athematical
nequalities
& fapplications
Volume 13, Number 4 (2010), 679-714

THE FRIEDRICHS-WIRTINGER TYPE
INEQUALITY AND ITS APPLICATION TO THE
TRANSMISSION PROBLEM IN A CONICAL DOMAIN

MIKHAIL BORSUK

(Communicated by V. Burenkov)

Abstract. We formulate the new Friedrichs-Wirtinger type inequality with the sharp constant
and apply it to the investigation of the behavior of weak solutions to the transmission problem
for linear elliptic divergence second order equations in a neighborhood of the boundary conical
point. We establish the precise rate of decreasing of the solution.

1. Main inequalities

Integro-differential inequalities such as the Poincaré, Friedrichs, Wirtinger, Sobolev
inequalities play the important role in the theory of boundary value problems for par-
tial differential equations. Such inequalities with exact constants allow to establish
the best possible estimates of solutions to boundary value problems for elliptic equa-
tions near a conical boundary point (see e.g. [2]). In this article we formulate the new
Friedrichs-Wirtinger type inequality and apply it to the investigation of the behavior of
weak solutions to the transmission problem for linear elliptic divergence second order
equations in a neighborhood of the boundary conical point. We establish the precise
rate of decreasing of the solution.

Let G C R", n > 2 be a bounded domain with the boundary JdG that is a smooth
surface everywhere except at the origin & € dG and near the point & it is a conical
surface with the vertex at ¢'. We assume that G = G UG_ UZ% is divided into two
subdomains G4 and G_ by a £y = GN{x, =0}, where & € X.

Let use the following notations:

e 5"~1: aunit sphere in R” centered at ¢;
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o (nw),w=(wy,wy,...,m,_1): the spherical coordinates of x € R" with the pole
0:

X1 =rcoswi,
Xp = rcosm, sinwy,

Xp_1 =rcoS®,_18Sinw,_7...sinwi,
X, = rsSin Wy,_1Sinwy,_>...sin ;.

e ¢ : the convex rotational cone {x; > rcos %} with the vertex at J;

0% : the lateral surface of € : {x; = rcos 3 };

e Q: a domain on the unit sphere §"~! with the smooth boundary dQ obtained
by the intersection of the cone % with the sphere §"!;

Qr=QN{x, >0}, Q_=QN{x, <0} =Q =0, UQ_Uoy;
()'():Qﬂ{xn:()};
° GQ:G%OS"*I, (}QEQ:Q_ima%, 0Q+ = 0+QUoy;

Figure 1.

We use also the standard function spaces: C*(G) with the norm |ut|ig,, the
Lebesgue space L,(G+),p > 1 with the norm ||u4||p.6. , the Sobolev space WP (G)
with the norm [+ ||, 4.6, , and introduce their direct sums C*(G) = C¥(G) +C*(G-)
with the norm |ulx g = |utlke, + |u—|rc_; Lp(G) = Ly(Gy)+L,(G-) with the

|—
==

norm ||u||L,,(G)=<Gf |u+(X)|”dX> +<Gf |u(X)|”dX> ;o WEP(G)=WHP(Gy)+

WkP(G_) with the norm

k Pl '
o= | [ 3 DPusrax) + | [ 3 i0Purax
1B|=0 1B|=0
g g
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We define the weighted Sobolev spaces:

V;‘W(G) for integer k > 0 and real o as the space of distributions u € 2'(G) with the
finite norm

1

Hquﬁ;ﬂ (/ > PO1DP i (x) |pdx> (/ Y et (BI=K) | DPu_(x )pdx) F'

G, IBI=0 |B|=0

ol

We denote W*(G) = W52(G), W, (G) =V ,(G).
Let us recall some well known formulae related to the unique sphere:
o dQ=J(w)dw denotes the (n— 1)-dimensional area element of the unique sphere;

o J(w)= sin" 2oy sin" P wy...sinw,_n, do=do,...do,i;

do denotes the (n —2)-dimensional area element on dQ;

|Vou| is the projection of the vector Vu onto the tangent plane to the unit sphere

u

at the point o, \un\—z <—> , where g1 =1, g; = (sinw; - --sinw;_1)?,
i=>2;

n—1

§_j ai (Jql) g £ ) , the Beltrami-Laplace operator.

°
>
e
=
|

1.1. The eigenvalue problem

Let Q C §"~! with smooth boundary dQ be the intersection of the cone € with
the unit sphere $"~!. Let V be the exterior normal to 9% at points of dQ and T
be the exterior with respect to Q; normal to oy (lying in the tangent to Q plane).
Let y(w), w € dQ be a positive bounded piecewise smooth function, o(®) be a pos-
itive continuous function on oy. We consider the eigenvalue problem for the Laplace-
Beltrami operator A\ on the unit sphere

NpYs+0ys =0, € Qy,

o dy — 0
W]o, =0, {03—7} o +o(w)y 60—0’ (EVP)
01%4')&( )y ‘ o 0,

which consists of the determination of all values ¥ (eigenvalues) for which (EV P) has
a non-zero weak solutions (eigenfunctions); here:

ay, 1In Q+, ..
e a= . — a4 are positive constants;
a_, inQ_,
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e [y]g, denotes the saltus of the function y(x) on crossing oy, i.e. [Y]g =

II/+‘ —II/—’ ;

00 00

. [a g—irjv} denotes the saltus of the co-normal derivative of the function y(x) on
00

crossing Oy, i.e.

[aa_q/] . dyp | dy
8_> o +8? oo _8? 0'0.

DEFINITION 1. Function y is called a weak solution of the problem (EVP) pro-
vided that y € C%(Q) N"W!(Q) and satisfies the integral identity

! {qi von —azsuf(w)n(w)}dm et

+/}/ (w)do =0

forall n € CO(Q)NW(Q).

REMARK 1. We observe that ¥ = 0 is not an eigenvalue of (EVP). In fact, set-
ting n = v and ¥ =0 we have

/alvww\2d9+/ o)|y(w \d0+/y Ny (w)Pdo=0 — y=0,

Q Go 0Q
since ax #0, o(w) >0, y(w) >0

Now, let us introduce the following functionals on C°(Q) "W!(Q)

Fly]= /aIwa( 2d9+/ o)y (o) 2do+/y )lw(w)Pdo,
Q 00 Q

Gyl = [ av*(@)ae,

Q
Hy) = [ a{Vov(©)P - 0v(@) )2 + / w)lw(o)Pdo+ [ o)y do
Q 2Q

and the corresponding bilinear forms

1 oy 9
F(uf,n):/ aa")’ a(z d£2+/ ch—/y (0)do,
Q
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G(y.m) = [ ay(@m(@)de.
Q

We define yet the set K = {y € WI(Q)‘ Gly] = 1}. Since K ¢ WH(Q), F[y] is

bounded from below for y € K. The greatest lower bound of F[y] for this family we
denote by 9 : ing{ F|w] = 9. We formulate the following statement:
we

THEOREM 1.1. Let Q C 8"~ ! be a bounded domain with the smooth boundary
dQ. Let y(w), @ € dQ be a positive bounded piecewise smooth function, 6(®) be a
positive continuous function on oy. There exist O > 0 and a function y € K such that

F(y,n) —98G(y,n) =0 for arbitrary n € W'(Q).

In particular Fy] = 9. In addition, on Q, W has continuous derivatives of second
order, satisfies the equation Nyy + Sy =0, o € Q as well as the boundary and
conjunction conditions of (EVP) in the weak sense (for details see the Remark 2.19

[21).

Proof. The proof is analogous to the proof of Theorem 2.18 [2] (pp. 56-59). The
smoothness of y follows from the theory of the transmission elliptic problem in smooth
domains (see e.g. §16, chapt. III [9] as well as [1]).

Now from the variational principle we obtain the Friedrichs-Wirtinger type in-
equality:

THEOREM 1.2. Let Q C "', Let w € WY (Q) satisfy in the weak sense the
boundary and conjunction conditions from (EVP). Let ¥ be the smallest positive
eigenvalue of the problem (EVP). (It exists according to Theorem 1.1.) Let y(®), @ €
0Q be a positive bounded piecewise smooth function, () be a positive continuous
function on oy. Then

O [ ay?(0)dQ < [ a|Vew(0)]?dQ+ | o(w)y*(w)do (L.1)
v [t

Proof. Consider the functionals F[y],G[y],H[w] described above on C%(Q)N
W!(Q). We will find the minimum of the functional F[y] on the set K. For this we
investigate the minimization of the functional H[y] on all functions y(®), for which
the integrals exist and which satisfy in the weak sense the boundary and conjunction
conditions from (EVP). We use formally the Lagrange multipliers and get the Euler
equation from the condition dH[y] = 0. By the calculation of the first variation 0H,
we have
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B . N_ll 81/1 2_ 5
SHy] = (! {%(aw) By <w>}dsz
+ [o@yr@ido [ y(w)w%w)dc)
0Q

N—1
_ —Z/a ; 8(2),- (“q‘;” g;’;) -Sw(w)dw—Zﬁzau/(w)-6u/(w)d9

12 [a2 sy()do+2 | [j_g] Sy(0)do
2 [ o(w)w(w)-éw(w)dlz [ r@w(o) -sy(@)io
= -2 [albov(o) +z9w<w>>-6;?w>dsz

[ {[e22] o} sviome

+2Z {e 3%+ oo} s

Hence, because of SH[y] =0VYSy € C°(Q) NW!(Q), it follows the eigenvalue prob-
lem (EVP). Conversely, let 9,y (w) be a weak solution of the eigenvalue problem
(EV P). From the definition of the weak eigenfunction under n = y(w) it follows

0=F[y]-9Gly] = Fly]-9 = 0=F[u,
(on K)
consequently, the required minimum is the least eigenvalue of the eigenvalue problem
(EVP). The existence of a function y € K such that F[y] < F[v] for all v € K has been
proved above.
Let us define the value

L _2-nt o 2Piap )
_ " 7 ,

where ¥ is the smallest positive eigenvalue of the problem (EV P). Then the Friedrichs-
Wirtinger inequality will be written in the following form

AA4+n=2) [ay*(0)dQ< [ alVoy|?dQ+ [ o(o)y?*(w)do+ | y(o)y*(w)do,
[evionas [ormovon] !
(1.3)
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REMARK 2. The constant in (1.3) is the best possible.
Now we will use the following notations:
e Gb={(rnw)|0<a<r<bw€Q}NG: alayerin R";

IY={(rnw)|0<a<r<b,wcdQ}NAIG: the lateral surface of the layer G;

Gi=G\Gl; T,=09G\TI¢, d>0;

=G n{x, =0} CZy; Zy=30\Z¢, d>0;

Q,=Gin{lx|=p}; 0<p<d.

o1
COROLLARY 1.3. Let u € C°(G)NW,,_,(G), u(-,w) satisfy the boundary and
conjunction conditions from (EV P) in the weak sense and A be as above in (1.2). Let
o(w), o € op; Y(w), @ € IQ be nonnegative bounded piecewise smooth functions.
Then

[t war < o { [ 2vuw P [0 (0)? s

d d d
Gl Gl =

+/a3 ds} Yo

(1.4)

Proof. Multiplying (1.3) by #”"~5+% and integrating over r € (0,d) we obtain the
required (1.4).

LEMMA 1.4. Let G4 be the conical domain and Vu(p,-) € Lo(Q) for a.e. p €
(0,d). Assume that for a.e. p € (0,d)

Ulp) = / @~ Vu(x)Pdx+ / P ()i (x)ds + / Py (@) (x)ds < oo, (1.5)

where A is defined by (1.2).
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Proof. Writing U(p) in spherical coordinates

o
U(p)Z/rH /a\Vu(r,w)|2dQ 7l
0 Q
0
+ [ [ ot@lutro)Pdo+ [ vw)utrw)Pdo)r2ar
0 o)) Q

)
1
= /r/a (u%—f— 7|un(r7w)2) dQdr
I
0 Q

+/p% /o(w)\ (rw\dGJr/)/ u(r,o)Pdo | dr
0

00

and differentiating with respect to p we obtain

U(p) = [ a (p (%)2+%|ku|2>

+- | [onip.0do+ [H@plp,w)do

00 2Q

dQ
r=p

1.7)

2
Moreover, by the Cauchy inequality, we have pu% < %uz + %pz (%) , Ve > 0.

Then
) )
/a ot P20 dggi/ 2dsz+—/ @ Q.
2 ar 2 ) 2
r=

Thus choosing € = A we obtain, by the Friedrichs-Wirtinger inequality (1.3),
du n—2 ,
— dQ
/ a (pu ar + 5 u )
Q r=p

e+n—2 ) p2/ o\’
R L
< MMH_Z)JCIWQ,M ds.2+28Q a(5) ag

eE+n—-2
+72)L()L+n—2) 6/ (w)u (pwd0'+a£y u(p,w)do
= LU'(p).

22
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We need also the well known inequalities:

/v(x)ds < c/(|v(x)\ +Vv()))dx, Vv € WHL(G), VT COG,  (1.8)
r G
/v2(x)ds < /(5\vV(x)|2 + écovz(x))dx, WeW(G), V8 >0.  (1.9)
G G

1.2. Quasi-distance r;(x)

Further, we define the function r(x) as follows. We fix the point 0 = (—1,0,...,0)
€ "1\ Q and consider the unit radius-vector [ = 6Q = {—1,0,....,0}. We denote by
7 the radius-vector of the point x € G and introduce the vector 7 = 7 — el Ve > 0.
Since €l ¢ G for all € €]0,d|, it follows that r¢(x) = [F—¢€l| # 0 forall x € G. It is
easy to see that r¢(x) has the following properties (see for details §1.4 [2]):

1. 3h >0 such that: re(x) > hr and re(x) > he, Vx € G, where
la l:fxl =0 ’
sin %, ifx; <O0.

2. If x€ Gy, then re(x) > ¢ forall € €]0,4],

3. lim re(x) =r, forall x€G.
e—0T

4. |Vre? =1, and Nre =1L
LEMMA 1.5. Let v € C°(G)NW!(G) and v(-,m) satisfy the boundary and con-
Junction conditions from (EVP). Let 6(®) > 0, y(w) > 0. Then for any € > 0 and
d>0

c
/arg_zr_zvz(x)dx < 7{/ar§_2|Vv(x)|2dx+/r‘lrg“zc(w)vz(x)ds
AA+n—2
G | ) G %
+/r1r§‘2y(w)v2(x)ds}. (1.10)
Fd

where ¢ = const(wp; o) > 0.

Proof. Multiplying both sides of the Friedrichs-Wirtinger inequality (1.3) by (p +
€)*~2r"~3 and integrating over r € (§,p) we obtain

/ a(p+€)* 2r 2} (x)dx

Gorz
gm{ / a(p + &) 2|Vv(x) Pdx + / (o + &) 2y(w) (x)ds
6" o
/2 p/2
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+/ (p+e) (a))v2(x)ds}7 Ve >0
p/2

or since p+ & ~ rg

/ar“ 22 2(x)dxé/li( ! {/arg_2Vv(x)2—|— / 820 (w)v? (x)ds

A+n—-2)
o2 Gop =)
+ / r_lrg‘_zy(a))vz(x)ds}, Ve > 0.

o
Fp /2

Letting p =27%d, (k=0,1,2,...) and summing the obtained inequalities over all kX we
get the desired inequality (1.10).

1.3. The Cauchy problem for differential inequality

THEOREM 1.6. Let U(p) be a monotonically increasing, nonnegative differen-
tiable function defined on [0,2d] and it satisfies the problem

{ U'(p) = Z(p)U(p)+A(p)U(20)+2(p) 20, 0<p<d,

U(d) < Uo, P

where P (p), N (p),2(p) are nonnegative continuous functions defined on [0,2d]
and Uy is a constant. Then

U(p) <exp</d%(r)d1> {erxp<—i<@(r)dr> +/d£2(1)exp<—/r<@(0')d0>d1}
P P P P

(1.11)
2p
with #(p) = W(p)exp(l{ ,@(G)dcr).

Proof. For the proof see §1.10 (Theorem 1.57) [2]

2. The transmission problem for linear elliptic divergence second order
equations in a conical domain

The transmission problems often arise in different fields of physics and technics.
For instance, one of the important problem of the electrodynamics of solid media is
the study of electromagnetic processes in ferromagnetic media with different dielectric
constants. These problems also arise in solid mechanics if a body consists of composite
materials.

In this article we obtain the best possible estimates of the weak solutions of prob-
lem (L) near a conical boundary point. Analogous results were established in [2] for
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the Dirichlet and Robin problems in a conical domain without interfaces. Many math-
ematicians have considered the transmission problems. First, V.A. II’in [6], O.A. La-
dyzhenskaya and N.N. Ural’tseva [9], Z.G. Sheftel [12], M. V. Borsuk [1] studied gen-
eral interface problems for second order elliptic operators in smooth domains. Later
other mathematicians studied transmission problems in non-smooth domains in some
particular linear cases (see the references cited in [10, 11], [4]). General linear interface
problems in polygonal and polyhedral domains was considered in [10, 11]. Regularity
results in terms of weighted Sobolev-Kondratiev spaces were obtained in [4] for two
and three dimensional transmission problems for the Laplace operator. D. Kapanadze
and B.-W. Schulze studied boundary-contact problems with conical [7] singularities
and edge [8] singularities at the interfaces for general linear any order elliptic equations
(as well as systems). They constructed the parametrix and showed the regularity with
the asymptotics of solutions in weighted Sobolev-Kondratiev spaces. A principal new
feature of this article is the consideration of the estimates for equations with minimally
smooth coefficients in n-dimensional conic domains.

Our assumptions concerning the smoothness of the coefficients are the least re-
strictive possible: leading coefficients of the the equation must be Dini-continuous at
the conical point &, whereas lower coefficients can grow and we indicate the exact ad-
missible order of power growth. In §7 we construct the examples which show that the
Dini condition for leading coefficients of the equation at the conical point as well as the
assumption concerning the lower order coefficients of the equation, are essential for the
validity of the estimates established in the Theorem 2.3. The fact that the exponent A
in these estimates cannot be increased is shown by constructing particular solutions of
the Laplace equation in the domain with the angular or conical point (see §6, Appendix
as well as §7, Examples). In this sense the derived estimates are the best possible.

We consider the elliptic transmission problem

Llu] = aix, (a" (X)uy; ) + @' (X)uy; +b(x)u = f(x), x€G\Z;
[ulg, =0, S[u]= {%LO—FﬁG(lj—') u(x) =h(x), x¢€o; (L)
%[u]z%—l—ﬁy(g—‘)u:g(x), x€dG\{Zpu o}

(summation over repeated indices from 1 to n is understood); here:
[ ]

() = ui(x), x€Gy, o) = fi(x), x€Gy,
) {u_(x), xeG_; ) {f_(x)7 xeG_

e [u]y, denotes the saltus of the function u(x) on crossing X, , ie. [u]z, =

uy(x)| —u_(x where u x‘ = lim u ;
+ )‘20 ( )‘20’ < )20 Gi3y—x€X =)

° = a (x)cos(7,x;) %, where 7 denotes the unite outward with respect to
J

J
v
G4 (or G) normal to X (respectively to dG\ ©);
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° [g—ﬂ s denotes the saltus of the co-normal derivative of the function u(x) on
0

crossing X, i.e.

d i d ; d
{ﬁ] . =a(x)cos(n x,)a;i a” (x)cos( xl)a;j
Let us recall some well known formulae related to spherical coordinates (r, @y, ..., ®,—1)

centered at the conical point &
o dx=r"1drdQ, dQp = p"1dQ,

e ds denotes the (n — 1)-dimensional area element on dG; ds = " 2drdo;
2
° |Vu|2 = <%> + ri2 |un|2,

_ 9% | n—19u
o Au= a2 P ar+r2Awu

C=C(...),c=c(...) denote the constants depending only on the quantities appearing
in parentheses. In the sequel, the same letters C, ¢ will (generally) be used to denote
different constants depending on the same set of arguments.

DEFINITION 2. The function u(x) is called a weak solution of the problem (L)

ol
provided that u € C°(G) "W, (G) and satisfies the integral identity

/ [ (1t 1y = () 1 (5) = D) ()}

+/% o(w) ds+/ Y(w (x)ds
_ / 2(0)n (¥)ds + / h(x)n (x)ds — / FOM ) dx (1)

ol
for all functions 1(x) € C°(G) N W, (G).

We assume, without loss of generality, that there exists d > 0 such that Go isa
rotational cone with the vertex at & and the aperture wy € (0,27), thus

rd = {(rw‘xl—cot le, wlz%}. @.1)

By means of the direct calculation we obtain

LEMMA 2.1.

.
xicos(ﬁ,xi)\rvoj =0, and COS(ﬁ7x1)‘1—\g = —sin—,

> 2.2)



THE FRIEDRICHS-WIRTINGER TYPE INEQUALITY. .. 691

LEMMA 2.2. Let u(x) be a weak solution of (L). For any function n € C°(G)N
ol

Wy (G) the equality

{0+ (£ = @5t — b)) @)

0
GO

= [ " (x)ux;n(x) cos(r,x;)dQp + / (g(x) - %Y(w)u(w) n(x)ds
r

1
+ [ ()= Loyt ) neoas (1)
%
holds for a.e. p € (0,d).
Proof. The proof is analogous to the proof of Lemma 5.2 [2] (pp. 167-170).
Regarding to the equation we assume that the following conditions are satisfied:

(a) the condition of the uniform ellipticity:

veE2 <d(0EE <urE?, VxeGx, VEER"

Vi, s = const > 0, and a"’ (0) = a5ij,

where 5{ is the Kronecker symbol and a = {a+, x m &’ ai are posi-
a_, xinG_,
tive constants; we denote a, = min{ay,a_} >0, v, =min{v_,v;}, u* =
max{u_, iy };
(b) a € C°(G), d € Ly(G), b,f € L,»(G)NLa(G); n < p<2n, for them the
inequalities

1

(le @09 -a"0)?) < ae ()

(B ) 100 < ast 1)
hold for x,y € G+, where < (r) is a monotonically increasing, nonnegative func-
tion, continuous at 0, <7 (0) =0;
(c) b(x)<0in G; o(w)>=vy>0on oy, y(w)=vp>0ondG.
(d) there exist numbers fi 20, g1 20, hy 20, s > 1 such that
O < A2, g )] < @b, [A()] < byl x € G

y(®) is a positive bounded piecewise smooth function on dQ, o(®) is a positive
continuous function on 0y;
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Our main result is the following theorem:
THEOREM 2.3. Let u be a weak solution of the problem (L) and the assumptions

(a)—(d) be satisfied with the function <7 (r) which is Dini-continuous at zero. Then there
exist d € (0,1) and the positive constants Cy, Cy, Cy depending only on n, v, u*,

_ 1
a., p, A, i(x)? , Wy, s, meas G, diam G and on the quantity fﬂr(r) dr
Lp/Z(G) 0
such that ¥x € Gg
xl?, ifs>2,
1 1
< g — ALY, ifs— ,
ju()] < Colu +\/V_Og1+\/v_0h1> Wrn( L), irs=2, @3
|x[°, if s <A,

where A is defined by (1.2). Suppose, in addition, that

a’eCY(G), oeC'(m), yeC'(9G), feV),, .(G),
heVih(o), geVi P (9G): p>n

n p,2p—n
and
w=tsupp (Il oy bl )< 24)
p2p n\=p/2 VP‘ZP*”(FP/Z)
Then for Vx € GS
[+, ifs> A,
1 1
[Vu(x)| < +\/V_0gl+\/v_0 1+ 7T |x[*~*1In ) s A
|x[s—1, ifs<A.
(2.5)
Furthermore, zquVp 2p—n(G), then
p*, if's > A,
1 1 _
HMHV%JP?"(GQ) <C2( u +\/—V—Ogl+\/—v_0hl+rs>' p“n(%), ifs=A
o’ ifs <A.

(2.6)
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3. Global integral estimates

At first we will obtain a global estimate for the Dirichlet integral.

THEOREM 3.1. Let u(x) be a weak solution of the problem (L). Let assumptions
(a)—(c) be satisfied. Suppose, in addition, that h € (%), g € Lo(dG) Then the in-
equality

/v|vM|2dx+/@u2(x)ds+/@u%x)d
o G

G

2 2 L [ 1 2
<C G/u (x)dx+6/f (x)dx+ V—OE/h (x)ds+ v—oaég (x)ds » (3.1)
0

holds, where the constant C > 0 depends only on p,n, vy, and

S Ja(x)]?

i=1

Lp/Z(G)
meas G,diam G.

Proof. Setting in (II) n(x) = u(x) and using the classical Holder inequality, by
assumptions (a), (c), we get

/V\Vu\zdx—l-/o-( x)ds +/)/ u*(x
/ S PIVu s [ o)
P}
+ [lu@lg(lds+ [ luto)llf(0)ax. (62
G G

Further, by assumptions (b), (c), as well as by the Cauchy inequality and the integral
Holder inequality, we have:

/,/2|a () [2]0(x) || Ve (x) | dx

)
<2/V\Vu /Z\a ) |u(x)|?dx
G
N b
€ 2 2p
< E/V\Vu(xﬂ dx—|—2€V* /<2|a ) . /\u(x)\p—zdx ,
G G

p>2,Ve>0.
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Now we apply the inequality

||u||i . ( 5HVu||L +c(8 p,n,meas G)||u||Lz , p>n,V6>0

p—2

(see, for example, (2.19) §2, chapter II [9]); hence it follows that

/1/ \a’ V2 |u(x)]|[Vu(x)|dx < = /V|Vu(

X / (8v|Vu(x)|* +¢(8, p,n,meas G)u?) dx,

p/Z(G)

G
Ve > 0,8 > 0. (3.3)

. ety . As a result we obtain from (3.2)—(3.3)

3 lai(x)]?

i=1 Lp/Z(G)
(vawmem+/ﬂ@M@m+/ﬁ@M@m (3.4)

r r
X G

G
<c [luePax+ [ nelds+ [ ullg@las+ [ @lf@lds,  35)
% G G

G

3 a2

where ¢ = const (8,p,n,v*,

,meas G) . Further, by the Cauchy
[)/2( )
inequality, in virtue of the assumption (c), we obtain

Z/ (o)l ()| ds = (F e ) ( e )ds
2/ dlamc;/h2
aé ) lg(o)lds = <\/7 e ) (/oo )

(o) , diamG/ 2
< - 1 7 .
< 2/ . u (x)ds+ G g (x)ds;

G
/ )£ ()l < / )P+ 3 [ 170)Pa.
G

Hence and from (3.4) with ¢ = % we get the desired inequality (3.1)
Now we will obtain a global estimate for the weighted Dirichlet integral.
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THEOREM 3.2. Let u(x) be a weak solution of the problem (L) and A be as in
(1.2). Let assumptions (a)—(c) be satisfied. Suppose, in addition, that

50
FeW,(G), /raflhz(x)ds < oo, /raflgz(x)ds <oo, 4—n<o<2.
D}

ol
Then u € W,_,(G) and

/a(ra72|w(x)|2+r°‘*4u2(x))dx+/r°‘*30(w)u2(x)ds+/Va*g}f(w)uz(x)ds
G

G D)

SC{/(uz(x)+(1+r°‘)f2(x))dx+/r“*1h2(x)ds+/r“*gz(x)ds}, (3.6)
G D} 2G
i(x)]?

where the constant C > 0 depends only on p, n, V., W*, as, vy, o, A,

>

Lp/Z(G)
measG.

Proof. Setting in (II) n(x) = r% 2u(x), with regard to My, = r& 2u,, + (a —

1
Z)rg‘*“":—fl"u(x) we obtain

/ar8 2| Vu(x)| 2dx+/ 1e2s ds+/ 1 2y(w)u? (x)ds

G

= 2_Ta/arg‘_4(xi—£li)(uz)xidx—l—(Z—a)/(aij(x)—aij(O))rg‘_“(x,-—sl,-)uxju(x)dx

G G

- /(aij(x) —a"j(O))rg‘*zuxiuxjdx—F/ (a' (x)uy, + b(x)u(x) —f(x))rg‘fzu(x)dx

+/‘“ ds+/‘“ (3.7)

We transform the first integral on the right by integrating by parts

u?
o—4
xi — €lj) 5—
/ar (xi—¢€ )8x,- dx
G
_ ou? _ ou*
= /a+rg‘ 4(x,-—£l,-)a—xj_rdx—|—/a,rg o — )Gx, dx
G G-
2 J o—4 2 7o 4 -
:—/au (x)x rg(x—ely) Jdx+ / ajus (x)rg " (xi—el;) cos( ', x;)ds
G ’ G,



696 MIKHAIL BORSUK

= —/auz(x)% (rﬁ““(xi — £li))dx+/au2(x)rg‘_4(xi —eli)cos( T, x;)ds
G ' 9G
+ [a]zo/u2(x)r§‘*4(x,-—8l,~)c0s(7,x,~)ds, (3.8)
2o

because of [u]s, = 0. By elementary calculation we have:

1) aix, (rg“‘(x,- - 8l,~)> = nrg"4 +(a—4)(x;— El,-)rg"S x—":fl" =nh+a- 4)r§"4;

2) because of cos( 7, x;)

= cos(xy,x;) = O],
P}

(x,- - El,') COS(?,X,‘)

since Zyp = {x, =0} NG and [, = 0;
3) from the representation dG = Fg UT'; and by (2.2),

. o
:—851n7 —

(xi — Eli) COS(WJCI') l"g

/auz(x)rg‘*“(xi —ely)cos(7 ,x;)ds

JdG

o
= —&sin 70 /auz(x)rg‘*4ds+/au2(x)r§‘*4(x,- — ¢l;) cos( 7, x;)ds.
rd Ly

Hence and from (3.8) it follows

2— o’
-« /arg‘_4(xi — £li)de

2 ox;
G
2—a)(4—n— 2
= Q-a)d=n-a) /arg_4u2(x)dx—€ o sin@/auz(x)rg_d'ds
2 2 2
G Fd
2-a 2/ N o4 —
+ — /au (x)rg ™" (x; — €ly) cos( T, x;)ds. (3.9)

Iy
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From (3.7), (3.9) with regard to 4 —n < a < 2 we obtain following equality:

1
sm—/au O‘74ds—|—/;r(‘;“z()'(oo)uz()c)ds
Zo

r
G

L2-a) / (a7 (x) — a1 (0) ), & (s — el Ju(x)dx

G

/ ar% 2| Vu(x) 26 =
G

—/rg‘f2 (a"(x) —aij(O))uxiux_/dx+/(ai(x)uxi +b(x)u(x) — f£(x))re2u(x)dx

+/a2 ds+/‘” (3.10)

Now we estimate the integral over I'y. Because on I'y: re > hr > hd =
(a—3)Inre < (a—3)In(hd), since o < 2, we have r¢ 3|, < (hd)*™3 and there-
fore:

2 —
Toc au*(x)r¢=* (x; — el;) cos(7 , x;)dss
Ly
2— 2
< Toc ar® i (x)ds < Ta (hd)a_3/au2(x)ds
Iy Ly
<cs /uz(x)dx+5/\Vu(x)|2dx, V8 >0, (3.11)
Ga Gy

by (1.9). Further, by the Cauchy inequality and because of y(w) > vy > 0,
1 1
u()g() = (4 ——g)]) (/7@ ()

o
<5 @) +

taking into account property 1) of r we obtain

1 1
[t g s < 2/ E R+ g [P s, 5 > 0.

G G

1
2y € (0, V8 > 0;

(3.12)
Similarly, because of o(w) > vy > 0,

1 1
[ uincolas <2 [ Lot ot g5 / R (s, ¥ > 0

%y %y

(3.13)

IN
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/rg‘*zu g/ 720522 dx+2 6/0‘f Ydx, ¥6 > 0. (3.14)
G

Now we use the representation G = Gg UG,. At first we estimate integrals over Gg .
By assumption (b) and the Cauchy inequality, we obtain:

S 00 =) 72 4 et )

Gd
0
4 18726 (%) uy u(x) 4 r¢2b(x)u? (x) }dx
o—2 2 o3
<o/(@) [ a(rE2IVuCP 42 ()] - ()
i
+ 2 Vu(x) | - Ju(x)| + 282 2(x)>dx
<24(d) /a (re 2 Vu(x) [+ r 2@ 20 (x) + 18P (x) ) dx. (3.15)
G

Now we estimate integrals over G,;. By assumptions (a), (¢) and the Cauchy inequality
and taking into account the inequality (3.3), we obtain:

/{(aij(x)—aij(O)) (r¢ Puguy, +rg ™ (i — el)u(x)uy; )

Gy

+ 1872 () ugu(x) + e b(x)u’ (x) }dx

<u / 3r% 2 Vu(x) |2 + r% 4 u(x) dx+/ “2u(x)||Vu(x) 1/2\51 (x)|2dx

<C/(v|vu(x)|2+u2(x))dx, (3.16)
Gy

where C = const (p,n7v*7,u*7oc,d, i(x)?
1=

) . As a result from (3.10)-
p/2( )

(3.16) we obtain:

/arg_z\Vu( ) Pdx+ 2=

G
1
—|—/— ds—l—/ u®(x)ds
,
D)

sm—/au V¢4 ds
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<24(d) /a (rg‘*z\Vu(x) |2 + r72r§‘72u2 (x)+ rfj‘*“u2 (x)) dx

Gj
wC [ pmven,0d |3 1P [ (Va0 + i) dx
i=l Lp/Z(G) Gy
1 a—1_2
— d
+25V0 /r g (x)ds
G
—|——1 /rO‘_lhz()c)a’s—|—é ar 2 r% 2P (x /
25V0 2 &
% G
é o— 21 o — 2
+§ Te o(w)u”(x)ds+ 2/ )ds Vo > 0. (3.17)
D)

In virtue of the inequality re > hr (see the property (1) from §1.2) we have rg&~ 1<
h=2r=2r%=2. Hence, by Lemma 1.5, from (3.17) it follows

1 1
/ ar®2|Vu(x) Pdx+ / 20 (@) (x)ds + / —rE 2y (@)l () ds
o G

G

<c(h,a) (8 +(d)) { / ar®2|Vu(x)Pdx + / 26 () (x)ds
G %

+ / rlrg‘zy(w)uz(x)ds}
G

+C p»n»V*».u*»a7d7

/ (v|Vu(x)|* +u*(x)) dx
L,xG)/) G
1 o—1,2 o—172 o 12
+—/r g (x)ds—l—mz/r h (x)ds—l—mc/r f(x)dx, ¥6 > 0.
0

20 Vo
G

i=1

(3.18)

Now we choose § = m and next d > 0 such that, by the continuity of <7 (r) at

zero, ¢(A,wo) </ (d) < . Thus we get

1 1
/ a2 Vu(x) Pdx + / 2o (@)l ()ds + / —rE 2y (x)ds
o G

G

3 a2

i=1

< C panav*a“*7a*aa7)‘7

Lp/Z(G)
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x { ! (V] Vae() P4 (x) 7 f2(x))dx+vioaé r“—1g2(x)ds+vi0 2{ ro‘_lhz(x)ds},

Ve > 0. (3.19)

We observe that the right hand side of (3.19) does not depend on €. Therefore we can
perform the passage to the limit as € — +0 by the Fatou Theorem. Hence it follows
that

/aro‘_z\Vu(x)Fdx—I—/ra_36(w)u2(X)dS+/”a_31’(w)”2(x)ds
G %o G

¥ [ ()

i=1

< C P7n7V*7H*»a*7O‘»)L»

Lp/Z(G)

1 1
X {/(vVu(x)|2+u2(x)+rO‘f2(x)) dx—i—v—o/ralgz(x)ds+v—0/ra1h2(x)ds}.
G G 2y

(3.20)

Now applying Theorem 3.1 and Corollary 2.4 (see inequality (1.4)), from (3.20) we get
the desired estimate (3.6).

4. Local integral estimates

4.1. Local estimate at the boundary

By the applying the Moser iteration method (see §8.6 [S] or §1 chapter 4 [3]),
we derive a result asserting the local boundedness (near the conical point) of the weak
solution of problem (L).

THEOREM 4.1. Let u(x) be a weak solution of the problem (L). Let assumptions

(a)—(c) be satisfied. Suppose, in addition, that h € L(%), § € Lw(dG). Then the
inequality

C _ -
sup ()] < ——— A p " ul, go + 0> £l 1 o+ (Nl + s )

Go” S (L=
4.1
holds forany t > 0, > € (0,1) and p € (0,d), where the constant C > 0 depends only
on nvv*7“*7t7p7’ i ‘ai(x)|2
=1 Lp/Z(G)

4.2. Local integral weighted estimates

THEOREM 4.2. Let u(x) be a weak solution of the problem (L) and A be as above
in (1.2). Let assumptions (a)—(d) be satisfied with the function < (r) which is Dini-
continuous at zero.
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ol
Then u e W,_,(G) and there are d € (0,1) and a constant C > 0 depending only

on n,s,A,a.,wy and on f 20 4y such that Vp € (0,d)

0
/(arz_"|Vu(x)|2—|—r dx+/ e ds—|—/ 1=y x)ds
Gh = ry
p, if's> A,
C(lulBo+ 7+ ot + o) - { o2 (B), s =2, (42)
p%, ifs<A.

ol

Proof. From Theorem 3.2 it follows that u(x) belongs to W,_, (G), soitis enough
to prove the estimate (4.2). Setting 1 (x) = r>"u(x) in (II);,c , with regard to the def-
inition (1.5) we obtain

r=p 9
+ /r27"u(x)g(x)ds + /rzf"u(x)h(x)ds
rf =
+ /{—r2" (ai~f (x) — aij(O)) Uy + (n— 2)r "u(x)a’ (X)xitty;
o
+ P2 u(x)a (%), + r*"b(x)u? (x) — r* " u(x) £ (x) }dx. (4.3)

Now we transform some integrals on the right:

(n— 2)/r‘”u(x)aij(x)xiuxjdx
&
—_ 2 .. ..
= % /af"xi%dx—l- (n—2) /f"u(x) (a"(x) — a’J(O))x,-uxjdx; 4.4)

G G
by the Gauss-Ostrogradskiy divergence theorem
—n au2 2 —n —n —n 2
/ar xia—dx: —/au (x) (nr™" —nr ") dx+p /au (x)x;cos(r,x;)dQ,
Xi

Gh Gh Q

+[a]zo/r*"uz(x)xicos(mxi)ds—f—/ar*"uz(x)xicos(mxi)ds.

= rf
4.5)
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Hence, since by Lemma 2.1 x;cos(n,x;)| =0 and x;cos(r,x;)| =p; x;cos(n,x;)| =

Fg Qp P}
x;icos(xp,x;)| =x,| =0, we have
% %
n—2/ n auzd n—2/ 2(x)d9 6)
—_— r'xi—dx = . .
7 ar x e X 5 au”(x
Gh Q

Because of b(x) < 0 and Lemma 1.4, from (4.3)—(4.6) it follows that

U(p) < %U/(p) +p>" / u(x) (@' (x) —a’(0)) Uy, cos(r,x;)d<2p + /rz_"u(x)g(x)ds
Qp rg
+ /rz_"u(x)h(x)ds + /{—rz_" (a"(x) —a"(0)) Uy Uy
=0 Gy

+ (n—2)r"u(x) (a" (x) — a"(0)) Xilky; + P u(x)a (x)uy, — " u(x) f(x) }dx.

4.7
Hence, in virtue of assumption (b), it follows that
U(p) < 37U'(0)+p/(p) [ alul)|[Vu() a2+ [ r~"lu(o)lg(x)ds
Q 1"6’
+/r2—"|u(x)|‘h(x)|dS+C1(n)$Z{(p)/a(rz_"‘vu(x”z+rl—n‘u(x)||vu(x)|)dx
2{; Gg
n / P ()| (). 4.8)
GP

We shall obtain an upper bound for each integral on the right. At first, applying the
Cauchy and Friedrichs-Wirtinger inequalities (see (1.3)) with regard to (1.7), we have

/ap\u(x)nvu(x)usz < %/a (02 Va()? + Ju(x)?) dQ < e (A)pU' (p):  (4.9)
Q Q

[ar' ") IVu)ldx < [ a (P Vu@) P+ ()P dx < ()0 (p) - @.10)

P P
GO GO

in virtue of inequality (1.4); and with V§ > 0



0
1—‘0

0
ZO
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- . , L 37# X N
/r lu(x)||g (x)|ds _F[( “Vr(o)lu(x ) ( \/ng( )|>d
Sg rl’"}’(w)\u(x)|2ds+ﬁ P g(o)Pds;  (411)
rf i

[P s = [ (7 Vool (r%”#m(xn) ds

=

1— g 2 3—n 2
2/ |ds+26 / h(x)|2ds;  (4.12)

= 2”

[ ol lax < —/ar ) Pax 35 [ #4710 Pas

GP

GP

1) 1
< 2—61*04()“)[](9) 25
Gt

P f(x)[Pdx (4.13)

in virtue of inequality (1.4). Thus from (4.8)—(4.13) we get
[1—cs(n,A,a.)(8+4(p))U(p)
< 2= (1+ao(A) () U'(p)

L 4n 2 i/ 3n 2 i/ 3-n 2
+25 /r |f (%) dx—i—vO g (x)] ds—i—vO P Mh(x)|7ds » , VO > 0.

0
GO

0 0
I Zy

But, by the condition (d),

1 1 1 1 .
[P [ lewPast g [ Ras<2a (et )0
Vo Vo Vo Vo

0
GO

0 0
To Zy

where ¢y depends only on n,s, @wy. Hence we obtain

U'(p)—

5 .

24 1—C5(5+@7(P))
l+c64 (p)

5! )p2s—1 >0,

1
( )+2)LC() <f1+ g1+ h )m

Vo > 0.

Thus we have the differential inequality (CP) §2.4 with

Z(p)=

24

[I=es(nA,a) (8 4+ (p))], V6 >0, A (p)=0;
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2(p) = Lo (ff T+l ih%) 87 pP W8 >0 (4.14)
s Vo Vo
Uy :C{/(u2+(1 +r47")f2(x)) dx+/r37"h2(x)ds+/r37"g2(x)ds},
G Zy G

by (3.6) with @ =4 —n.

1) s>A. Choosing 6 = p¢, Ve >0,

P(p) = zj (1 —es(n2,a) (0° + o (0))];

A o
2(p) = 5 o (fl —gl + —h2> ple,

Since 2(p) =2 — @, where . (p) satisfies the Dini condition at zero we have

) [Hmen ()
P 0

We have as well:

d
)L K 1 1
/Q exp< /gz dc) coKo ( 12+V_Og%+v_oh%) p2/l/T2s—2)L—e—ldT
0
< *0Ko 1 1 A
<20l (L i) Lo
N 0 0 s —

since s > A and we can choose € =s—A.
Now we apply Theorem 1.6: then from (1.11) by virtue of the deduced inequalities
and with regard to (1.4) for o = 4 — n we obtain the statement (4.2) for s > A.

2) s=A. Takingin (4.14) any function §(p) > O instead of § > 0, we obtain
the problem (CP) with

@(p)zm(l;‘s("”—q”g’); H(p) =0:

20) =ao (F+ s+ o) - ).
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We choose §(p) = ——, 0 < p <d, where e is the Euler number. Then we
22 ln(}—d>

obtain
—/T@(O')do'<ln(£>2l+/r 40 +cs dﬂ >d’L'
» h T » Gln(%) 0
:1n<B>M+ln ln(%d>>+C5/d%(r)d
1“(%) o

In this case we also have

d T
p/Q(T)exp(—p/@(a)dG)dr

d
1 1
< ¢ (ff+v—og%+v—0h%> 2A1 /
) é(t
ed
2)‘,6‘6 (fl —g1+ h2> p2A1H (;)

Now we apply Theorem 1.6, and from (1.11), by virtue of the deduced inequalities, we
obtain

1 1 1
U(p) < (Uo+f1+yg1+ hz)pz’llnzg, O<p<d<-.

Thus we proved the statement (4.2) for s = A.

3) 0<s<A. Now similarly to case 1) with regard to (4.14) we have

d
2A(1-6 2A(1-6
exp(— @(T)dr)é(%) ( )GXP<C5/ﬂ£T)dT>:C7(§> : ).
0

St
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In this case we also have

d T
!Q(r)exp(—p/@(o)dc)dr

d
1 1
<co<f12+—g%+—h%> ~152(1-5) /Tzs 22(1-8)-17
Vo Vo
)
>, 1 5 2\ 25
ch fl+v0g + h P,

if we choose 0 € (0, A;“).

Now we apply Theorem 1.6, and then from (1.11), by virtue of the deduced in-
equalities, we obtain

1 1 1
U(p)<c9<Uop”“‘5’+ (ff+v—g%+v—h%> P )<010 <U0+f1+ gi+— h2)p :
0 0 Vo

because of 6 € (0, A;"). Thus we proved the statement (4.2) for s < A.

5. The power modulus of continuity at the conical point for weak solutions

Proof of Theorem 2.3. We define the function

o*, ifs>A,
w(p) =1 p (L), ifs=2, 5.1)
0°, ifs <A

for0<p<d
By Theorem 4.1 about the local bound of the weak solution modulus we have

sup |u(x)| < C{p~"? - p2=n/p) , + o+ ]l ) b (52)
Gp/g|<>| (P72 llully 6o+ 0> P £l 60+ (Uglleo + e ) }

3 o)

where C=C (n, Ve, W5, p, ) and p > n. Now, by Theorem 4.2, we

Lp/Z(G)
have

1/2
”/2||u|| o8 <22 /r_"uz(x)dx
%

+f1+—

g1+\/_ ) v(p).
(5.3)

\/_
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Further, by the assumption (d), we obtain

n 1 1
X012 o+ (I8lls +lAlge ) < ( O ) v(p).
(5.4)
From (5.2)—(5.4) it follows that
sup |u(x)] < C(||u +hit—a+— ().
el AR

Putting now |x| = £p we obtain finally the desired estimate (2.3).

Now we consider two sets G ‘; , and G’ 02 C G* p > 0. We perform the change

p/4
of variables x = px’ and u(px’) = y(p)v(x’). Then the function v(x') satisfies the
problem

pal(px)vy + P7b(pX' v = {75 f(px), x € Gl
["(xl)}z}/zzo’ [_VV’Li +ﬁ0(w)"( x)= h( x'), XEEW, (L)

By the Sobolev Imbedding Theorems, we have

sup |V'v(x)| < ch||W2,,,(G}/2), p > n. (5.5)

X EGI/Z

By the local L? -a priori estimate [12] for the solution of the equation of the (L) inside
the domains (Gf / 4> . and near smooth portions of the boundaries E% /4 U 1"% Ja» We have

o
[[v HWZP (Gl ) < { ( )HfHLP 1) WHhIIWH/,,,,,(Z%M)
+— W(p) Hgle 1/1)/?(1"2 + ” HLP GZ/ )}~ (5.6)

Returning back to the variables x, from (5.5) and (5.6), it follows that

sup |Vu| < cp™ Ho " llull, ) +0> IS 6
G°
p/2

+p?” "/p||g|| 1 1/p( 20 )+D2 "/thH 1 1/p( 20 )}
;/ p/4
and
p* ”/”Ilullvz (s <c{p” "/”Ilulle 2 ) +p* ”/”Hfllszp

2—n/p 2—n/p
+p ||g||V11;01/P +p HhHVI}BI/P(ZZP )}

2p
(Cora) o/4
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or

sup |Vu| < cp ™! h
cf’/pz| ul <cp {|M\O7G,2374+Hf||vg G 2p +H8H ;;/pn( ) + H ;2,1’/1;( ;254)}
P

and

u o < ctlu + + | 0

| HV;% (G ) {\ |OGZp ||fHVo (G 2p ||g|| 11)21)/17”( lzf/ | || ;2’1)/;:1( [2);/4)}
Hence, because of (2.3), (2.4) and the assumption (d), the required inequalities (2.5)
and (2.6) follow.

6. Appendix

Here we consider the two dimensional transmission problem for the Laplace op-
erator in an angular domain and investigate the corresponding eigenvalue problem.
Suppose n = 2, the domain G lies inside the corner Gy = {(r,®)|r > 0; =% <

<%}, @ €)0,2x[; ¢ € IG and in the some neighborhood of & the bound-
ary dG coincides with the sides of the corner w = —% and 0 = % We denote

li={(nw)|r>0,0=+%}, Zy={(r0)|r>0; =0} and we put 6(w) o=
0

0(0) = 0 = const > 0, y(w)) o= Y+ = const > 0. We consider the following
problem: ’
aiAui = fi (x), x € Gy,
luls, =0, [ag__;} + Su(x) = h(x), x€; (6.1)
owas 2+ Lyius (x) = gu(x), xelL\ O,

where o € {0;1}. It is well known that the homogeneous problem ( f(x) = k(x) =
g(x) = 0) has solution of the form u(r,®) = r*y(w), where A2 is an eigenvalue and
y(w) is an associated regular eigenfunction of the problem

"

v, + A%y (@) =0, < (07 %)
v 4+ 22y () =0, we(—%ﬁ);
v+ (0) =y_(0); a4y’ (0) —a—y’(0)=oy(0);
torary'(£9) +yay(£3) =0.

(6.2)

1) the case A =0.

In this case the solution of our equations has the form yi(w)=A+ -®+ B+.
From boundary conditions we obtain B, = B_ = B and for the finding A;,A_,B we
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have the system
a+A+ —a_A_—ocB =0,
(opay + 2y ) Ay +71:B =0,
—(o—a_+ 2Ly )A_+y-B =0.

Since Ai +A2 + B2 #£0, the system determinant must be equal zero; this means the
equality

Wo o o
o <O‘+a+ + 7)’+> (Oﬂ_a_ + 7%) +aiyy <a_a_ + 73/_)
0
Yay (oc+a+ + 70y+> —0. (63)
Thus, if the equality (6.3) satisfy, then A = 0 and the corresponding eigenfunction

ay {(0o-2)y—opay}, o€ Ov%}

viw)= aryi{(0+R)y-—a_a_}, we —%,O},
ifo=0
v(w) = —¥i(0ma+ 3y ) (0+F) - = (ar + Fry), 0¢€ 0’%’
v (ar+ 21) (0= %)~ (o + 2y),  0e|-2.0)],
if o0 #£0.

2) the case A #0O.

In this case the solution of our equations has the form wi(w) = A4 cos(Aw)+
By sin(A®). From boundary conditions we obtain Ay = A_ = A and for the finding
A,By,B_ we have the system

OA — /1a+B+ —|—)L(1 B_ = 0,
Y+ COS A—wo — )La+a+ sin )LTLOO A+ (s sm —|— AOCJF(IJF cos A;UO By =0,
kwo o

Y-cos 3 —Aa_a- sm)L2 A— y_smwa’—i—/loc_a_cos’lT“’“ B_. =0.

Since A2+ B%r + B% #0, the system determinant must be equal zero; this means that
A is defined from the transcendence equation

o(A’aioara +yiy-)+A%ay —a-)(a-a vy —orayy-)
+A[o(aa_ys +ovary )+ (ay +a ) (ysy- — Aoy o_ara )]sin(Awp)

+loAara ara —yiy )+ A% (ar +a ) (o_a_y, +ogary )| cos(Aag) =0.
(6.4)
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Now we investigate the special cases of the boundary conditions.
The Dirichlet problem: oy = 0.
The equation (6.4) takes the form o (1 —cos(Awy)) +A(at +a—)sin(Awy) = 0.

Hence we get
T s —
)‘: %, lfO-—O,
A*, ifo>0

where A* is the minimal positive root of the transcendent equation

tan — =

A _
0__ﬂ.)t,
2 (o

@
and the corresponding eigenfunction y(w) = o
2

T * 21 :
Note that wg < A*< iy (see Figure 2).
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| |

I I
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| |

i i

| |

I I

t + t
1} . 21 ’37r} by

Wo} wo wo}

1 1

1Y I

|

| |

| |

I I

| |

| |

| |

| |

| |

| |

| |

i i

Figure 2.

The Neumann problem: y+ =0, o = 1.
The equation (6.4) takes the form o(1+cos(Amyg)) — A(ay +a_)sin(Awy) = 0.

Hence we get
T H —
2= 0’ lfﬁ—o7
A, ifo>0

where A* is the minimal positive root of the transcendent equation
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For A = % we find the corresponding eigenfunction

a_sin®® ¢ 07%}7
v(w) = o 0}

a;sinZe we |[-P,

For A = A* we find the corresponding eigenfunction

cosA* (w—%), we 0,%},

w) =
vie) cosA* (w+%), we —%,0}.

Note that 0 < A* < % (see Figure 3).

|
I
i
<3 I
3|1
~ |
y_p |
L
= |1
I
I
I
I
I
I
I
I
I
N
D _B
L )
[
|
— | |
X o0 A
‘W'n wo
Figure 3.

Mixed problem: o =1, 0 =0; v =0, y- = 1.

The equation (6.4) takes the form

osin(Awp) +A(ar+a_)cos(Aawy) = Alay —a-). (6.5)

In particular, if 0 =0, we have A = % arctan Zf and the corresponding eigenfunc-

tion
cos(Aw)+, /5= -sin(Aw), we{o,%}

v(0) = cos(A®) + /% -sin(Aw), wE{—%O}

If 0 >0, then A = A*, where A* is the minimal positive root of the transcendent
equation (6.5). Then we find the corresponding eigenfunction

sin2fcosh (0 - %), we [0,%],
v(w) = o
2

cosATw“sin/l(w—i- ), we —%70].
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Rewriting the equation (6.5) in the form tan ’XT“’O = L7 note that

402ara_+0?2—o
2 [ v om i
o arctan /o= < A*< o (see Figure 4).

I
I
i
Sl )i
~ I
iﬂ |
I
Il 1
= |1
I
I
I
|
|
I
I
I
I
}
} _ 2\a
YT e s P
1 F---54 },,L ,,,,,,,,,,,,,,,,,,,,
: i } ‘
AT o A
"wo wo
Figure 4.

The Robin problem: o+ =1; y+ # 0.

The equation (6.4) takes the form

oc(Aara_+yiy-)+A%ar —a-)(a-yy —ary-)
+Alo(a vy +ary-)+(ay +a ) (ry- —A%ara )] sin(Aw)
+[o(Aara —yyy-)+A%(ar +a-)(a vy +ay-)] cos(Awy) =0.

In particular, in the case of the problem without the interface (ay =a_ =1, 0 =0)
we obtain the least eigenvalue as the minimal positive root of the transcendent equa-

tion tan(Awp) = % and the corresponding eigenfunction y(w)=A cos[A (0 —

)] —yysin[A (0 —F)] (see §10.1.7 [2]).

7. Examples

Let us present some examples which demonstrate that the assumptions on the co-
efficients of the operator . are essential for the validity of Theorem 2.3.
Let the domain G C R? be as in §6.

EXAMPLE 1. Let us consider the function

u(r,w) = r* (ml

r

) (A-1)/(A+1)

w
a., @

sin(Aw) {“"
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where ay > 0, A = Z. By direct calculations (see also the investigation of the Neu-
mann problem in Appendix, §6) , we verify that it satisfies the transmission problem

% (ai~f(x)uxj) +a (xX)uy, =0, x€G\Zp;

[M]ZO =0, {%] % =0, x € o5
g1 =0, x€dG\ {ZU 0o},
where

2a X2

11 S S

@) == T ()

2a X1X
120y _ 2103 _ . 112
aT) =4 = T Tt

2 2
azz(x) _ a |

T Py
al(0)=ad}, i j=12

a'(x) = —142%(r)cosa)7 a(x) = —l%(r) sinw,
r r

dr = +oo.

d
_ 2a o (r)
4= T man :>/ ;

Clearly, the equation is uniformly elliptic in GS for 0 < d < e~? with the ellipticity
constants

2a d
=a———— an =a.
In(1/d) K
Thus we observe that the leading coefficients of the equation are continuous but not
Dini continuous at zero. From the explicit form of the solution # we have

A— A—
Ol <l 0, g, ) <Pt .

for all € > 0. This example shows that it is not possible to replace A — ¢ in (7.1) by
A without additional assumptions concerning the modulus of continuity of the leading
coefficients of the equation at zero.

EXAMPLE 2. Let (A, y(®)) be a solution of the eigenvalue problem (6.2) (see
Appendix, §6). Then the function u(x) = r* In( 1)y(w) is a solution of the transmission
problem

Au= =202y (w), x€ G\ 2o

[us, =0, [aj—_v} . Tu(x) =0, x€Zp; (7.2)
0

aafh + Lyus(x) =0, x€IG\ {ZoU O},
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where a >0, 0>0,y>0, 0 €{0,1}.

All assumptions of Theorem 2.3 are fulfilled with s = A. This example shows the

precision of the assumption (d) and the estimate (2.3) for s = A.
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