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APPROXIMATIONS TO EULER’S CONSTANT

KH. HESSAMI PILEHROOD AND T. HESSAMI PILEHROOD

(Communicated by J. Pečarić)

Abstract. We study a problem of finding good approximations to Euler’s constant γ = limn→∞ Sn,
where Sn =∑n

k=1
1
k − log(n+1), by linear forms in logarithms and harmonic numbers. In 1995,

C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if
Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, consid-
ering more general linear transformations of the sequence Sn we establish new accelerating
convergence formulae for γ . Our estimates sharpen and generalize recent Elsner’s, Rivoal’s and
author’s results.

1. Introduction

Let α � 0 be a real number and

γα =
∞

∑
k=1

(
1

k+α
− log

(
k+α+1

k+α

))
.

We denote the partial sum of the above series by

Sn(α) =
n

∑
k=1

(
1

k+α
− log

(
k+α+1

k+α

))

=
n

∑
k=1

1
k+α

− log(α +n+1)+ log(α +1)
(1)

and Sn := Sn(0). It follows easily (see [12, formula (2)]) that

lim
n→∞

Sn(α) = −Γ′(α +1)
Γ(α+1)

+ log(α +1) = −ψ(α+1)+ log(α +1),

where ψ(α) is the logarithmic derivative of the gamma function (or the digamma func-
tion) and therefore,

γα = log(α +1)−ψ(α+1).
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In particular, γ0 = −ψ(1) = γ = 0.577215 . . . is Euler’s constant. It is well-known that
the sequence Sn converges slowly to the Euler constant γ (see, for details, [7])

γ = Sn +O(n−1).

In 1995, Elsner [1] found out that γ can be approximated by linear combinations of
partial sums (1) with integer coefficients∣∣∣∣∣γ−

n

∑
k=0

(−1)n+k
(

n
k

)(
k+n+ τ−1

k+ τ−1

)
Sk+τ−1

∣∣∣∣∣� 1

2nτ
(n+τ

n

) , τ,n ∈ N (2)

and this inequality exhibits geometric convergence if τ = O(n). Formula (2) for τ > n
was generalized by Rivoal in [10], where, in particular, it was shown that∣∣∣∣∣γ− 1

2n

n

∑
k=0

(−1)k+n
(

n
k

)(
2k+2n

n

)
S2k+n

∣∣∣∣∣= O

(
1

n27n/2

)
, as n → ∞.

Another such kind formula∣∣∣∣∣γ−
n

∑
k=0

(−1)k+n
(

n
k

)(
n+ k

k

)
Sk+n

∣∣∣∣∣= 1

4n+o(n) , as n → ∞

was proved in [4]. Recently, C. Elsner [2] presented a two-parametric series transfor-
mation of the sequence Sn

n

∑
k=0

(−1)n+k
(

n
k

)(
n+ τ1 + k

n

)
Sk+τ2−1 (3)

converging more rapidly to γ, when τ2 > τ1 + 1 and n increases, than in the case
τ2 = τ1 +1 considered in (2).

In this paper, we consider a more general series transformation of the type

n1! . . .nm!
N!rN

N

∑
k=0

(−1)N+k
(

N
k

)(
rk+n1 + τ1

n1

)
· · ·
(

rk+nm + τm
nm

)
Srk+τ0 (4)

with m,r,n1, . . . ,nm ∈ N, τ0,τ1, . . . ,τm ∈ N0 = N∪ {0}, and N = ∑m
j=1 n j, and we

give new accelerating convergence formulae for Euler’s constant γ. In particular, we
show (see Theorem 2 and Corollary 1 below) that if τ1,τ2 are linear functions of n,
then the sum (3) converges to γ at the least geometric rate and represents the best
approximation in the set of all the sums (3) with a fixed value of lim

n→∞
τ2/n, provided

that lim
n→∞

2(τ2− τ1)/n = 1.

2. Statement of the main results

As usual, we denote the Gauss hypergeometric function (see, for details, [9]) by

2F1

(
a,b
c

∣∣∣∣z
)

=
∞

∑
ν=0

(a)ν (b)ν
ν !(c)ν

zν ,
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where (λ )ν is the Pochhammer symbol (or the shifted factorial) defined by

(λ )ν =
Γ(λ +ν)
Γ(λ )

=

{
1, if ν = 0;

λ (λ +1) . . .(λ +ν−1), if ν ∈ N.

We then prove the following theorems:

THEOREM 1. Let m,r, n1, . . . ,nm ∈ N, τ0,τ1, . . . ,τm ∈ N0, 0 � τ0 − τm � nm,
nm + τm � n j + τ j, j = 1, . . . ,m−1, and N = ∑m

j=1 n j. Then

N!(−r)N

n1! . . .nm!
γ−

N

∑
k=0

(−1)k
(

N
k

)(
rk+n1 + τ1

n1

)
· · ·
(

rk+nm + τm
nm

)
Srk+τ0

= ±
m

∏
j=1

(
nm + τm − τ j

n j

) 1∫
0

1∫
0

xnm+τm(1− xr)Ntnm+τm−τ0(1− t)τ0−τmω(t)
(1− t + xt)nm+1

×Qm

(
xt

1− t + xt

)
dxdt,

(5)

where

ω(t) =
1

t(log2(1/t−1)+π2)
(6)

and Qm(y) is a polynomial of degree N−nm given by the formula

Qm(y) =
n1

∑
k1=0

. . .
nm−1

∑
km−1=0

m−1

∏
j=1

(−n j)k j (1+nm + τm − τ j+1)k1+...+k j

k j !(1+nm + τm−n j − τ j)k1+...+k j

yk j (7)

if m � 2, and Q1(y) ≡ 1.

THEOREM 2. Let b,c,r ∈ N, a ∈ N0, 0 � b−a � c. Then for n ∈ N we have∣∣∣∣∣γ− 1
rcn

cn

∑
k=0

(−1)k+cn
(

cn
k

)(
rk+(a+c)n

cn

)
Srk+bn

∣∣∣∣∣<
(

b
b
r (c+a−b)c+a−b(b−a)b−a

(b+cr)c+ b
r

)n

(8)
(Here and throughout the paper 00 is treated as 1.)

If b,c,r are fixed, then the minimum of the right-hand side of (8) is attained at
a = b− c/2 and in this case we have

COROLLARY 1. Let b,c,r,n ∈ N and b � c. Then∣∣∣∣∣γ− 1
r2cn

2cn

∑
k=0

(−1)k
(

2cn
k

)(
rk+(b+ c)n

2cn

)
Srk+bn

∣∣∣∣∣<
(

b
b
r c2c

(b+2cr)2c+ b
r

)n

.
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THEOREM 3. Let b,c,r ∈ N, a ∈ N0 and 0 � b− a � c. Then for any positive
integer n � 2/c one has∣∣∣∣∣γ− ((cn)!)2

(2cn)!r2cn

2cn

∑
k=0

(−1)k
(

2cn
k

)(
rk+(a+ c)n

cn

)2

Srk+bn

∣∣∣∣∣
< cn

(
b

b
r cc(c+a−b)c+a−b(b−a)b−a

(b+2cr)2c+ b
r

)n

.

By the similar argument as above putting a = b−c/2 we get a sharper bound than
in Corollary 1.

COROLLARY 2. Let b,c,r,n ∈ N, 2b � c, and c is even. Then∣∣∣∣∣γ− ((cn)!)2

(2cn)!r2cn

2cn

∑
k=0

(−1)k
(

2cn
k

)(
rk+

(
b+ c

2

)
n

cn

)2

Srk+bn

∣∣∣∣∣< cn

(
b

b
r c2c

2c(b+2cr)2c+ b
r

)n

.

For example, setting b = c = 4,r = 1 we get the following estimate:

COROLLARY 3. For any positive integer n one has∣∣∣∣∣γ− (4n)!2

(8n)!

8n

∑
k=0

(−1)k
(

8n
k

)(
k+6n

4n

)2

Sk+4n

∣∣∣∣∣< 4n
(24 ·312)n < 4n(0.00000012)n.

THEOREM 4. Let m,r,n1, . . . ,nm ∈ N, τ0,τ1, . . . ,τm ∈ N0, 0 � τ0 − τm � nm,
nm + τm > τ j+1 > n j + τ j, j = 1, . . . ,m−1, and N = ∑m

j=1 n j, Then∣∣∣∣∣ N!(−r)N

n1! . . .nm!
γ−

N

∑
k=0

(−1)k
(

N
k

)(
rk+n1 + τ1

n1

)
· · ·
(

rk+nm + τm
nm

)
Srk+τ0

∣∣∣∣∣
�

m

∏
j=1

(
nm + τm− τ j

n j

) 1∫
0

1∫
0

xnm+τm(1− xr)Ntnm+τm−τ0(1− t)τ0−τmω(t)
(1− t + xt)nm+1 dxdt.

Setting τ j+1 = n j + τ j +1, j = 1, . . . ,m−1, in Theorem 4 we get

COROLLARY 4. Let m,r,n1, . . . ,nm ∈N, τ0,τ1 ∈N0, N =∑m
j=1 n j, and N−nm+

τ1 +(m−1) � τ0 � N + τ1 +(m−1). Then∣∣∣∣∣γ− n1! . . .nm!
N!(−r)N

N

∑
k=0

(−1)k
(

N
k

) m

∏
j=1

(
rk+n1 + . . .+n j + τ1 + j−1

n j

)
Srk+τ0

∣∣∣∣∣
�

m−1

∏
j=1

N + j
n j+1 + . . .+nm +m− j

×
1∫

0

1∫
0

xN+τ1+m−1(1− xr)NtN+τ1+m−1−τ0(1− t)τ0+nm−N−τ1−m+1ω(t)
rN(1− t + xt)nm+1 dxdt
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THEOREM 5. Let m,c1, . . . ,cm,r,b,n ∈ N, a ∈ N0, C = ∑m
j=1 c j, and a− cm �

b−C � a. Then∣∣∣∣∣γ− (c1n)! . . .(cmn)!
(Cn)!(−r)Cn

Cn

∑
k=0

(−1)k
(

Cn
k

) m

∏
j=1

(
rk+(a+ c1 + . . .+ c j)n+ j

c jn

)
Srk+bn+m

∣∣∣∣∣
< M(c)

(
b

b
r CC(C+a−b)C+a−b(cm +b−a−C)cm+b−a−C

ccm
m (b+Cr)C+ b

r

)n

,

where M(c) < Cm−1 is some constant depending only on c1, . . . ,cm.

Consider several illustrative examples of Theorem 5. Taking c1 = . . . = cm = 2c,
C = 2mc, b = 2mc, a = c, c ∈ N, we get

COROLLARY 5. Let c,m,r ∈ N. Then for any positive integer n one has∣∣∣∣∣γ− ((2cn)!)m

(2mcn)!r2mcn

2mcn

∑
k=0

(−1)k
(

2mcn
k

) m

∏
j=1

(
rk+(2 j +1)cn+ j

2cn

)
Srk+2mcn+m

∣∣∣∣∣
<

mm−1

(m−1)!

(
1

4c(r+1)2mc+ 2mc
r

)n

Setting c1 = . . . = cm = 2c, C = 2mc, b = (2m−1)c, a = 0, c ∈ N, we get

COROLLARY 6. Let c,m,r ∈ N. Then for any positive integer n one has∣∣∣∣∣γ− ((2cn)!)m

(2mcn)!r2mcn

2mcn

∑
k=0

(−1)k
(

2mcn
k

) m

∏
j=1

(
rk+2 jcn+ j

2cn

)
Srk+(2m−1)cn+m

∣∣∣∣∣
<

mm−1

(m−1)!

⎛
⎝ 4−c

(
1− 1

2m

) (2m−1)c
r

(
r+1− 1

2m

)2mc+ (2m−1)c
r

⎞
⎠

n

.

3. Analytical construction

We define the generalized Legendre polynomial by A(x) = ∑N
k=0 Akxrk with

Ak = (−1)k+N
(

N
k

)(
rk+n1 + τ1

n1

)
· · ·
(

rk+nm + τm
nm

)
.

LEMMA 1. There holds

A(1) =
N

∑
k=0

Ak =
N!rN

n1! . . .nm!
.
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Proof. For the proof, let

R(t) =
N!

n1! . . .nm!
(rt−n1− τ1)n1(rt−n2− τ2)n2 . . . (rt−nm− τm)nm

t(t +1) . . .(t +N)
.

Such rational functions were considered early by the authors [5], [6] to derive explicit
Padé approximations of the first and second kinds for polylogarithmic functions. As it
is easily seen the rational function R(t) has the following partial-fraction expansion:

R(t) =
N

∑
k=0

Ak

t + k
,

from which it follows that

N

∑
k=0

Ak =
N

∑
k=0

res
t=−k

R(t) = −res
t=∞

R(t) =
N!rN

n1! . . .nm!
. �

Put

I(α) :=
∫ 1

0
xτ0+αA(x)

(
1

1− x
+

1
logx

)
dx

LEMMA 2. There holds the equality

I(α) =
N!rN

n1! . . .nm!
γα −

N

∑
k=0

AkSrk+τ0(α).

Proof. Substituting

1
1− x

+
1

logx
=
∫ 1

0

1− xt

1− x
dt,

we get

I(α) =
∫ 1

0

∫ 1

0
xτ0+αA(x)

1− xt

1− x
dtdx =

N

∑
k=0

Ak

∫ 1

0

∫ 1

0

xrk+τ0+α(1− xt)
1− x

dxdt.

Expanding (1− x)−1 in a geometric series and applying Lemma 1 we find

I(α) =
N

∑
k=0

Ak

∞

∑
l=0

∫ 1

0

∫ 1

0
xrk+τ0+l+α(1− xt)dxdt

=
N

∑
k=0

Ak

∞

∑
l=0

∫ 1

0

(
1

rk+ τ0 + l +α+1
− 1

rk+ τ0 + t + l +α+1

)
dt

=
N

∑
k=0

Ak

∞

∑
l=1

(
1

rk+ τ0 + l +α
− log

(
rk+ τ0 + l +α+1

rk+ τ0 + l +α

))

=
N

∑
k=0

Ak(γα −Srk+τ0(α)) =
N!rN

n1! . . .nm!
γα −

N

∑
k=0

AkSrk+τ0(α). �



APPROXIMATIONS TO EULER’S CONSTANT 767

Next, we consider two differential operators

Sτ,n( f (x)) =
(−1)n

n!
x−τ
(
xn+τ f (x)

)(n)
,

Tτ,n( f (x)) =
1
n!

xn+τ (x−τ f (x)
)(n)

,

where τ is a real number and n is a non-negative integer. We show that Sτ,n and Tτ,n
are adjoint operators in some sense.

LEMMA 3. Suppose that f (x) is a polynomial vanishing at x = 1 with order at
least n and g(x) ∈C∞(0,1)∩L1(0,1) satisfies the following boundary conditions:

lim
x→0+

xlg(l−1)(x) = lim
x→1−

(1− x)lg(l−1)(x) = 0

for all 1 � l � n. Then we have∫ 1

0
Sτ,n( f (x)) ·g(x)dx =

∫ 1

0
f (x) ·Tτ,n(g(x))dx.

Proof. The proof is analogous to the proof of Lemma 3.1 [3]. �

LEMMA 4. There holds

I(α) =
1∫

0

1∫
0

(1− xr)Nω(t)Tτm−1,nm−1◦ . . .◦ Tτ1,n1◦ Tτm,nm

(
xτ0+α

1− (1− x)t

)
dxdt

with the weight function ω(t) defined in (6).

Proof. Applying the following representation introduced by Prévost [8]:

1
1− x

+
1

logx
=
∫ 1

0

ω(t)
1− (1− x)t

dt,

we have

I(α) =
∫ 1

0

∫ 1

0

xτ0+αω(t)
1− (1− x)t

A(x)dtdx.

It follows easily that the polynomial A(x) can be written in the form

A(x) = Sτ1,n1◦ Sτ2,n2◦ . . .◦ Sτm,nm

(
(1− xr)N) .

Since A(x) is symmetric in pairs (τ j,n j) and does not depend on order of differential
operators Sτ j ,n j , it is convenient for the sequel to write it as

A(x) = Sτm,nm◦ Sτ1,n1◦ . . .◦ Sτm−1,nm−1

(
(1− xr)N) .

Now by Fubini’s theorem and Lemma 3, we get the desired equality. �

We also need the following simple lemma, which will be used for estimation pur-
poses.
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LEMMA 5. Let a,b,c,d,r,s ∈ R, b,c,d,r,s > 0, and b+d � a+ c � max{b,d}.
Then the function

f (x,t) =
xa+c(1− xr)sctc+a−b(1− t)b+d−c−a

(1− t + xt)d

attains its maximum on [0,1]× [0,1] at the unique point (x0, t0), where

x0 =
(

b
b+ scr

) 1
r

, t0 =
c+a−b

c+a−b+ x0(b+d−a− c)
(9)

and

max
0�x,t�1

f (x, t) = f (x0,t0) =
b

b
r (scr)sc(c+a−b)c+a−b(b+d−a− c)b+d−a−c

dd(b+ scr)sc+ b
r

.

Proof. First note that the function f (x,t) is bounded on [0,1]× [0,1], since f (0,t)=
0(0 � t < 1),

f (x,1) =

{
0, if b+d > a+ c;

xb(1− xr)sc, if b+d = a+ c;

and

f (εx,1− εt) =
εa+c
x (1− εr

x)
sc(1− εt)a+c−bεb+d−c−a

t

(εt + εx − εxεt)d

� εa+c−d
x (1− εr

x)
sc
(

εt
1− εt

)b+d−a−c

� εa+c−d
x

(
εt

1− εt

)b+d−a−c

→ 0, as εx,εt → 0+.

If a+c= b, then f (x,t) = xb(1−xr)sc
( 1−t

1−t+xt

)d
and the function f takes its maximum

on [0,1]× [0,1] at the boundary point (x0,t0) = ((b/(b+ scr))1/r,0). If a+ c = b+d,

then f (x, t) = xb(1−xr)sc
(

xt
xt+1−t

)d
and the function f attains its maximum on [0,1]×

[0,1] at the boundary point (x0,t0) = ((b/(b+ scr))1/r,1). If b < a+ c < b+d, then
f (x,t) = 0 on the boundary of [0,1]× [0,1], and f (x,t) attains its maximum at the
unique interior point (x0,t0) defined in (9). �

4. Proof of Theorem 1

LEMMA 6. Let x,t ∈ (0,1), τ0,nm,τm ∈ N0, and τm � τ0 � nm + τm. Then

Tτm,nm

(
xτ0

1− (1− x)t

)
= (−1)nm

xnm+τmtnm+τm−τ0(t −1)τ0−τm

(1− (1− x)t)nm+1 .
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Proof. Clearly,

Tτm,nm

(
xτ0

1− t + xt

)
=

xnm+τm

nm!

(
xτ0−τm

1− t + xt

)(nm)

.

Decomposing the fraction xτ0−τm
1−t+xt into the sum

xτ0−τm

1− t + xt
= p(x)+

(
t−1

t

)τ0−τm 1
1− t + xt

,

where p(x) is a polynomial of degree not exceeding τ0 − τm −1, and differentiating it
nm times, we get the required statement. �

LEMMA 7. Under the hypothesis of Theorem 1 one has

Tτm−1,nm−1◦ . . .◦ Tτ1,n1◦ Tτm,nm

(
xτ0

1− (1− x)t

)

= (−1)nm
m

∏
j=1

(
nm + τm− τ j

n j

)
xnm+τmtnm+τm−τ0(t−1)τ0−τm

(1− t + xt)nm+1 Qm

(
xt

1− t + xt

)
,

(10)

where the polynomial Qm(y) is defined in (7).

Proof. If m = 1, then (10) follows easily by Lemma 6. Suppose m � 2. Then
consecutive calculation of the n j th derivatives with respect to x by Leibniz’ rule for
j = 1,2, . . . ,m−1

xτ j+n j

n j!

(
tkxnm+τm+k−τ j

(1− t + xt)nm+1+k

)(n j)

=
(

nm + τm− τ j

n j

)
xnm+τm

(1− t + xt)nm+1

×
n j

∑
k j=0

(−n j)k j (nm+1)k+k j (1+nm+τm−τ j)k

k j!(nm+1)k(1+nm+τm−τ j−n j)k+k j

(
xt

1−t+xt

)k+k j

readily leads to the formula (10). �

Now Theorem 1 follows easily from Lemmas 2, 4, 7.

5. Proof of Theorem 2

If we put m = 1,n1 = cn,τ1 = an,τ0 = bn,n ∈ N, in Theorem 1, we get∣∣∣∣∣γ− 1
rcn

cn

∑
k=0

(−1)k+cn
(

cn
k

)(
rk+(a+ c)n

cn

)
Srk+bn

∣∣∣∣∣
� 1

rcn

∫ 1

0

∫ 1

0

(1− xr)cnx(a+c)nt(c+a−b)n(1− t)(b−a)nω(t)
(1− t + xt)cn+1 dxdt

� 1
rcn

(
max

0�x,t�1
f (x,t)

)n ∫ 1

0

∫ 1

0

ω(t)
1− t + xt

dtdx =
γ
rcn

(
max

0�x,t�1
f (x, t)

)n
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with

f (x,t) =
xa+c(1− xr)ctc+a−b(1− t)b−a

(1− t + xt)c .

Here we used the fact (see [8, formula 2.6]) that

γ =
∫ 1

0

(
1

logx
+

1
1− x

)
dx.

Now, since γ < 1, by Lemma 5 with s = 1,d = c, the theorem follows. �

6. Proofs of Theorems 3, 4

To estimate the rate of convergence of quantities (4) to γ as N → ∞ , we need an
upper bound for the polynomial Qm(y). In some situations it is possible to get suitable
estimations.

First, we consider the case m = 2, n1 = n2, τ1 = τ2. Then by Theorem 1, we get

I : =

∣∣∣∣∣ (2n1)!r2n1

(n1!)2 γ−
2n1

∑
k=0

(−1)k
(

2n1

k

)(
rk+n1 + τ1

n1

)2

Srk+τ0

∣∣∣∣∣
�
∫ 1

0

∫ 1

0

xn1+τ1(1− xr)2n1tn1+τ1−τ0(1− t)τ0−τ1ω(t)
(1− t + xt)n1+1 |Q2(y)|dxdt

with y = xt/(1− t + xt). The polynomial

Q2(y) = 2F1

( −n1,n1 +1
1

∣∣∣∣y
)

=
1

n1!

(
d
dy

)n1 (
yn1(1− y)n1

)

is a shifted Legendre polynomial Pn1(u) formally identified as follows:

Q2(y) = Pn1(1−2y).

By the well-known inequality (see [11, p.162])

|Pn1(u)| � 1, −1 � u � 1,

it follows that

I �
∫ 1

0

∫ 1

0

xn1+τ1(1− xr)2n1tn1+τ1−τ0(1− t)τ0−τ1ω(t)
(1− t + xt)n1+1 dxdt.

Now, setting n1 = cn, τ1 = an, τ0 = bn with c,b ∈ N, a ∈ N0, and 0 � b−a � c, we
get∣∣∣∣∣ (2cn)!r2cn

((cn)!)2 γ−
2cn

∑
k=0

(−1)k
(

2cn
k

)(
rk+(a+ c)n

cn

)2

Srk+bn

∣∣∣∣∣� γ
(

max
0�x,t�1

f (x,t)
)n

,



APPROXIMATIONS TO EULER’S CONSTANT 771

where

f (x,t) =
xc+a(1− xr)2cta+c−b(1− t)b−a

(1− t + xt)c .

By Lemma 5, the function f (x,t) takes its maximum on [0,1]× [0,1] at the unique
point (x0, t0), at which

f (x0,t0) =
b

b
r (4cr2)c(c+a−b)c+a−b(b−a)b−a

(b+2cr)2c+ b
r

.

Since for any positive integer n � 2

γ
(n!)2

(2n)!
� n

4n ,

Theorem 3 follows. �

Another interesting case is described by the following lemma.

LEMMA 8. Let n1, . . . ,nm ∈N, τ0,τ1, . . . ,τm ∈N0, and nm+τm > τ j+1 > n j +τ j,
j = 1, . . . ,m−1. Then

Qm(y) =
m−1

∏
j=1

(nm + τm−n j − τ j)!
(nm + τm− τ j+1)!(τ j+1 −n j − τ j −1)!

×
∫ 1

0
. . .
∫ 1

0

m−1

∏
j=1

(1− yu j . . .um−1)n j u
nm+τm−τ j+1
j (1−u j)τ j+1−n j−τ j−1du1 . . .dum−1.

(11)

Moreover, 0 � Qm(y) � 1 for y ∈ [0,1].

Proof. Denoting the integral on the right-hand side of (11) by J and substituting

m−1

∏
j=1

(1− yu ju j+1 . . .um−1)n j =
n1

∑
k1=0

. . .
nm−1

∑
km−1=0

m−1

∏
j=1

(−n j)k j y
k j u

k1+...+k j
j

k j!
,

we get

J =
n1

∑
k1=0

. . .
nm−1

∑
km−1=0

m−1

∏
j=1

(−n j)k j y
k j

k j!

∫ 1

0
u

k1+...+k j+nm+τm−τ j+1
j

× (1−u j)τ j+1−n j−τ j−1 du j =
n1

∑
k1=0

. . .
nm−1

∑
km−1=0

m−1

∏
j=1

(−n j)k j y
k j

k j!

× Γ(k1 + . . .+ k j +nm + τm +1− τ j+1)Γ(τ j+1 −n j − τ j)
Γ(k1 + . . .+ k j +nm + τm +1−n j− τ j)
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=
m−1

∏
j=1

Γ(1+nm + τm − τ j+1)Γ(τ j+1−n j − τ j)
Γ(1+nm + τm −n j − τ j)

×
n1

∑
k1=0

. . .
nm−1

∑
km−1=0

m−1

∏
j=1

(−n j)k j (1+nm + τm − τ j+1)k1+...+k j

k j!(1+nm + τm−n j − τ j)k1+...+k j

yk j

=
m−1

∏
j=1

(nm + τm− τ j+1)!(τ j+1 −n j − τ j −1)!
(nm + τm −n j − τ j)!

Qm(y).

The inequality 0 � Qm(y) � 1 for y ∈ [0,1] follows easily from the integral represen-
tation (11). �

Now, Theorem 4 is a consequence of Theorem 1 and Lemma 8.

7. Proof of Theorem 5

Setting n j = c jn, j = 1, . . . ,m, C =∑m
j=1 c j, τ1 = an+1, τ0 = bn+m in Corol-

lary 4 we get that the absolute value of the remainder is less than

M(c)
rCn

∫ 1

0

∫ 1

0

x(C+a)n+m(1− xr)Cnt(C+a−b)n(1− t)(b+cm−C−a)nω(t)
(1− t + xt)cmn+1 dxdt

with some constant M(c) < Cm−1, since

m−1

∏
j=1

Cn+ j
(c j+1 + . . .+ cm)n+m− j

< Cm−1.

Denoting

f (x,t) =
xC+a(1− xr)CtC+a−b(1− t)b+cm−C−a

(1− t + xt)cm

and applying Lemma 5 with s = 1,d = cm, we conclude the theorem. �

Acknowledgements. The authors wish to thank Shahrekord University for financial
support.

RE F ER EN C ES

[1] C. ELSNER, On a sequence transformation with integral coefficients for Euler’s constant, Proc. Amer.
Math. Soc. 123(1995), 1537–1541.

[2] C. ELSNER,On a sequence transformation with integral coefficients for Euler’s constant, II. J. Number
Theory 124(2007), 442–453.

[3] M. HATA, On the linear independence of the values of polylogarithmic functions, J. Math. Pures et
Appl. 69(1990), no. 2, 133–173 .

[4] KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, Arithmetical properties of some series with
logarithmic coefficients, Math. Z. 255(2007), 117–131.

[5] T. HESSAMI PILEHROOD [T. G. KHESSAMI PILERUD], A lower bound for a linear form, Mat. Za-
metki 66(1999), no. 4, 617–623; English translation: Math. Notes 66(1999), no. 4, 507–512.



APPROXIMATIONS TO EULER’S CONSTANT 773

[6] T. HESSAMI PILEHROOD, KH. HESSAMI PILEHROOD, Lower bounds for linear forms in values of
polylogarithms, Mat. Zametki 77(2005), no. 4, 623–629; English translation: Math. Notes 77(2005),
no. 4, 573–579.

[7] E. A. KARATSUBA, On the computation of the Euler constant γ , Numerical Algorithms. 24(2000),
83–97.
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