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APPROXIMATIONS TO EULER’S CONSTANT

KH. HESSAMI PILEHROOD AND T. HESSAMI PILEHROOD

Abstract. We study a problem of finding good approximations to Euler’s constant γ = limn→∞ Sn,
where Sn =∑n

k=1
1
k − log(n+1), by linear forms in logarithms and harmonic numbers. In 1995,

C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if
Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, consid-
ering more general linear transformations of the sequence Sn we establish new accelerating
convergence formulae for γ . Our estimates sharpen and generalize recent Elsner’s, Rivoal’s and
author’s results.
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