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Abstract. We prove some general theorems which unify results on arithmetic-geometric mean
and some other related matrix inequalities. As an application we obtain some results involving
Hadamard product of matrices.

1. Introduction

With a view to studying electrical network connections, Anderson and Duffin [1]
introduced the concept of parallel sum of two positive semidefinite matrices. If A and B
are impedance matrices of two resistive n-port networks, then their parallel sum A : B
is the impedance matrix of the parallel connection. The notion of geometric mean
of two positive operators was first introduced by Pusz and Wornowicz [11] and was
further developed by Ando [2]. Thereafter Nishio and Ando [10] and Kubo and Ando
[8] considered the axiomatic concept of connections and means for pairs of positive
operators. Mond and Pečarić [9] proved the mixed arithmetic-geometric mean and
harmonic-geometric mean inequalities:

A�(A∇B) � A∇(A�B)

and
A!(A�B) � A�(A!B)

for positive definite matrices A,B . Here !, � and ∇ stand for harmonic mean, geomet-
ric mean and arithmetic mean respectively and X � Y means that X −Y is positive
semidefinite.

In Section 2, we shall consider mixed arithmetic-geometric and related inequalities
in more general context. In Section 3, we shall apply results proved in Section 2, to
obtain some inequalities involving Hadamard product of matrices. In Section 4, we
shall note some comments on two conjectures made by Bhatia and Kittaneh in [5].
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2. Mixed Arithmetic-Geometric Mean

In what follows, the capital letters A,B,C, . . . denote n×n positive definite matri-
ces over the algebra of complex numbers, unless mentioned otherwise. Let f : (0,∞)→
(0,∞) be a function. Consider a binary operation σ f among positive matrices defined
as follows:

Aσ f B = A1/2 f (A−1/2BA−1/2)A1/2.

Here f (A) is defined by familiar functional calculus. The function f is called operator
monotone if A � B implies f (A) � f (B) . σ f is the operator connection considered by
Kubo and Ando [8] in case f is an operator monotone function. If the function f is
operator monotone, we say σ f is an operator connection and if in addition f (1) = 1,

σ f is an operator mean. The binary operation σ corresponding to the function
x

f (x)
is

denoted by σ⊥
f and is called the dual of σ f .

The operator connection corresponding to operator monotone function f (x) = s+
tx , s,t > 0, is denoted by ∇s,t . ∇1/2,1/2 is called the arithmetic mean. The operator

connection corresponding to the operator monotone function x → x
s+ tx

,s,t > 0, is

denoted by !s,t , !1/2,1/2 is called the harmonic mean. If f (x) = xs,s � 0, we denote σ f

by �s . The operator mean corresponding to the operator monotone function x → x1/2

is called the geometric mean. Note that the parallel sum is A : B =
1
2
(A!B).

THEOREM 2.1. Let f be a positive function on (0,∞) with f (1) = 1 and s,t > 0 .
Then

(i) Aσ f (A∇s,tB) � A∇s,t(Aσ f B) if and only if f (s+ tx) � s+ t f (x).
(ii) Aσ f (A∇s,tB) � A∇s,t(Aσ f B) if and only if f (s+ tx) � s+ t f (x).

Proof. (i) Suppose f (s+ tx) � s+ t f (x) . Then it follows that

f (sI + tA−1/2BA−1/2) � sI + t f (A−1/2BA−1/2)

which implies

A1/2 f (A−1/2(sA+ tB)A−1/2)A1/2 � sA+ tA1/2 f (A−1/2BA−1/2)A1/2

i.e.
Aσ f (sA+ tB) � sA+ t(Aσ f B).

Thus
Aσ f (A∇s,tB) � A∇s,t(Aσ f B).

The converse follows by replacing A by 1 and B by x .
(ii) The proof of this is similar to that of (i) , and is therefore, not included.

COROLLARY 2.2. Let 0 < s,t < 1 . Then

A�s(A∇t,1−tB) � A∇t,1−t(A�sB).
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Proof. The function f (x) = xs,0 < s < 1 being the concave function satisfies
f (t +(1− t)x) � t +(1− t) f (x) , and the corollary follows.

COROLLARY 2.3. Let s > 1 and 0 < t < 1 . Then

A�s(A∇t,1−tB) � A∇t,1−t(A�sB).

Proof. The proof follows as in Corollary 2.2, since the function f (x) = xs, s > 1,
is a convex function.

REMARK 2.4. The special case s = t =
1
2

in Corollary 2.2 is Theorem 2 in [9].

THEOREM 2.5. Let f be a positive function on (0,∞) with f (x−1) = ( f (x))−1

and s, t > 0 . Then
(i) Aσ f (A!s,tB) � A!s,t(Aσ f B) if and only if f (s+ tx) � s+ t f (x).
(ii) Aσ f (A!s,tB) � A!s,t(Aσ f B) if and only if f (s+ tx) � s+ t f (x).

Proof. (i) First suppose f (s+ tx) � s+ t f (x). Then

f (sI + tA1/2B−1A1/2) � sI + t f (A1/2B−1A1/2).

Hence

A−1/2 f (A1/2(sA−1 + tB−1)A1/2)A−1/2 � sA−1 + tA−1/2 f (A1/2B−1A1/2)A−1/2.

Consequently

A1/2 f (A−1/2(sA−1 + tB−1)−1A−1/2)A1/2 � [sA−1 + t(A1/2 f (A−1/2BA−1/2)A1/2)−1]−1

by using that the function x → −x−1 is operator monotone on (0,∞) and f (x−1) =
( f (x))−1 . This gives the desired inequality

Aσ f (A!s,tB) � A!s,t(Aσ f B).

The converse follows by replacing A by 1 and B by x . The proof for (ii) is similar.

COROLLARY 2.6. (i) A�s(A!t,1−tB) � A!t,1−t(A�sB) , if 0 < s,t < 1.
(ii) A�s(A!t,1−tB) � A!t,1−t(A�sB) , if s > 1 and 0 < t < 1 .

Proof. The proof follows from the facts that the function x → xs is concave for
0 < s < 1 and is convex for s > 1.

REMARK 2.7. The special case s = t =
1
2

of Corollary 2.6 (i) is Theorem 3 in

[9].

The following Lemma is well known.
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LEMMA 2.8. Let X be selfadjoint. Then the matrix

(
A X
X B

)
is positive semidef-

inite if and only if XA−1X � B.

THEOREM 2.9. Let f ,g be positive functions on (0,∞) and let h(x)= ( f (x)g(x))1/2 .

Then AσhB is the maximum of all selfadjoint X for which

(
Aσ f B X

X AσgB

)
is positive

semidefinite.

Proof. Since

AσgB = A1/2g(A−1/2BA−1/2)A1/2

= (A1/2( f (A−1/2BA−1/2)g(A−1/2BA−1/2))1/2A1/2)(A1/2 f (A−1/2BA−1/2)A1/2)−1

×(A1/2( f (A−1/2BA−1/2)g(A−1/2BA−1/2))1/2A1/2)
= (AσhB)(Aσ f B)−1(AσhB),

it follows from Lemma 2.8 that

(
Aσ f B AσhB
AσhB AσgB

)
is positive semidefinite. Now for

selfadjoint Y , suppose that

(
Aσ f B Y

Y AσgB

)
is positive semidefinite. This implies

(
A−1/2 0

0 A−1/2

)(
Aσ f B Y

Y AσgB

)(
A−1/2 0

0 A−1/2

)

=
(

f (A−1/2BA−1/2) A−1/2YA−1/2

A−1/2YA−1/2 g(A−1/2BA−1/2)

)

is positive semidefinite. Hence again by Lemma 2.8,

A−1/2YA−1/2( f (A−1/2BA−1/2))−1A−1/2YA−1/2 � g(A−1/2BA−1/2),

which further implies

[( f (A−1/2BA−1/2))−1/2A−1/2YA−1/2( f (A−1/2BA−1/2))−1/2]2

� ( f (A−1/2BA−1/2))−1g(A−1/2BA−1/2).

Using that the function x → x1/2 is operator monotone, we get

( f (A−1/2BA−1/2))−1/2A−1/2YA−1/2( f (A−1/2BA−1/2))−1/2

� ( f (A−1/2BA−1/2))−1/2(g(A−1/2BA−1/2))1/2.

Consequently,

Y � A1/2
(

f (A−1/2BA−1/2)g(A−1/2BA−1/2)
)1/2

A1/2 = AσhB.

This completes a proof.

COROLLARY 2.10. [2] A�1/2B is the maximum of all selfadjoint X for which(
A X
X B

)
is positive semidefinite.
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Proof. The proof follows on taking f (x) = 1 and g(x) = x in the Theorem 2.9.
For a proof of the following lemma reader is referred to [2].

LEMMA 2.11. The harmonic mean A!B is the maximum of all selfadjoint X for
which (

2A 0
0 2B

)
�

(
X X
X X

)
.

THEOREM 2.12. Let f ,g be positive functions on (0,∞) and let h(x) = [( f (x))−1

+(g(x))−1]−1 . Then AσhB is the maximum of all selfadjoint X for which

(
Aσ f B 0

0 AσgB

)
�

(
X X
X X

)
.

Proof. Since

AσhB = A1/2h(A−1/2BA−1/2)A1/2

= A1/2( f (A−1/2BA−1/2)−1 +g(A−1/2BA−1/2)−1)−1A1/2

= A1/2( f (A−1/2BA−1/2)− f (A−1/2BA−1/2)( f (A−1/2BA−1/2)

+g(A−1/2BA−1/2))−1 f (A−1/2BA−1/2))A1/2

= A1/2 f (A−1/2BA−1/2)A1/2−A1/2 f (A−1/2BA−1/2)( f (A−1/2BA−1/2)

+g(A−1/2BA−1/2))−1 f (A−1/2BA−1/2)A1/2

= Aσ f B− (Aσ f B)A−1/2( f (A−1/2BA−1/2)+g(A−1/2BA−1/2))−1A−1/2(Aσ f B)

= Aσ f B−(Aσ f B)(A1/2 f (A−1/2BA−1/2)A1/2+A1/2g(A−1/2BA−1/2)A1/2)−1(Aσ f B)

= Aσ f B− (Aσ f B)(Aσ f B+AσgB)−1(Aσ f B)
= Aσ f B : AσgB.

Hence the result follows from Lemma 2.11.

3. Some Applications

In this section, we apply results proved in Section 2, to obtain inequalities in-
volving tensor and Hadamard product of matrices. For A = (ai j) and B = (bi j) ,
A◦B = (ai jbi j) denotes the Hadamard product of A and B . The tensor product A⊗B
is the n2×n2 matrix ⎛

⎜⎝
a11B · · · a1nB

...
...

an1B · · · annB

⎞
⎟⎠ . (1)
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However, if A =
(

A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
are block matrices, then it is more

convenient to represent tensor product A⊗B as the block matrix
⎛
⎜⎜⎝

A11⊗B11 A11⊗B12 A12⊗B11 A12⊗B12

A11⊗B21 A11⊗B22 A12⊗B21 A12⊗B22

A21⊗B11 A21⊗B12 A22⊗B11 A22⊗B12

A21⊗B21 A21⊗B22 A22⊗B21 A22⊗B22

⎞
⎟⎟⎠ . (2)

The definition according to (2) is unitarily equivalent to the definition according to (1)
and therefore will be used here. It is well known that the Hadamard product A ◦B is
the principal submatrix of the tensor product A⊗B and is monotone in the sense that
A � B, C � D implies A◦C � B◦D . The following theorem is an analogue of Theorem
4.1 in [3].

THEOREM 3.1.

(i)
((
∑k

i=1 Ai
)◦ (

∑k
i=1Ci

))
:
((
∑k

i=1 Bi
)◦ (

∑k
i=1 Di

))
�

(
∑k

i=1(Ai : Bi)
)◦(

∑k
i=1(Ci : Di)

)
.

(ii)
(
∑k

i=1 Ai
)◦ (

∑k
i=1 Bi

)
�

(
∑k

i=1(Ai +Bi)
)◦ (

∑k
i=1(Ai : Bi)

)
.

Proof. (i) By Lemma 2.11,

(
∑k

i=1 Ai 0
0 ∑k

i=1 Bi

)
�

(
∑k

i=1(Ai : Bi) ∑k
i=1(Ai : Bi)

∑k
i=1(Ai : Bi) ∑k

i=1(Ai : Bi)

)

and (
∑k

i=1Ci 0
0 ∑k

i=1 Di

)
�

(
∑k

i=1(Ci : Di) ∑k
i=1(Ci : Di)

∑k
i=1(Ci : Di) ∑k

i=1(Ci : Di)

)
.

Since the Hadamard product of matrices is monotone, it follows that(
∑k

i=1 Ai ◦∑k
i=1Ci 0

0 ∑k
i=1 Bi ◦∑k

i=1 Di

)

�
(
∑k

i=1(Ai : Bi)◦∑k
i=1(Ci : Di) ∑k

i=1(Ai : Bi)◦∑k
i=1(Ci : Di)

∑k
i=1(Ai : Bi)◦∑k

i=1(Ci : Di) ∑k
i=1(Ai : Bi)◦∑k

i=1(Ci : Di)

)
.

Hence again by Lemma 2.11, we get

((
∑k

i=1 Ai
)◦ (

∑k
i=1Ci

))
:
((
∑k

i=1 Bi
)◦ (

∑k
i=1 Di

))
�

(
∑k

i=1(Ai : Bi)
)◦ (

∑k
i=1(Ci : Di)

)
.

(ii) By Lemma 2.11,

(
∑k

i=1 Ai−∑k
i=1(Ai : Bi) −∑k

i=1(Ai : Bi)
−∑k

i=1(Ai : Bi) ∑k
i=1 Bi −∑k

i=1(Ai : Bi)

)
� 0.

Similarly, (
∑k

i=1 Bi−∑k
i=1(Ai : Bi) −∑k

i=1(Ai : Bi)
−∑k

i=1(Ai : Bi) ∑k
i=1 Ai −∑k

i=1(Ai : Bi)

)
� 0.
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Consequently,
(

Z ∑k
i=1(Ai : Bi)◦∑k

i=1(Ai : Bi)
∑k

i=1(Ai : Bi)◦∑k
i=1(Ai : Bi) Z

)
� 0,

where
Z =

(
∑k

i=1 Ai−∑k
i=1(Ai : Bi)

)◦ (
∑k

i=1 Bi −∑k
i=1(Ai : Bi)

)
.

Hence we have
(
∑k

i=1 Ai−∑k
i=1(Ai : Bi)

)◦(
∑k

i=1 Bi −∑k
i=1(Ai : Bi)

)
�

(
∑k

i=1(Ai : Bi)
)◦(

∑k
i=1(Ai : Bi)

)
,

which implies
(
∑k

i=1 Ai
)◦ (

∑k
i=1 Bi

)
�

(
∑k

i=1(Ai +Bi)
)◦ (

∑k
i=1(Ai : Bi)

)
.

COROLLARY 3.2.
(
∑k

i=1 Ai
)◦ (

∑k
i=1 A−1

i

)
�

(
∑k

i=1(Ai +A−1
i )

)◦ (
∑k

i=1(Ai +A−1
i )−1

)
.

Proof. The proof follows by taking Bi = A−1
i in Theorem 3.1 (ii) .

REMARK 3.3. When the particular case k = 1 in Corollary 3.2 is combined with
Fiedler’s Theorem A◦A−1 � I [7], we have

A◦A−1 � (A+A−1)◦ (A+A−1)−1 � I.

Thus we are getting a better lower bound for A ◦A−1 than that in Fiedler’s Theorem.
For other generalizations of Fiedler’s Theorem the reader is referred to [3, 4].

THEOREM 3.4. Let f ,g be positive functions on (0,∞) and h(x)= ( f (x)g(x))1/2.
Then

2(AσhB)⊗ (AσhB) � (Aσ f B)⊗ (AσgB)+ (AσgB)⊗ (Aσ f B).

Proof. By Theorem 2.9 we have
(

Aσ f B AσhB
AσhB AσgB

)
� 0.

Similarly (
AσgB AσhB
AσhB Aσ f B

)
� 0.

These implies (
(Aσ f B)⊗ (AσgB) (AσhB)⊗ (AσhB)
(AσhB)⊗ (AσhB) (AσgB)⊗ (Aσ f B)

)
� 0 (3)

and (
(AσgB)⊗ (Aσ f B) (AσhB)⊗ (AσhB)
(AσhB)⊗ (AσhB) (Aσ f B)⊗ (AσgB)

)
� 0. (4)
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Adding (3) and (4), we have(
(AσgB)⊗ (Aσ f B)+ (Aσ f B)⊗ (AσgB) 2(AσhB)⊗ (AσhB)

2(AσhB)⊗ (AσhB) (Aσ f B)⊗ (AσgB)+ (AσgB)⊗ (Aσ f B)

)
� 0.

This implies

2(AσhB)⊗ (AσhB) � (Aσ f B)⊗ (AσgB)+ (AσgB)⊗ (Aσ f B).

The following corollary is one of the main results in [12].

COROLLARY 3.5. Let f ,g be positive functions on (0,∞) . Then

2(A�1/2B)⊗ (A�1/2B) � (Aσ f B)⊗ (Aσ⊥
f B)+ (Aσ⊥

f B)⊗ (Aσ f B).

Proof. Taking g(x) = x( f (x))−1 in Theorem 3.4 we get the result.
Since Hadamard product A◦B is the principal submatrix of the tensor product A⊗B ,
we have the following corollary.

COROLLARY 3.6. Let f ,g be positive functions on (0,∞) and h(x)= ( f (x)g(x))1/2.
Then

(i) (AσhB)◦ (AσhB) � (Aσ f B)◦ (AσgB).
(ii) (A�1/2B)◦ (A�1/2B) � (Aσ f B)◦ (Aσ⊥

f B).

The special case of Corollary 3.6 (ii) when f (x) =
1+ x

2
is proved in [3].

4. Bhatia and Kittaneh conjectures

Bhatia and Kittaneh [5] proved the inequalities

tr(AB) � tr

(
A+B

2

)2

and

tr(A2B2) � tr

(
A+B

2

)4

and conjectured that

tr(AmBm) � tr

(
A+B

2

)2m

, m = 1,2, . . . .

(Here tr(X) denotes trace of X .) Taking A =
(

4 −5
−5 7

)
, B =

(
9 −1
−1 1

)
and m = 3

shows that the inequality

tr(A3B3) � tr

(
A+B

2

)6
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does not hold. However here we prove a related result (Corollary 4.2). Bhatia and Kit-
taneh also proved that

∥∥∥√
|AB|

∥∥∥ �
∥∥∥∥A+B

2

∥∥∥∥
for some unitarily invariant norms (for example p -norms for p � 2 and trace norm)
and conjectured that it is true for all unitarily invariant norms. Here we also prove
a companion result when A � 3B . Let us denote by s1(X) � s2(X) � . . . � sn(X)
the singular value of X and by λ1(X) � λ2(X) � . . . � λn(X) the eigenvalues of X
arranged in decreasing order when these are all real.

THEOREM 4.1. [6] Let X be a n×n matrix over complex numbers. Then

tr((X∗)mXm) � tr(X∗X)m

for all positive integers m.

Proof. By the submultiplicativity of operator norm we have

||Xm|| � ||X ||m

that is,
s1(Xm) � sm

1 (X).

Taking square on both sides, we get

s2
1(X

m) � s2m
1 (X),

which further implies
s1((X∗)mXm) � sm

1 (X∗X)

i.e.,
λ1((X∗)mXm) � λm

1 (X∗X).

Let 1 � k � n . Replacing X by ∧kX , the antisymmetric tensor power of X , we get

k

∏
j=1

λ j((X∗)mXm) �
k

∏
j=1

λm
j (X∗X), 1 � k � n. (5)

This implies
tr((X∗)mXm) � tr(X∗X)m.

COROLLARY 4.2. Let A,B be selfadjoint. Then

tr(((AB)∗)m(AB)m) � tr(A2B2)m

for all positive integers m.
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Proof. In Theorem 4.1 by replacing X by AB we get the desired result.

COROLLARY 4.3. Let A,B be such that A � 3B (or B � 3A). Then

k

∏
j=1

√
λ j(AB) �

k

∏
j=1

λ j

(
A+B

2

)
, 1 � k � n.

Proof. Taking X =
(

A1/2 0
B1/2 0

)
and m = 2 in inequality (5) we have

k

∏
j=1

λ j(A2 +A1/2BA1/2) �
k

∏
j=1

λ j((A+B)2)

i.e.,

k

∏
j=1

λ j(A1/2(A+B)A1/2) �
k

∏
j=1

λ j((A+B)2).

Since A � 3B , we have A1/2(A+B)A1/2 � 4A1/2BA1/2 . Therefore, the above inequality
implies

k

∏
j=1

λ j(4AB) �
k

∏
j=1

λ j(A+B)2,

which gives the desired result.
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