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SHARP MEAN TRIANGLE INEQUALITY

MASATOSHI FUJII, MIKIO KATO ∗ , KICHI-SUKE SAITO†

AND TAKAYUKI TAMURA‡

(Communicated by J. Pečarić)

Abstract. By using a mean operator we shall present some sharp mean triangle inequalities in
a Banach space which generalize the sharp triangle inequality with n elements and its reverse
one shown recently by the last three authors in [7]. In the course of doing this we shall present a
new two element triangle inequality with parameter and its reverse. Several applications will be
given.

1. Introduction

In the theory of Banach spaces the triangle inequality is fundamental and impor-
tant. Many authors considered this inequality (cf. Diaz and Metcalf [1], Dragomir
[2], Dunkl and Williams [4], Hudzik and Landes [6], Massera and Schäffer [10], Saitoh
[12], Maligranda [8], Kato, Saito and Tamura [7]). In particular Kato, Saito and Tamura
[7] proved the following sharp triangle inequality and its reverse: For all nonzero ele-
ments x1, . . . ,xn in a Banach space X

‖
n

∑
i=1

xi‖ +

(
n−
∥∥∥∥∥

n

∑
i=1

xi

‖xi‖

∥∥∥∥∥
)

min
1�i�n

‖xi‖

�
n

∑
i=1

‖xi‖

� ‖
n

∑
i=1

xi‖+

(
n−
∥∥∥∥∥

n

∑
i=1

xi

‖xi‖

∥∥∥∥∥
)

max
1�i�n

‖xi‖.

These inequalities are very useful. Indeed, they were used in [7] to give a simple proof
of a characterization of uniform non-�n

1 -ness for a Banach space. After that, several au-
thors improved and generalized these inequalities (cf. Mitani, Saito, Kato and Tamura
[9], Dragomir [3], Pečarić and Rajić [11], Hsu, Shaw and Wong [5], etc.).

The aim of this paper is to study sharp mean triangle inequalities in a Banach
space, which generalize the above-mentioned inequalities given in [7]. In Section 2
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we shall give a new two element sharp triangle inequality with parameter, which in
particular provides a simple proof of the two element sharp triangle inequality in [7, 8].
In Section 3 we shall define a notion of a mean operator and using the idea of Section
2, we shall present some sharp mean triangle inequalities. In Section 4 we shall discuss
some applications.

2. Two element case

Let X be a Banach space and x,y ∈ X . We define a function fx,y by

fx,y(t) =
‖x+ ty‖−‖x‖

t
(t > 0).

Then the following lemma is essential in our discussion.

LEMMA 2.1. For every x,y ∈ X , fx,y is a nondecreasing function on (0,∞) and
fx,y(t) � ‖y‖ for all t > 0 .

Proof. Let 0 < s � t . Let g(t) = ‖x+ ty‖−‖x‖ for t � 0. Then as g is convex
and g(0) = 0, we have

g(s) = g

(
s
t
t

)
= g

((
1− s

t

)
0+

s
t
t

)
� s

t
g(t),

whence g(s)
s � g(t)

t , or fx,y(s) � fx,y(t) . Further, we have

fx,y(t) =
‖x+ ty‖−‖x‖

t
� lim

s→ ∞

‖x+ sy‖−‖x‖
s

= ‖y‖

for all t > 0. This completes the proof. �

From Lemma 2.1, we immediately obtain the following inequalities which are
regarded as a new sharp triangle inequality and its reverse inequality.

THEOREM 2.2. Let X be a Banach space and x,y ∈ X .
(i) Let 0 < s � 1 � t . Then

‖x+ y‖+‖y‖− fx,y(t) � ‖x‖+‖y‖� ‖x+ y‖+‖x‖− fy,x(s),

or equivalently,
(ii) Let 0 < α � 1 � β . Then

‖x+ y‖+α‖x‖+‖y‖−‖αx+ y‖ � ‖x‖+‖y‖
� ‖x+ y‖+‖x‖+β‖y‖−‖x+βy‖.
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Proof. (i) Since 1 � t , by Lemma 2.1, we have fx,y(1) � fx,y(t) , that is,

‖x+ y‖−‖x‖� fx,y(t).

Thus we have
‖x+ y‖+‖y‖− fx,y(t) � ‖x‖+‖y‖.

Since s � 1, we have fy,x(s) � fy,x(1) and so we have the second inequality.
(ii) Putting t = 1/α and s = 1/β , we have (ii) from (i). This completes the

proof. �

By putting α = ‖y‖/‖x‖ and β = ‖x‖/‖y‖ in Theorem 2.2 (ii), we obtain the
sharp triangle inequality and its reverse with two elements ([7, 8]).

COROLLARY 2.3. ([7, 8]). Assume that ‖x‖ � ‖y‖ > 0. Then

‖x+ y‖+

(
2−
∥∥∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥∥∥
)
‖y‖� ‖x‖+‖y‖� ‖x+ y‖+

(
2−
∥∥∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥∥∥
)
‖x‖.

3. Mean operator and some mean inequalities

Let X be a Banach space and let S be a set. We denote the Banach space of all
bounded mappings of S into X by �∞(S,X) with supremum norm. In particular, if
X = R , then we denote it by �∞(S) . An element μ ∈ �∞(S)∗ , the dual space of �∞(S) ,
is called a mean on �∞(S) if μ(1) = ‖μ‖ = 1.

We shall state a fundamental fact of a mean on �∞(S) .

PROPOSITION 3.1. (cf. [13, Theorem 1.4.1]). Let μ be a mean on �∞(S) . Then
(i) If f is a positive function in �∞(S) in the sense that f (s) � 0 for any s ∈ S ,

then μ( f ) � 0 .
(ii) For any f ∈ �∞(S) , infs∈S f (s) � μ( f ) � sups∈S f (s) .

Let μ be a mean on �∞(S) . For any F ∈ �∞(S,X) , we define a mapping Mμ(F)
from X∗ into R by

Mμ(F)(x∗) = μ(〈F(·), x∗〉)
for every x∗ ∈ X∗ . Then we have

PROPOSITION 3.2. Let μ be a mean on �∞(S) . Then Mμ is a bounded linear
operator from �∞(S,X) into X∗∗ with the following properties:

(i) ‖Mμ‖ = 1 .
(ii) If x is the constant mapping in the sense that x(s) = x (s∈ S) for some x∈ X ,

then Mμ(x) = x .



746 M. FUJII, M. KATO, K.-S. SAITO AND T. TAMURA

Proof. Take any x∗ ∈ X∗ . Then

|Mμ(F)(x∗)| = |μ(〈F(·), x∗〉)| � ‖μ‖‖(〈F(·), x∗〉)‖
= ‖(〈F(·), x∗〉)‖ � ‖F‖‖x∗‖.

Thus we have ‖Mμ(F)‖ � ‖F‖ , that is, Mμ(F) ∈ X∗∗ and ‖Mμ‖ � 1.
Conversely, for any x ∈ X , we have

(Mμ(x))(x∗) = μ(〈x(·), x∗〉) = μ(〈x, x∗〉1) = 〈x, x∗〉.

Thus we have Mμ(x) = x and so ‖Mμ(x)‖ = ‖x‖ = ‖x‖ . Thus we obtain ‖Mμ‖ = 1.
This completes the proof. �

In this paper, by Proposition 3.2, we shall call Mμ a mean operator on �∞(S,X)
which is a generalization of a mean on �∞(S) .

EXAMPLE 3.3. Let S = {1, . . . ,n} and let X be a Banach space. Then we con-
sider the standard arithmetic mean on �∞(S) , that is,

μ( f ) =
1
n

n

∑
i=1

f (i).

Then it is clear that, for every F ∈ �∞(S,X) ,

Mμ(F) =
1
n

n

∑
i=1

F(i).

EXAMPLE 3.4. Let X be a Banach space and let μ be a mean on �∞(S) . Suppose
that μ is finite in the sense that there exist s1, . . . ,sn ∈ S and non-negative numbers
λ1, . . . ,λn such that ∑n

i=1λi = 1 and μ( f ) = ∑n
i=1λi f (si) for all f ∈ �∞(S) . Since

〈Mμ(F), x∗〉 = μ(〈F(·), x∗〉) =
n

∑
i=1

λi〈F(si), x∗〉 = 〈
n

∑
i=1

λiF(si), x∗〉

for all x∗ ∈ X∗ , we obtain

Mμ(F) =
n

∑
i=1

λiF(si).

Therefore we shall obtain the following mean triangle inequality.

THEOREM 3.5. Let X be a Banach space and μ a mean on �∞(S) . Then for
every F ∈ �∞(S,X) ,

‖Mμ(F)‖ � μ(‖F(·)‖).
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Proof. Let F ∈ �∞(S,X) . Take any ε > 0. Since Mμ(F) ∈ X∗∗ by Proposition
3.2, there exists a norm one element x∗ ∈ X∗ such that

‖Mμ(F)‖ � 〈Mμ(F),x∗〉+ ε.

Since 〈F(s),x∗〉 � |〈F(s),x∗〉| � ‖F(s)‖ for any s ∈ S , by Proposition 3.1, we have

‖Mμ(F)‖ � 〈Mμ(F),x∗〉+ ε = μ(〈F(·),x∗〉)+ ε � μ(‖F(·)‖)+ ε.

Since ε > 0 is arbitrary, this completes the proof. �

For F ∈ �∞(S,X) and α ∈ �∞(S) , we define αF by

(αF)(s) = α(s)F(s)

for all s ∈ S . Further, for α,β ∈ �∞(S) , we consider the usual order α � β of �∞(S)
by

α(s) � β (s) for all s ∈ S.

Then we have the following monotone property.

PROPOSITION 3.6. Let X be a Banach space and μ a mean on �∞(S) . For any
F,G ∈ �∞(S,X) , put

U(F,G,α) = μ(‖(αF)(·)‖)−‖Mμ(αF +G)‖.

If α,β ∈ �∞(S) such that 0 � α � β , then U(F,G,α) � U(F,G,β ) .

Proof. Let α,β ∈ �∞(S) with 0 � α � β and let F,G ∈ �∞(S,X) . By Theorem
3.5, we have

‖Mμ(βF +G)‖−‖Mμ(αF +G)‖ � ‖Mμ((β −α)F)‖
� μ(‖((β −α)F)(·)‖)
= μ((β (·)−α(·))‖F(·)‖)
= μ(β (·)‖F(·)‖−α(·)‖F(·)‖)
= μ(β (·)‖F(·)‖)− μ(α(·)‖F(·)‖)
= μ(‖β (·)F(·)‖)− μ(‖α(·)F(·)‖).

Then we have

μ(‖(αF)(·)‖)−‖Mμ(αF +G)‖ � μ(‖β (·)F(·)‖)−‖Mμ(βF +G)‖.

That is, U(F,G,α) � U(F,G,β ) . This completes the proof. �

By Proposition 3.6, we obtain the following sharp mean triangle inequality.
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THEOREM 3.7. Let μ be a mean on �∞(S) . If α,β ∈ �∞(S) satisfying 0 � α �
1 � β , then

‖Mμ(F +G)‖ + μ(‖(αF)(·)‖)+ μ(‖G(·)‖)−‖Mμ(αF +G)‖
� μ(‖F(·)‖)+ μ(‖G(·)‖)
� ‖Mμ(F +G)‖+ μ(‖F(·)‖)+ μ(‖(βG)(·)‖)−‖Mμ(F +βG)‖.

for all F,G ∈ �∞(S,X) .

Proof. Since 0 � α � 1 , by Proposition 3.6, we have

U(F,G,α) � U(F,G,1).

That is,

μ(‖(αF)(·)‖)−‖Mμ(αF +G)‖ � μ(‖F(·)‖)−‖Mμ(F +G)‖.

Thus, we have

‖Mμ(F+G)‖+μ(‖(αF)(·)‖)+μ(‖G(·)‖)−‖Mμ(αF +G)‖� μ(‖F(·)‖)+μ(‖G(·)‖).

Since 1 � β , by Proposition 3.6, we have

U(G,F,1) � U(G,F,β ).

Thus, we similarly have the second inequality. This completes the proof. �

By Theorem 3.7, we obtain a sharp mean inequality.

COROLLARY 3.8. Let μ be a mean on �∞(S) . If F ∈ �∞(S,X) such that
infs∈S ‖F(s)‖ > 0 , then

‖Mμ(F)‖ +

(
1−
∥∥∥∥∥Mμ

(
F

‖F(·)‖

)∥∥∥∥∥
)

inf
s∈S

‖F(s)‖

� μ(‖F(·)‖)

� ‖Mμ(F)‖+

(
1−
∥∥∥∥∥Mμ

(
F

‖F(·)‖

)∥∥∥∥∥
)

sup
s∈S

‖F(s)‖.

Proof. In the first inequality of Theorem 3.7, we put G = 0 and α(s) = inft∈S ‖F(t)‖
‖F(s)‖

for all s∈ S. Then we have the first inequality of this corollary. Similarly, putting F = 0
and β (s) = supt∈S ‖G(t)‖

‖G(s)‖ for all s ∈ S in the second inequality of Theorem 3.7, we have
the second one and this corollary. �
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4. Applications

Let S = {1, . . . ,n} and let X be a Banach space. As in Example 3.3, we define a
finite mean μ on �∞(S) by

μ( f ) =
1
n

n

∑
i=1

f (i)

for all f ∈ �∞(S) and obtain

Mμ(F) =
1
n

n

∑
i=1

F(i)

for all F ∈ �∞(S,X) . For α = (α1, . . . ,αn)∈ �∞(S) and F ∈ �∞(S,X) (resp. F ∈ �∞(S)),
we define the notation α ·F by α ·F = ∑n

i=1αiF(i) , and ‖F‖1 = ∑n
i=1 ‖F(i)‖ . By

Theorem 3.7, we have the following theorem.

THEOREM 4.1. Let X be a Banach space and let α = (α1, . . .,αn), β = (β1, . . .,βn)
∈ �∞(S) with 0 � α � 1 � β . Then

‖1 · (F +G)‖ + α · (‖F(1)‖, . . . ,‖F(n)‖)+‖G‖1−‖α ·F +1 ·G‖
� ‖F‖1 +‖G‖1

� ‖1 · (F +G)‖+‖F‖1 +β · (‖G(1)‖, . . . ,‖G(n)‖)−‖1 ·F +β ·G‖

for all F,G ∈ �∞(S,X) .
Equivalently, if we put F = (x1, · · · ,xn), G = (y1, · · · ,yn) ∈ �∞(S,X) , then

‖
n

∑
i=1

(xi + yi)‖ +
n

∑
i=1

αi‖xi‖+
n

∑
i=1

‖yi‖−‖
n

∑
i=1

(αixi + yi)‖

�
n

∑
i=1

‖xi‖+
n

∑
i=1

‖yi‖

� ‖
n

∑
i=1

(xi + yi)‖+
n

∑
i=1

‖xi‖+
n

∑
i=1

β‖yi‖−‖
n

∑
i=1

(xi +βiyi)‖.

Proof. For any F,G ∈ �∞(S,X) and α ∈ �∞(S) ,

‖Mμ(F +G)‖ = ‖1
n

n

∑
i=1

(F(i)+G(i))‖ =
1
n
‖1 · (F +G)‖,

μ(‖αF(·)‖)+ μ(‖G(·)‖) =
1
n
(

n

∑
i=1

(αi‖F(i)‖+‖G(i)‖))

=
1
n
(α · (‖F(1)‖, . . . ,‖F(n)‖)+‖G‖1)

and so on. By Theorem 3.7, we clearly have this theorem. �

By Theorem 4.1, we have the following corollary.
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COROLLARY 4.2. ([7]). Let X be a Banach space and let x1, . . . ,xn be nonzero
elements in X . Then

‖
n

∑
i=1

xi‖ +

(
n−
∥∥∥∥∥

n

∑
i=1

xi

‖xi‖

∥∥∥∥∥
)

min
1�i�n

‖xi‖

�
n

∑
i=1

‖xi‖

� ‖
n

∑
i=1

xi‖+

(
n−
∥∥∥∥∥

n

∑
i=1

xi

‖xi‖

∥∥∥∥∥
)

max
1�i�n

‖xi‖.

Proof. Take x1, . . . ,xn in X . In Theorem 4.1, we put F = (x1, . . . ,xn) , G = 0 and
αi = (min1� j�n‖x j‖)/‖xi‖ for every 1 � i � n . Then we have the first inequality. For
the second inequality we put F = 0, G = (y1, · · · ,yn) and βi = (max1�i�n‖yi‖)/‖yi‖ ,
1 � i � n . �

An element μ ∈ �∞(N)∗ is called a Banach limit if liminfn→∞ un � μ({un}∞n=1) �
limsupn→∞ un and μ({un}∞n=1) = μ({un+k}∞n=1) for all k � 1. If μ is a Banach limit,
then μ is a mean on �∞(N) . Then we have

THEOREM 4.3. Let X be a Banach space and let μ ∈ �∞(N)∗ be a Banach limit.
If α = {αn}∞n=1,β = {βn}∞n=1 ∈ �∞(N) with 0 � α and 0 < limsupn→∞αn � 1 �
liminfn→∞βn , then

‖Mμ(x+ y)‖ + μ({‖αnxn‖}∞n=1)+ μ({‖yn‖}∞n=1)−‖Mμ(αx+ y)‖
� μ({‖xn‖}∞n=1)+ μ({‖yn‖}∞n=1)
� ‖Mμ(x+ y)‖+ μ({‖xn‖}∞n=1)+ μ({‖βnyn‖}∞n=1)−‖Mμ(x+βy)‖

for all x = {xn}∞n=1,y = {yn}∞n=1 ∈ �∞(N,X) .

Proof. For any ε with 0 < ε < limsupn→∞αn there exists k such that 0 � max{αn

− ε, 0} < 1 < βn + ε for all n � k . Since μ is translation-invariant and so Mμ(z) =
Mμ(z′) for any z = {zn}∞n=1 ∈ �∞(N,X) , where z′ = {zk+n}∞n=1 , we may assume that
γ(ε)n := max{αn − ε,0} < 1 < βn + ε for all n � 1. Applying Theorem 3.7 to x =
{xn}∞n=1 and y = {yn}∞n=1 , we have

‖Mμ(x+ y)‖+ μ({‖γ(ε)nxn‖}∞n=1)+ μ({‖yn‖}∞n=1)−‖Mμ(γ(ε)x+ y)‖
� μ({‖xn‖}∞n=1)+ μ({‖yn‖}∞n=1)
� ‖Mμ(x+ y)‖+ μ({‖xn‖}∞n=1)+ μ({‖(βn + ε)yn‖})−‖Mμ(x+(β + ε)y)‖.

Letting ε → 0, we have

‖Mμ(x+ y)‖ + μ({‖αnxn‖}∞n=1)+ μ({‖yn‖}∞n=1)−‖Mμ(αx+ y)‖
� μ({‖xn‖}∞n=1)+ μ({‖yn‖}∞n=1),
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because by Proposition 3.1

|μ({‖γ(ε)nxn‖}∞n=1)− μ({‖αnxn‖}∞n=1)| = |μ({‖γ(ε)nxn‖−‖αnxn‖}∞n=1)|
� μ({‖(γ(ε)n−αn)xn‖}∞n=1)
� ‖γ(ε)−α‖∞μ({‖xn‖}∞n=1)
� εμ({‖xn‖}∞n=1)

for instance. Similarly we have the second inequality. This completes the proof. �

In Theorem 4.3, put

y = 0 and α =

{
liminfn→∞ ‖xn‖

‖xn‖

}∞

n=1

and

x = 0 and β =

{
limsupn→∞ ‖xn‖

‖xn‖

}∞

n=1

in the first and second inequalities, respectively. Then we obtain the following

THEOREM 4.4. Let X be a Banach space, μ ∈ �∞(N)∗ a Banach limit and {xn}∞n=1
∈ �∞(N,X) such that liminfn→∞ ‖xn‖ > 0 . Then

‖Mμ({xn}∞n=1)‖+

(
1−
∥∥∥∥∥Mμ

({
xn

‖xn‖

}∞

n=1

)∥∥∥∥∥
)

liminf
n→∞

‖xi‖

� μ({‖xn‖}∞n=1)

� ‖Mμ({xn}∞n=1)‖+

(
1−
∥∥∥∥∥Mμ

({
xn

‖xn‖

}∞

n=1

)∥∥∥∥∥
)

limsup
n→∞

‖xn‖.
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