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Abstract. The following theorem is proved.

THEOREM. Let P(x) = ∑2n
k=0 akxk be a polynomial with positive coefficients. If the in-

equalities
a2
2k+1

a2ka2k+2
< 1

cos2( π
n+2 ) hold for all k = 0,1, . . . ,n−1, then P(x) > 0 for every x ∈ R .

We show that the constant 1
cos2( π

n+2 ) in this theorem cannot be increased. We also present

some corollaries of this theorem.

1. Introduction and statement of results

Positive polynomials arise in many important branches of mathematics. In this
note we give a simple sufficient condition for an even degree polynomial with positive
coefficients to be positive on the real line. Before we formulate the main theorem we
will mention two results which have in some sense similar character.

In 1926, Hutchinson [4, p. 327] extended the work of Petrovitch [8] and Hardy [2]
or [3, pp. 95–100] and proved the following theorem.

THEOREM O. Let P(x) =∑n
k=0 akxk be a polynomial with positive coefficients. If

the inequalities
a2

k

ak−1ak+1
� 4, k = 1,2, . . . ,n−1, (1)

hold, then all zeros of P(x) are real.

In [7] it was proved that the constant 4 in Theorem A is sharp.
In [6] the authors of this note have found the smallest possible constant dn > 0

such that if coefficients of P(x) = ∑n
k=0 akxk are positive and satisfy the inequalities

a2
k

ak−1ak+1
> dn, k = 1,2, . . . ,n− 1, then P(x) is Hurwitz stable. We recall that a real

polynomial is called Hurwitz (stable) if all its zeros have negative real parts.
The following theorem is the main result of this work.
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THEOREM 1. Let P(x) = ∑2n
k=0 akxk be a polynomial with positive coefficients. If

the inequalities
a2

2k+1

a2ka2k+2
<

1
cos2( π

n+2 )

hold for all k = 0,1, . . . ,n−1, then P(x) > 0 for every x ∈ R .

The following theorem shows that the constant 1
cos2( π

n+2 ) in Theorem 1 is sharp for

every n ∈ N .

THEOREM 2. For every n ∈ N there exists a polynomial Q(x) = ∑2n
k=0 akxk with

positive coefficients which satisfy conditions

a2
2k+1

a2ka2k+2
=

1
cos2( π

n+2)
, k = 0,1, . . . ,n−1,

and such that Q(x) has at least two real zeros.

The following statement is a simple corollary of Theorem 1.

COROLLARY 1. Let P(x) =∑2n+1
k=0 akxk be a polynomial with positive coefficients.

If the inequalities
a2

2k

a2k−1a2k+1
<

4k2 −1
4k2 · 1

cos2( π
n+2)

hold for all k = 1,2, . . . ,n, then P(x) has only one real zero (counting multiplicities).

We show that the constants in the last statement are also sharp for every n ∈ N .

THEOREM 3. For every n ∈ N there exists a polynomial Q(x) = ∑2n+1
k=0 akxk with

positive coefficients which satisfy conditions

a2
2k

a2k−1a2k+1
=

4k2 −1
4k2 · 1

cos2( π
n+2)

, k = 1,2, . . . ,n,

and such that Q(x) has at least three real zeros.

2. Proof of Theorem 1

Let P(x) = ∑2n
k=0 akxk be a polynomial with positive coefficients. Let us consider

a quadratic form

QP(x0,x1,x2, . . . ,xn) = a0x
2
0 +a1x0x1 +a2x

2
1 +a3x1x2 +a4x

2
2 + . . . (2)

+a2n−2x
2
n−1 +a2n−1xn−1xn +a2nx

2
n

=
n

∑
k=0

a2kx
2
k +

n−1

∑
k=0

a2k+1xkxk+1.

For every x ∈ R we have
P(x) = QP(1,x,x2 . . . ,xn). (3)
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Thus, if the quadratic form QP is positive-definite, then for every x∈R we have P(x) >
0. It remains to prove that under assumptions of Theorem 1 the quadratic form QP is
positive-definite. The following (n+ 1)× (n+ 1) matrix corresponds to the quadratic
form QP

MQp :=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

a0
a1
2 0 0 . . . 0 0

a1
2 a2

a3
2 0 . . . 0 0

0 a3
2 a4

a5
2 0 . . . 0

...
...

...
... . . .

...
...

0 0 . . . 0 a2n−3
2 a2n−2

a2n−1
2

0 0 0 . . . 0 a2n−1
2 a2n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. (4)

By Sylvester’s Criterion for positive definiteness (see, for example, [1, chapter 10,
§4]) we need to show that all leading principal minors of the matrix MQp are positive.
To do this, we will use the following theorem from [5].

THEOREM A. Let M = (ai j) be an m×m matrix with the properties
(a) ai j > 0 (1 � i, j � m) and
(b) ai jai+1, j+1 > 4cos2 π

m+1 ai, j+1ai+1, j (1 � i, j � m−1).

Then all minors of M are positive.

In [5] it is also shown that the constant cm := 4cos2 π
m+1 in the statement of The-

orem A is the smallest possible not only in the class of m×m matrices with positive
entries but also for the class of m×m Toeplitz matrices and for the class of m×m
Hankel matrices.

Consider the following (n+1)× (n+1) symmetrical Toeplitz matrix

T (ε1, . . . ,εn−1) :=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

a0
a1
2 ε1 ε2 . . . εn−2 εn−1

a1
2 a2

a3
2 ε1 . . . εn−3 εn−2

ε1 a3
2 a4

a5
2 . . . εn−4 εn−3

...
...

...
... . . .

...
...

εn−2 εn−3 . . . ε1
a2n−3

2 a2n−2
a2n−1

2

εn−1 εn−2 εn−3 . . . ε1
a2n−1

2 a2n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (5)

where ε1 > ε2 > · · ·> εn−1 > 0 will be chosen in such a way that the matrix T (ε1, . . .,εn−1)
will satisfy the assumptions of Theorem A. At first we will choose ε1 such that

a2 j−1a2 j+1

4
> 4cos2

π
n+2

a2 jε1, j = 1,2, . . . ,n−1.

After that we will choose ε2 such that

ε2
1 > 4cos2 π

n+2
a2 j+1ε2, j = 1,2, . . . ,n−2.
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Then we will choose ε3 > ε4 > · · · > εn−1 > 0 one after another such that

ε2
j > 4cos2

π
n+2

ε j−1ε j+1, j = 2,3, . . . ,n−2.

For our choice of ε1 > ε2 > · · ·> εn−1 > 0 and under the assumptions on a0,a1, . . . ,a2n ,
the matrix T (ε1, . . . ,εn−1) satisfies the assumptions of Theorem A. So by Theorem A
all minors of T (ε1, . . . ,εn−1) are positive. Letting εn−1 → 0, εn−2 → 0, . . . , ε1 → 0,
we obtain that all minors of MQp are nonnegative. It remains to prove that all leading
principal minors of the matrix MQp

Δ1(MQp) = a0, Δ2(MQp) = det

(
a0

a1
2a1

2 a2

)
, . . . , Δn+1(MQp) = detMQp

are positive.
Suppose there is a leading principal minor of MQp which is equal to zero. De-

note by j the smallest order of a leading principal minor which is equal to zero. Since
Δ1(MQp) = a0 > 0, we have j � 2 and Δ j−1(MQp) > 0,Δ j(MQp) = 0. Let us consider
a polynomial Pε(x) = P(x)− εx2 j−2 where ε > 0 is so small that Pε(x) satisfies the
assumptions of Theorem 1. As we have proved it implies that all minors of a corre-
sponding matrix MQpε are nonnegative, in particular

Δ j(MQpε ) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
2 0 0 . . . 0 0

a1
2 a2

a3
2 0 . . . 0 0

0 a3
2 a4

a5
2 0 . . . 0

...
...

...
... . . .

...
...

0 0 . . . 0
a2 j−5

2 a2 j−4
a2 j−3

2

0 0 0 . . . 0
a2 j−3

2 a2 j−2− ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

Since Δ j−1(MQp) > 0 we conclude that the determinant Δ j(MQpε ) is strictly decreasing
in ε > 0 and so Δ j(MQp) (which is equal to Δ j(MQpε ) for ε = 0) is strictly positive.
Thus there are no zero leading principal minors of MQp , all leading principal minors
of MQp are positive. By Sylvester’s Criterion it means that the quadratic form QP is
positive-definite, and in particular from (3) we obtain that P(x) > 0 for every x ∈ R .

Theorem 1 is proved. �

3. Proof of Theorems 2 and 3

Proof of Theorem 2. Let us fix an arbitrary n ∈ N and denote by α := π
n+2 . Con-

sider the following polynomial

Q(x) :=
n

∑
k=1

sinkα sin(k+1)α (1+ x)2x2k−2.
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Obviously Q(x) is a polynomial with positive coefficients of degree 2n and −1 is a
root of Q of multiplicity not less than 2. We have

Q(x) =
n

∑
k=1

sinkα sin(k+1)α (x2k−2 + x2k)+2
n

∑
k=1

sinkα sin(k+1)α x2k−1 (6)

=
n−1

∑
k=0

sin(k+1)α sin(k+2)α x2k +
n

∑
k=1

sinkα sin(k+1)α x2k

+2
n

∑
k=1

sinkα sin(k+1)α x2k−1

= sinα sin2α +
n−1

∑
k=1

sin(k+1)α(sin(k+2)α+ sinkα)x2k

+sin(n+1)α(sinnα+ sin(n+2)α)x2n +2
n

∑
k=1

sinkα sin(k+1)α x2k−1

= 2sin2α cosα +2
n−1

∑
k=1

sin2(k+1)α cosα x2k +2sin2(n+1)α cosα x2n

+2
n

∑
k=1

sinkα sin(k+1)α x2k−1

= 2
n

∑
k=0

sin2(k+1)α cosα x2k +2
n

∑
k=1

sinkα sin(k+1)α x2k−1

(we use the fact that sin(n + 2)α = 0). So if we define by a j, j = 0,1, . . . ,2n, the
coefficients of Q then

a2k = 2sin2(k+1)α cosα, a2k−1 = 2sinkα sin(k+1)α.

We have

a2
2k+1

a2ka2k+2
=

4sin2(k+1)α sin2(k+2)α
2sin2(k+1)α cosα ·2sin2(k+2)α cosα

=
1

cos2α

for k = 0,1, . . . ,n−1.

Theorem 2 is proved. �

Proof of Theorem 3. Let us fix an arbitrary n ∈ N and denote by α := π
n+2 . Let

us consider the following primitive of the polynomial Q(x) constructed in the proof of
Theorem 2:

H(x) =
n

∑
k=1

sinkα sin(k+1)α
(

x2k−1

2k−1
+2

x2k

2k
+

x2k+1

2k+1

)
.
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We have

H(−1) =
n

∑
k=1

sinkα sin(k+1)α
(
− 1

2k−1
+

1
k
− 1

2k+1

)

=
n

∑
k=1

sinkα sin(k+1)α
( −1

k(2k−1)(2k+1)

)
< 0.

So the following polynomial

S(x) = H(x)−H(−1)

is a polynomial with positive coefficients of degree 2n+ 1 and −1 is a root of S of
multiplicity not less than 3. Using (6) we can rewrite S(x) in the form

S(x) = −H(−1)+2
n

∑
k=0

sin2(k+1)α cosα
x2k+1

2k+1
+2

n

∑
k=1

sinkα sin(k+1)α
x2k

2k
.

So if we define by b j, j = 0,1, . . . ,2n+ 1, the coefficients of Q then b0 = −H(−1)
and

b2k+1 =
2sin2(k+1)α cosα

2k+1
, k = 0,1, . . . ,n;

b2k =
2sinkα sin(k+1)α

2k
, k = 1,2 . . . ,n.

We have

b2
2k

b2k−1b2k+1
=

4sin2 kα sin2(k+1)α
4k2 · 2k−1

2sin2 kα cosα
· 2k+1

2sin2(k+1)α cosα

=
4k2−1

4k2 · 1
cos2α

, k = 1,2 . . . ,n.

Theorem 3 is proved. �
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