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STOCHASTIC INTEGRAL INEQUALITIES WITH APPLICATIONS

MENG WU AND NAN-JING HUANG

(Communicated by R. Verma)

Abstract. In this paper, we study some new stochastic inequalities involving the Itd integral
and give some estimates for the solutions of controlled stochastic differential equations. As
applications, we utilize the stochastic integral inequalities presented in this paper to show an
existence theorem of the solution for a class of stochastic differential equations and to give
necessary conditions that make the solution for a class of stochastic differential equations be a
diffusion process.

1. Introduction

It is well known that the stochastic integral inequalities play an important role
in the development of stochastic differential and integral equations with applications
([3,4,5,6,8,9, 10]). Recently, different types of stochastic inequalities and stochastic
integral inequalities have been intensively studied by many authors (see, for example,
[1,2,5,7,9, 10, 11, 12] and the references therein).

Very recently, Amano [1] studied a Gronwall type inequality for It6 integrals and
showed some applications for solving the stochastic differential equations. Kuo [5]
gave some estimates for It6 integrals and proved the existence of the solutions for
stochastic differential equations by using the estimates under some suitable conditions.
Throughout the works of Amano [1] and Kuo [5], they assumed that the stochastic
processes take values in R.

The aim of the present paper is to give some new inequalities for It6 integral under
the assumption that the stochastic processes take values in R”. Meanwhile, we give
some estimates for the solutions of controlled stochastic differential equations. Finally,
as examples, we utilize the stochastic integral inequalities presented in this paper to show
an existence theorem of the solution for a class of stochastic differential equations and
to give necessary conditions that make the solution for a class of stochastic differential
equations be a diffusion process.
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2. Stochastic Integral Inequalities

Let (Q,.%,{%}i>0,P) be a complete filtered probability space on which is
defined a m-dimensional standard Brownian motion W(z), such that {%},>¢ is the
natural filtration of W(z). For a positive number T, L% (0, T;R") denotes the set of
all {.%,},>0 -progressively measurable processes f () valued in R”" such that

E [/OT[f(t)th} < 0.

THEOREM 2.1.  Let &(1), n(t) and ¢(t) belong to L?;(0,T;R), W(t) be a I-
dimensional standard Brownian motion and f(t), f2(t), g1(t), g(t) € L% (0,T;R)
such that, for all t € [0,T],

£ < Aﬁ@w+égwmmm 2.1)
)| < Aﬁ®M+AgmMWS (22)
and
{ Ifi(t)] < cunl&(r)] + an|n(t)| + ail|o(1)], (2.3)
8] < BalE@)] + Baln(o)] + Bl o(1)]. :

where oy and f3; are nonnegative constants for i = 1,2 and j =1,2,3. Then
t
E(E () +1’(1) < eXp{9fD(t)}9A§(t)/ E¢’(s)ds,
0

for all t € [0,T], where Aj(t) = 21-2:1 (Vo + By) with j = 1,2,3 and D(r) =
max{Aj(r), A3(1)}.

Proof. By Minkowski inequality, it follows from (2.1) and (2.2) that

; 2\ % ; 2\ %

Aﬁ@m>4«EA&wmw>
; 2\ % ; 2\ %

+<E /sz(s)ds ) + (E/ng(s)dW(s) ) . (24

Using Cauchy-Schwarz inequality and It6 isometry, (2.4) implies that

(EE () + (1) < (E

me+#mﬁ<wa%mf+<[@mmf

+(543wﬂw¢)2+(ﬁﬁkawm)%
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It follows from (2.3) that

(x /0 lEfiz(s)ds>% < V3o ( /O ' lzgz(s)ds)é
+ V310 ( /0 t En2(s)ds> % + V3104 ( /0 tEq)Z(s)ds) :

and

1

(/ lEg%<s>ds)% < Vi ( [ tEéz(s)ds) 2

+V3B (/OIEH2(S)dS>% +V3Ba (/OtEq)z(S)dS)

1
2

Thus,

E(E(0) + () < 942(r) /O CEE2(s)ds + 9423(7) /0 Enf)ds (25

+9A%(7) / ZE¢2(s)ds
0

forall # € [0, 7], where A;(r) = Y, (v/oy; + By) with j=1,2,3.
Now we fix 1y € [0, T] arbitrarily. Then, for any € > 0, (2.5) implies that

%log <9A%(z0) /0 lEéz(s)ds+9A%(t0) /0 lEnz(s)ds+9A§(t0) /0 ! E¢2(s)ds+e)
< 9max{A}(1),A3(t0)}, ae.r€[0,1). (2.6)

Integrating (2.6) from 0 to 7y with respect to ¢,

o 943 (10) [o" EE*(s)ds + 943 (t0) [o" EN*(s)ds + 943 (t0) [y' E¢*(s)ds + €
& 9A3(19) 0’” EQ2(s)ds + €
< 9% max{A%(t0)7A%(to)}.

Letting ¢ — 0, it follows from (2.5) that

E(E(1) + n*(r)) < exp{9rmax{A] (1), A3(1)}}9A3 (1) / IE¢2(S)dS~
0
This completes the proof. ]

THEOREM 2.2.  Let x(t) and y(t) belong to L’ (0,T;R"). Assume that f :
[0,T] x R* = R", g:[0,T] x R* — R"™ ™ are continuous functions, and there exists
constants Ly, L, > O such that, for all t € [0,T],

If (5,) = £ (1, ) + [8(1, %) — (1, )| < Lulx = x| + Laly — ¥, (2.7)
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forall x,x,y,y € R", and

x(7)] < : (2.8)

/0 £ (5, x(s))ds + /0 ¢(5,(5))dW(s)

where |g| = \/tr(g-gT), dW;dW; = &;dt, §; = 1,if i =j and &; =0, if i # j.
Then

EW() < 9(Vi + 1) exp{OL21(Vi + 1)%} (c2 i3 | ' |y<s>|2ds)
0

forall t € [0,T], where C = Ly|f (¢,0)| + L2|g(z,0)].
Proof. Tt follows from (2.7) that
If (2,)] + lg(r,x)| < C+ Li|x| + Laly| (2.9)
where C = L;|f (¢,0)| 4+ L2|g(z,0)| . By Minkowski and Cauchy-Schwarz inequalities,
(2.8) implies

ExoP)* < (i [ v<s,x<s>>|2ds)% (e f |g<s,x<s>>|2ds)% .

It follows from (2.9) that

(i [ sxtspPas)  VECHVAL, (2 worar) v, ([ o) |

an

1

d
(= [ 1ss.xtppas) < vacvaL (& [ oras) L, (& [ berras) }
Therefore,
Elx()]? < 9(Vi + 1) <c2 +L%E/Ol Ix(s) s + L%E/Ot y(s)|2ds>

forall € [0,T].
By using the same method of Theorem 2.1, we have

Elx(0)]* < 9(V1+ 1) exp{9L3(Vi + 1)*} <C2 + L3E /t y(s)|2ds> .
0

This completes the proof. O

COROLLARY 2.1. Let x(t) and y(t) belong to L% (0, T;R") and x(t) be a step
function which satisfies

x(t) :x(tn)v re [tnatn+l)7
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where 0 =ty < t) <t < --- <ty =T. Assume that f : [0,T] x R" — R" and

g:[0,T] x R" — R™™ are continuous functions, such that

()| <

)

In
0

/ “rlsx(oas + [ glsiatsawts

for n = 0,1,2,....N. If there exist constants Li,L, > 0 satisfying (2.7) for all
t € [0,T], then we have

ER() < 9(vi + 1Y exp{OL21(Vi + 1)} (c2 e | ' |y<s>|2ds)
0

forall t € 0,T), where C = Ly|f (¢,0)| + L2|g(z,0)].

THEOREM 2.3. Let f(-), g(-) belong to L% (0, T;R) and

x) = [ £os+ [ eawts)
Then
e <o ([ ereas [ o)
and

EX*(1) < exp{4t(1 +21)} <8t /t Ef*(s)ds +4(1 +1) /t Eg4(s)ds> .
0

0

Proof. Applying It6 formula to X(¢), we obtain

t

X (1) = /t 2X(s)f (s) + g*(s)ds +/ 2X(s)g(s)dW(s). (2.10)
0 0
Using Cauchy-Schwarz inequality,
t 2 t 2
X' < 2 </0 2X(s)f (s) + gz(s)ds) +2 (/0 2X(s)g(s)dW(s))
t t t 2
< 4t/0 g*(s)ds + l6t/0 X2(s)f2(s)ds + 8 (/0 X(s)g(s)dW(s)) . (2.11)

Taking the expectation and using Cauchy-Schwarz inequality to (2.10) and (2.11), we
have
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EXY(1) < 2( /O tEXZ(s)ds>2 . ( /0 lEfz(s)ds)%+ /O 'EQ(s)ds

2 " 2
/OEX (s)ds—i—/o Ef (s)ds+/0 Eg-(s)ds. (2.12)

N

EX*(1)

N

4t /O tEg4(s)ds+ 16¢E /O tx2(s)f2(s)ds+8E /0 th(s)gz(s)ds

4t /Ot Eg*(s)ds + 16t (/O' EX4(s)ds> : . (/OlEf“(s)ds) 2
+8 (/()rEX“(s)ds)% . (/()tEg4(s)ds>%

< 4(1+20) /ZEX4(s)ds+8t/lEf4(s)ds+4(1+t) /lEg4(s)ds.
0 0 0

N

Let us fix a nonnegative number 7y < T arbitrarily. Then, forany € > 0, (2.12) implies
that

t to fo
%log (/ EX2(s)ds+/ Ef2(s)ds+/ Egz(s)ds+e) <1, ae. r€(0,5]. (2.13)
0 0 0

Integrating (2.13) from 0 to #, with respectto ¢,

log O'DEX2 ds—|—f ds—!—f s)ds + € <t
ds—!—f ds—|—e

Jo B2

Letting ¢ — 0, it follows from (2.12) that

EX*(1) < e ( /O t Ef?(s)ds + /O t Eg2(s)ds) .

By using the same method for proving Theorem 2.1, we have

EX*(1) < exp{41(1 4+ 21)} <8t /Ot Ef*(s)ds +4(1 +1) /Ot Eg4(s)ds> .

This completes the proof. U

THEOREM 2.4. Let x(t) and y(t) belong to L% (0,T;R"). Assume that f :
[0, 7] x R* x R* = R", g:[0,T] x R" x R" — R"*" gre continuous functions, and
there exist a constant L > 0 such that, for all t € [0,T],

If (t,x,9) = f (6, %, 9)| + g(t,x,y) —g(t, ¥, )| < L(|x — x| + [y — y])  (2.14)
forall x,x,y,y € R" and

. /O £ (5,x(5), y(s))ds + /0 ¢(5,2(5), ¥(s))dW (s),
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where |g| = \/tr(g-gT), dW;dW; = &;dt, §; = 1,if i =j and &; =0, if i # j.
Then

Elx(r)|* < exp{6t(C+ 1)(1+21)} <3|§ I* +6C(1 +2) (r + E/t |y(s)|4)ds))
0
and
Bl ~ &f* < expfartt + 20} () + BOE [ bis))as)
forall t € 0, T, where

a(t) = Ct+3Crexp{6t(C + 1)(1 + 20)}(|E|* + 2Ct(1 + 21)),
B(r) = C+6C*(1 + 2t)exp{6t(C+ 1)(1+21)},
C = max{27L*27(|f (£,0,0)| + |g(z,0,0)|)*}.

Proof. Applying It6 formula to x(¢), we obtain

(1) < |§2+/z2|x(5)|V(S’x(5)aY(S))| + 18(s,x(s), y(s)) | ds
+222/x1 2(5, x(5), (s))AW, (s).

i=1 j=1

Using Cauchy-Schwarz inequality,

KO < 3IEF+ 6t / 18(5,x(s), y(s)) *ds + 241 / () PIf (5,x(5), y(s)) s

2
+12 (ZZ/ (xi(s) — &) gii(s, x(s), ())dW()) : (2.15)

i=1 j=1

Taking the expectation and using Cauchy-Schwarz inequality to (2.15), we have
Elx(n)* < 3|E[* + 61E /Oz (s, x(s), ¥(5)) *ds + 241E /O, (s) 21 (s, x(5), ¥(5)) Pdis
+122 [ 6P llor(0) 60 P
< 3lef 6 [ Bl(s) (6l as

1
3
+24t< E|x(s |4ds) ( E|f (s,x(s) |4ds>

1
2
+12 ( Elx(s 4ds) E\g (s,x(s |4ds>

< 3EH+6(1+21) (/ Elx(s |4dS+E lf(s x(s), y(s ))I4+|g(s7X(S)J(S))I“dS)
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It follows from (2.14) that

If (2,6, ) |* + g (1,2, 9)[* < C(1+ [x* + [y[*), (2.16)

where C = max{27L* 27(|f (¢,0,0)| + |g(,0,0)|)*} . Thus,
EW() < 3IE1 +6(1 1 20) (E [ motas e [ e+ y(s>|4>ds)

< 3IE[ +6(1 +20) (Ct+(C+ l)E/t |x(s)|4ds+CE/t y(s)|4ds>.
0 0
(2.17)

Let us fix a nonnegative number 7y < T arbitrarily. Then, forany € > 0, (2.17) implies

%log <3|§4+6(1 +210) (c:o 4 (C+DE /0 Ix(s)[*ds + CE /O U y(s)|4ds> +€)
<6(C+1)(1+21), ae. te]0,1). (2.18)

Integrating (2.18) from O to 7, with respect to ¢, we have

31E[* + 6(1 + 210) <Ct0+ (C+ V)E [" |x(s)|*ds + CE [ |y |4ds>

3|E[* + 6C(1 + 210) (zo HE [y |4ds> +e
<6t0(C+ )( +21‘0).

log

Letting ¢ — 0, it follows from (2.17) that

Elx(1)|* < exp{6t(C+1)(1+21)} <3|§4+6C(1+2z) (H—E / t y(s)|4ds>> . (2.19)
0

Applying It6 formula to x(r) — & and using Cauchy-Schwarz inequality,

() — & < 4 / 195, x(5), y(s)[*ds + 161 / 1x(s) — EPIF (5, x(5), ¥(s))2ds

2

+8 ZZ/ xi(s) — Egyls, x(s),y(s)AWi(s) | . (2.20)

i=1 j=1

Taking the expectation and using Cauchy-Schwarz inequality, by (2.16) and (2.20), we
have

Elx(r)—&[* < 4(1+21) (/Ex( )—&|*ds+E lf(s x(s), (S))|4+|g(S7x(S)7y(S))|4dS)
< 4(1421) /0 Elx(s)—E|*ds+4(1420)E /0 OO x(5) [y (5) [ )ds.
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It follows from (2.19) that

/0 ' Elx(s)*ds < exp{61(C+1)(14+20)} (3z|§4+6a(1+zz) (H—E /O ' y(s)|4ds>) .

Therefore,

El() — € < 4(1 + 21 (a(t) v Efx(s) — &l'ds + B(E / t y(s>|4ds) 7

where
o(f) = Ct + 3Ctexp{6t(C + 1)(1 4+ 20)Y(JE|* + 2C1(1 + 21))

and
B(1) = C+ 6C*t(1 + 2¢) exp{6¢(C + 1)(1 + 2¢)}.

By using the same method for proving (2.19), we can show that

Elx(r) — ' < exp{dr(1 + 20)} (a(r) +pwe [ y(s>|4>ds) |

This completes the proof. U

3. Applications

In this section, we utilize the stochastic integral inequalities presented in Section
2 to prove an existence theorem of the solution for a class of stochastic differential
equations and to give necessary conditions that make the solution for a class of stochastic
differential equations be a diffusion process.

EXAMPLE 3.1. We consider the following n-dimensional stochastic differential
equation

X, = f(t,X;)dt + g(t,X,)dW(t), 0 <t <T; Xo=X(0), (3.1)
where f : [0,T] x R" — R" and g : [0, 7] x R" — R" "™ are continuous functions

and f (¢,0) = g(z,0) = 0. If there exist L;,L, > O are constants satisfying (2.7) for
all 7 € [0, 7], then the solution of stochastic differential equation (3.1) exists.

Proof. By using the Picard’s method, we construct a sequence {Y,(k) } defined by
Y% = X(0) and

t t
v =y 4 / £ (s, YW)ds + / g(s, Y®)aw(s).
0 0

It follows that

t t
YD oy = / Fls, Y9 — £ (5, Y D)as + /0 g5, YO) — g(s, YD)aw(s).
0
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By Theorem 2.2 with L; = 0 and L, = L, we have
t
ElY Y Yy < or2(Vi+ 1)2E/ Y™ — y*Y g
0

OtL2(\/t + 1))k
OV D) my® -y O,
k! 0<s<t

N

Consequently, it can be proved that {Yt(k) } is a Cauchy sequence in L?(A x P), where
A denotes Lebesgue measure on [0, T]. Therefore, the solution of (3.1) exists. O

EXAMPLE 3.2. Consider a one-dimensional stochastic integral equation

X =&+ /tf(s7Xs)ds + /tg(s7Xs)dW(s), a<t<b (3.2)

where & € R”, f(1,X,) and g(1,X,) satisfy (2.14). If the solution X, of (3.2) is a
diffusion process, then Py (t,-), the transition probabilities of X, , should satisfy

1
lim ~ Pt +e,dy) =0 (3.3)

=0 € Jiy—rize

forany 7 € [0,T] and ¢ > 0, where P,,(t,A) = P(X, € A|X,; = x) for A € B(R").
Proof. Using Chebyshev inequality and Theorem 2.4,
/ Pii(t+e,dy) = P(|Xepe — x| 2 c|X, = x)
|y—x|>=c
= (‘Xltif - x‘4 > 4)
SE(IX7 — ")

OC
< = exp{4e(1 + 2¢)},

N

where X;™ is the solution of equation (3.2) with initial condition X; = x. Letting
e — 0, it is easy to verify that (3.3) holds. O
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