by
a similar proof to that given in Corollary 2.3, .

COROLLARY 2.4. Suppose supp(λ ) ⊆ [1,∞) and τ is increasing.

(i) If φ1/p ∈Φ+(I) , 1 � p < ∞ and 0 <
∫ ∞
1 (η(t−1)t−n)1/pdλ (t) < ∞ , then (2.14)

holds with C = (
∫ ∞
1 (η(t−1)t−n)1/pdλ (t))p .

(ii) If logφ is also convex and 0 < exp
∫ ∞
1 log[η(t−1)t−n]dλ (t) < ∞ , then (2.14)

holds with C = exp
∫ ∞
1 log[η(t−1)t−n]dλ (t) .

Let E = R
n , φ(x) = xp , 1 � p <∞ , and η = τ = 1 in Corollary 2.4(i). If dλ (t) =

χ[1,∞)(t)ψ(t−1)tn−2dt , where ψ is a nonnegative function on (0,1] , then we have [12,
Corollary(i)].

Let w be a nonnegative function on (0,∞) such that 0 < W =
∫ ∞
1 w(t)dt < ∞ .

Consider the case n = 1, E = (b,∞) , 0 � b < ∞ , and dλ (t) = χ(1,∞)(t)W−1w(t)dt in
Corollary 2.4. Then the result of (i) with φ(x) = xp implies [9, Theorem 7] and [9,
Theorem 6] can be obtained by choosing φ(x) = ex and replacing f by log f in the
result of (ii). In particular, choosing w(t) = −αtα−1 , α < 0, η(t) = tγ , and τ(t) = 1,
we have the inequality proved by Love (cf. [9, Corollary 6]).
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3. Best possible constants

In this section, we discuss the best possible constants in our theorems. Consider
the case that (X ,‖ · ‖) is a real norm linear space and μ = ν . Let φ(x) = xp , where
1 � p < ∞ , in Theorem 2.2. Then (2.10) can be reduced to∫

E
(H f (x))pdμ(x) �

(∫ ∞

0
α(t)1/pdλ (t)

)p ∫
E

f (x)pdμ(x). (3.1)

If we choose φ(x) = ex and replace f by log f , inequality (2.11) then can be reduced
to ∫

E
exp

(∫ ∞

0
log f (tx)dλ (t)

)
dμ(x) � Gα

∫
E

f (x)dμ(x). (3.2)

The following Theorem 3.1 is concerned with the best possible constants in (3.1) and
(3.2) .

THEOREM 3.1. Let the hypotheses of Theorem 2.2 hold with μ = ν and α be
multiplicative. Suppose that there exist a λ−balanced Borel set D in E and a se-
quence of positive multiplicative functions {αm}m∈N defined on (0,∞) such that 0 <∫
Dαm(‖x‖)dμ(x) < ∞ for all sufficiently large m.

(i) If liminfm→∞αm(t) � α(t) for each t ∈ supp(λ ) , then (
∫ ∞
0 α(t)1/pdλ (t))p in

(3.1) is the best possible constant.

(ii) Suppose that Gαm exists and 0 < Gαm < ∞ for all sufficiently large m. If
liminfm→∞Gαm � Gα , then the constant Gα in (3.2) is the best possible.

Proof of Theorem 3.1. For large m∈N , choose f (x) = χD(x)αm(‖x‖)1/p in (3.1)
and (3.2) . Inequality (3.1) then gives rise to(∫ ∞

0
α(t)1/pdλ (t)

)p ∫
D
αm(‖x‖)dμ(x) �

∫
E

(∫ ∞

0
χD(tx)αm(t‖x‖)1/pdλ (t)

)p

dμ(x)

�
(∫ ∞

0
αm(t)1/pdλ (t)

)p ∫
D
αm(‖x‖)dμ(x).

Therefore (
∫ ∞
0 α(t)1/pdλ (t))p � (

∫ ∞
0 αm(t)1/pdλ (t))p . By the Fatou’s lemma and the

condition in (i), we readily deduce that (
∫ ∞
0 α(t)1/pdλ (t))p in (3.1) must be the best

possible. On the other hand, by (3.2) we have

Gα

∫
D
αm(‖x‖)dμ(x) �

∫
E

exp

(∫ ∞

0
log[χD(tx)αm(t‖x‖)]dλ (t)

)
dμ(x)

� Gαm

∫
D
αm(‖x‖)dμ(x).

Therefore Gα � Gαm . By (ii) we see that Gα in (3.2) must be the best possible. �

Consider the case (X ,‖ · ‖) = (Rn, | · |) and dμ(x) = η(|x|)τ(|x|)dx in (3.1)−
(3.2) . The following Corollary 3.2 and Corollary 3.3 are concerned with the best pos-
sible constants in Corollary 2.3 and Corollary 2.4, respectively.
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COROLLARY 3.2. If to the hypotheses of Corollary 2.3 is added that η is multi-
plicative and

∫ 1
0 ξ ε−1τ(ξ )dξ is finite for all sufficiently small ε > 0 , then for φ(x) =

xp , 1 � p < ∞ , the constant C given in Corollary 2.3(i) is the best possible. More-
over, if

∫ 1
0 log[η(t−1)tε−n]dλ (t) is also finite for all sufficiently small ε > 0 , then for

φ(x) = ex and replacing f by log f , the constant C given in Corollary 2.3(ii) is the
best possible.

Proof of Corollary 3.2. Since η is multiplicative, the function α given in the
proof of Corollary 2.3 is also multiplicative. Let D = {x ∈ E : |x| < 1} and αm(t) =
η(t−1)t1/m−n , m ∈ N . Then conditions given in Theorem 3.1 are satisfied and hence
the constants given in Corollary 2.3 are the best possible. �

COROLLARY 3.3. If to the hypotheses of Corollary 2.4 is added that η is mul-
tiplicative and

∫ ∞
1 ξ−ε−1τ(ξ )dξ is finite for all sufficiently small ε > 0 , then for

φ(x) = xp , 1 � p < ∞ , the constant C given in Corollary 2.4(i) is the best possible.
Moreover, if

∫ ∞
1 log[η(t−1)t−ε−n]dλ (t) is also finite for all sufficiently small ε > 0 ,

then for φ(x) = ex and replacing f by log f , the constant C given in Corollary 2.4(ii)
is the best possible.

Corollary 3.3 can be proved by choosing D = {x ∈ E : |x| > 1} and αm(t) =
η(t−1)t−1/m−n , m ∈ N in Theorem 3.1.
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