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Abstract. Let Ω be an open bounded set in R
n, n � 2 . In paper [13] Moser proved that for

every K � K0 = n−
n−1
n ω− 1

n
n−1 we have

sup
{∫

Ω
exp

(( f (x)
K

) n
n−1

)
: f ∈W 1,n

0 (Ω), ||∇ f ||Ln � 1
}

< ∞ ,

but for K < K0 the supremum is not finite.
In this paper we study the critical case K = K0 for arbitrary Orlicz-Sobolev spaces with

Young functions that behave like tn close to ∞ . We show that for functions like tn(1− log−a t)
the supremum is finite for a > 1 but infinite for 0 < a < 1 .

1. Introduction

Throughout the paper Ω denotes an open bounded set in R
n, n � 2. We write

n′ = n
n−1 (i.e. 1

n + 1
n′ = 1) and ωn−1 is the measure of the surface of the unit sphere in

R
n .

The classical Sobolev embedding theorem states that W 1,p
0 (Ω) is continuously

embedded into Lp∗(Ω) if 1 � p < n and p∗ = pn
n−p . If p > n then every function

from W 1,p
0 (Ω) is bounded (i.e. belongs to L∞(Ω)) and in the limiting case p = n it is

known that every function from W 1,n
0 (Ω) belongs to Lq(Ω) for every 1 � q < ∞ but

not necessarily to L∞(Ω) .
A famous result by Trudinger (see [11], [16], [18] and [19]) implies that the

first-order Sobolev space W 1,n
0 (Ω) may be continuously embedded in the Orlicz space

LΦ(Ω) with the Young function of the exponential type Φ(t) = exptn
′ −1, t > 0. These

results were later generalized to many function spaces close to W 1,n (see e.g. [2], [3],
[9]).

In [13] Moser proved that for K � K0 = n−
n−1
n ω− 1

n
n−1 we have

sup
{∫

Ω
exp

(( f (x)
K

)n′)
: f ∈W 1,n

0 (Ω), ||∇ f ||Ln � 1
}

< ∞ (1)
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but that for K < K0 the integral
∫
Ω exp(( f (x)

K )n′) can be made arbitrarily large by an

appropriate choice of f ∈W 1,n
0 (Ω), ||∇ f ||Ln � 1. We would like to explore this phe-

nomenon in detail. In fact, we show that this result is no longer true in the critical case
K = K0 if we replace the function tn in the definition of the Ln -space by an arbitrary
Young function that behaves like tn close to ∞ . Moreover we give sharp bounds on the
Young function for the validity of the results in the case K = K0 .

By ∇ f we denote the generalized derivative of f while W 1,n
0 (Ω) and LΦ0 (Ω) stand

for the closure of C∞
0 (Ω) in W 1,n(Ω) and LΦ(Ω) , respectively. For the definition of the

norm in LΦ(Ω) see the Preliminaries. By WLΦ(Ω) we denote the set of all functions
f such that f , |∇ f | ∈ LΦ(Ω) . This space is equipped with the norm

|| f ||WLΦ(Ω) = || f ||LΦ(Ω) + || |∇ f | ||LΦ(Ω) .

By W0LΦ(Ω) we denote the closure of C∞
0 (Ω) in WLΦ(Ω) .

Let a > 1. Our positive result states that the conclusion of (1) is true in the critical
case K = K0 for functions that behave like tn(1− log−a t) for t close to ∞ .

THEOREM 1.1. Let Ω be an open bounded set, a > 1 and K = n−
n−1
n ω− 1

n
n−1 . Then

there is A > 1 such that every Young function Φ satisfying

Φ(t) = tn for t ∈ [0,A]

Φ(t) � tn
(
1− log−a(t)

)
for t ∈ [A,∞)

has the following property:
For every f ∈W0LΦ(Ω) such that

∫
ΩΦ(|∇ f (x)|)dx � 1 we have

∫
Ω

exp
(( f (x)

K

) n
n−1

)
dx � C ,

where C depends on n, Ln(Ω) and a only.

Conversely, if the power of the logarithm satisfies 0 < a < 1, then the supremum
is not finite.

THEOREM 1.2. Assume 0 < a < 1 , K = n−
n−1
n ω− 1

n
n−1 . Let Φ be a Young function

such that there are L1 � 1 and L2 > e satisfying

Φ(t) �
{

L1tn for t ∈ [0,∞)(
1− log−a(t)

)
tn for t ∈ [L2,∞) .

(2)

Then for every m ∈ N there is f ∈W0LΦ(B(0,1)) such that
∫
B(0,1)Φ(|∇ f (x)|)dx � 1

but ∫
B(0,1)

exp
(( f (x)

K

) n
n−1

)
dx > m .
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Now let us recall what was known before we started our research. It is known
that the space W0Ln logα L(Ω) (i.e. the space W0LΦ(Ω) with the Young function Φ
satisfying Φ(t) = tn logα(t) on [t0,∞) for some t0 > 0), α < n− 1, is continuously
embedded into the Orlicz space with the Young function exp(tγ)−1, where

γ =
n

n−1−α
> 0 .

These results are due to Fusco, Lions, Sbordone [9] for α < 0 and Edmunds, Gurka,
Opic [3] in general. For other results concerning these spaces we refer the reader to [4],
[5], [6], [7], [8] and [14].

Analogy of Moser’s result in this setting was shown by Hencl [12]. It is shown
there that for every Young function Φ such that

lim
t→∞

Φ(t)
tn logα t

= 1 and for every K > Kα =
(
1− α

n−1

)− n−1
n

n−
1
γ ω− 1

n
n−1

we have

sup
{∫

Ω
exp

(( f (x)
K

)γ)
: f ∈W0L

Φ(Ω),
∫
Ω
Φ(|∇ f |)dx � 1

}
< ∞ . (3)

Conversely, if K < Kα then the supremum is not finite.
In the critical case K = Kα it is shown in [12] that there are Young functions Φ1

and Φ2 that behave like tn logα(t) close to ∞ , the conclusion of (3) is valid for Φ1 , but
the supremum is infinite for Φ2 . However, there is a huge gap between the functions
Φ1 and Φ2 , because

Φ2(t) ∼ tn logα(t)
(
1− 1√

log(log(t))

)
and Φ1(t) ∼ tn logα(t)

(
1+ log−a(t)

)

for some a ∈ (
0,min(1, 1

γ )
)
. In fact, even in the simplest Moser’s case α = 0 and

K = K0 these results are not sharp enough to say anything about the Young function
Φ(t) = tn . One of the motivations for our research was to close this gap and we have
found sharp criteria in the simplest model case α = 0.

The proof of Theorem 1.2 is given in the third section. We modify the construc-
tion from [12] and we use more careful estimates. Section 4 contains the proof of
Theorem 1.1. The basic outline of the proof is similar to the one in [12], but our result
requires new ideas and a finer technique.

2. Preliminaries

We denote the n -dimensional Lebesgue measure by Ln .
By B(0,R) we denote an open Euclidean ball in R

n centered at the origin with the
radius R > 0.

A function Φ : R
+ → R

+ is a Young function if Φ(0) = 0, Φ is increasing and
convex.
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We denote the Orlicz space corresponding to a Young function Φ on a set A with
a measure μ by LΦ(A,dμ) . This space is equipped with the norm

|| f ||LΦ(A,dμ) = inf
{
λ > 0 :

∫
A
Φ

( | f (x)|
λ

)
dμ(x) � Φ(1)

}
. (4)

Note that this definition is slightly different from the usual definition where the con-
dition

∫
AΦ( | f (x)|λ )dμ(x) � Φ(1) is replaced by

∫
AΦ( | f (x)|λ )dμ(x) � 1. We use (4)

to have the generalized Hölder inequality with the multiplicative constant 1 (see (8)
bellow). If || f ||LΦ(A,dμ) > 0 then it follows from Fatou’s lemma that

∫
A
Φ

( | f (x)|
|| f ||LΦ(A,dμ)

)
dμ(x) � Φ(1) . (5)

Further from (4) we have

Φ0(t) = αΦ(t) on [0,∞) with α > 0 ⇒ || f ||LΦ0 (A,dμ) = || f ||LΦ(A,dμ) . (6)

For any given differentiable Young function Φ we can define a generalized inverse
function to φ(u) = Φ′(u) by

ψ(s) = inf{u : φ(u) > s} for s > 0

and further we define its associated Young function Ψ by

Ψ(t) =
∫ t

0
ψ(s)ds for t � 0 .

If Φ0 and Φ1 are Young functions and Ψ0 and Ψ1 are their associated Young func-
tions, respectively, then we have

Φ0(t) � Φ1(t) on [0,∞) ⇒ Ψ0(t) � Ψ1(t) on [0,∞) . (7)

The dual space of LΦ(A,dμ) can be identified as the Orlicz space LΨ(A,dμ) . If
in addition we have Φ(1)+Ψ(1) = 1 then the following generalization of the Hölder
inequality is valid (see [15] page 58 for the proof)∫

A
| f (y)g(y)|dμ(y) � || f ||LΦ(A,dμ)||g||LΨ(A,dμ) . (8)

We use this inequality for a measurable set A⊂R and the measure dμ(y)=ωn−1yn−1dy .
For an introduction to Orlicz spaces see e.g. [15].

The non-increasing rearrangement f ∗ of a measurable function f on Ω is defined
by

f ∗(t) = inf
{
s > 0 : Ln({x ∈Ω : | f (x)| > s}) � t

}
, t > 0 .

We also define the non-increasing radially symmetric rearrangement f # by

f #(x) = f ∗
(ωn−1

n
|x|n

)
for x ∈ B(0,R), Ln(B(0,R)) = Ln(Ω) .
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For an introduction to these rearrangements see e.g. [17]. We need the fact that for
every Young function Φ and for every measurable function f : Ω→ R we have

∫
Ω
Φ(| f (x)|)dx =

∫
B(0,R)

Φ(| f #(x)|)dx =
∫ Ln(Ω)

0
Φ(| f ∗(y)|)dy .

We also use the Polya-Szegö principle (see e.g. Talenti [17] for the proof).

THEOREM 2.1. Let Ω be an open bounded set and let R > 0 be such that
Ln(B(0,R)) = Ln(Ω) . Let Φ be a Young function. Suppose that the function f : Ω→
R is Lipschitz continuous,

∫
ΩΦ(|∇ f |) < ∞ and f ∈ W0LΦ(Ω) . Then f ∗ is locally

absolutely continuous and
∫
Ω
Φ(|∇ f (x)|)dx �

∫
B(0,R)

Φ(|∇ f #(x)|)dx .

By C we denote a generic positive constant which may depend on n , Ln(Ω)
and Φ . This constant may vary from expression to expression. Some lemmata state
that for every a > 0 or b > 0 something is true. Then this constant C in the proof of
such a lemma may depend also on fixed a > 0 or b > 0.

Sometimes it is convenient for us to write C1 , C2 , etc.

3. Counterexample

Proof of Theorem 1.2. For s > e we define fs(x) = gs(|x|) where

gs(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−2y+2)Kn log(2)s−
1
n

(
1+ log(s)

s

) n−1
n

for y ∈ [ 1
2 ,1

]
Kn log

(
1
y

)
s−

1
n

(
1+ log(s)

s

) n−1
n

for y ∈ [
e−

s
n , 1

2

]
Ks

n−1
n

(
1+ log(s)

s

) n−1
n

for y ∈ [
0,e−

s
n
]

.

An easy computation gives us

∫
B(0,1)

exp
(( fs(x)

K

) n
n−1

)
dx �

∫
B(0,e−

s
n )

exp
(( fs(x)

K

) n
n−1

)
dx

� Ce−se(1+ log(s)
s )s →

s→∞
∞ .

It remains to prove that
∫
B(0,1)Φ(|∇ fs|) � 1 for s large enough.

Set M = M(s) = 1
slog(s) . Plainly there is s1 > e such that for s > s1 we have

exp(− s
n ) < M < 1

2 and therefore

∫ 1

0
Φ(|g′s(y)|)yn−1dy =

∫ M

e−
s
n
+

∫ 1

M
= I1 + I2 . (9)
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Obviously |g′s(y)| � Cs−
1
n � Cs−

1
n 1

y for y ∈ ( 1
2 ,1) and |g′s(y)| � Cs−

1
n 1

y also on

(M, 1
2) . It follows from (2) and log( 1

M ) = log2(s) that

I2 � C
∫ 1

M
|g′(y)|nyn−1 dy � Cs−1

∫ 1

M

dy
y

= Cs−1 log
( 1

M

)
� Cs−1 log2(s) .

(10)

Since M = 1
slog(s) we can find s2 > s1 such that if s > s2 then

y ∈ (e−
s
n ,M) ⇒ |g′s(y)| = Kn

1
y
s−

1
n

(
1+

log(s)
s

) n−1
n � Kn

1
M

s−
1
n > L2 .

Plainly there is s3 > s2 such that for s > s3 we have

sup
y∈(e−

s
n ,M)

|g′s(y)| = lim
y→(e−

s
n )+

|g′s(y)| = Kne
s
n s−

1
n

(
1+

log(s)
s

) n−1
n � es .

Thus (2) gives us for y ∈ (e−
s
n ,M) that

Φ(|g′s(y)|) �
(
1− 1

sa

)
|g′s(y)|n . (11)

From (11), K = n−
n−1
n ω− 1

n
n−1 and log( 1

M ) = log2(s) > 0 for s > s3 we have

I1 �
(
1− 1

sa

)∫ M

e−
s
n
|g′s(y)|nyn−1dy

=
(
1− 1

sa

)(
1+

logs
s

)n−1
Knnns−1

∫ M

e− s
n

dy
y

=
(
1− 1

sa

)(
1+

logs
s

)n−1
Knnns−1

( s
n
− log

( 1
M

))
� 1

ωn−1

(
1− 1

sa

)(
1+

logs
s

)n−1
.

(12)

Since 0 < a < 1, using (10) and (12) for s large enough we finally obtain

∫
B(0,1)

Φ(|∇ fs(x)|)dx = ωn−1

∫ 1

0
Φ(|g′s(y)|)yn−1 dy = ωn−1(I1 + I2)

�
(
1− 1

sa

)(
1+

logs
s

)n−1
+Cs−1 log2(s) � 1 . �
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4. Bounded norms

Most of this section is devoted to the proof of the following proposition which is
a weaker version of Theorem 1.1 with the additional technical assumption:

There are ω > 0 and τ ∈
(
0,

1
ω

)
such that φ(t) :=

Φ(t)
tn

satisfies

φ( t
1−δ )
φ(t)

� 1
1−ωδ

whenever δ ∈ (0,τ) and t ∈ (0,∞) .

(13)

This assumption is removed at the end of this section.

PROPOSITION 4.1. Let Ω be an open bounded set, a > 1 and K = n−
n−1
n ω− 1

n
n−1 .

Then there is A0 > 1 such that every Young function Φ satisfying

Φ(t) = tn for t ∈ [0,A0]

Φ(t) � tn
(
1− log−a(t)

)
for t ∈ [A0,∞)

(14)

and condition (13) has the following property:
For every f ∈W0LΦ(Ω) such that

∫
ΩΦ(|∇ f (x)|)dx � 1 we have

∫
Ω

exp
(( f (x)

K

) n
n−1

)
dx � C ,

where C depends on n, Ln(Ω) and Φ only.

The proof of Proposition 4.1 is based on the generalized Hölder inequality. There-
fore it is convenient for us to deal with the Young function Φ0 = 1

nΦ instead of Φ (note
that Young functions Φ and Φ0 give us the same norm by (4)). First we need some
estimates of the Young function associated to Φ0 .

LEMMA 4.2. Let A0 � 1 , 1 < b < a and suppose that the Young function Φ0

satisfies

Φ0(t) =
1
n
tn for t ∈ [0,A0] . (15)

Let Ψ0 be the Young function associated to Φ0 . Then

Ψ0(t) =
n−1

n
t

n
n−1 for t ∈ [0,A0] . (16)

Moreover, there is A1 > 1 such that if A0 � A1 and Φ0 satisfies in addition

Φ0(t) � Φ1(t) :=
1
n
tn

(
1− log−a(t)

)
for t ∈ [A0,∞) , (17)

then

Ψ0(t) � Ψ̃(t) :=
n−1

n
t

n
n−1

(
1+ log−b(t)

)
for t ∈ [A0,∞) . (18)
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Proof. Property (16) immediately follows from the definition of the associated
Young function and the fact that A0 � 1.

Let us prove the second part of the lemma. If B1 > 1 is sufficiently large and
A0 � B1 , then the function Φ1 can be extended from [A0,∞) to a Young function
defined on [0,∞) such that Φ1(t) � 1

n tn for t ∈ [0,∞) . Thus for every Young function
Φ0 satisfying (15) and (17) with this A0 we have

Φ0(t) � Φ1(t) for t ∈ [0,∞) . (19)

Let us fix b1 ∈ (b,a) and put

Ψ̃1(t) =
n−1

n
t

n
n−1

(
1+ log−b1(t)

)
for t ∈ (0,∞) .

Denote φ1 =Φ′
1 , ψ1 = φ−1

1 , Ψ1(t) =
∫ t
0 ψ1 and ψ̃1 = Ψ̃′

1 . Clearly as a is nonnegative
and B1 > 1 for every t > B1 we have

φ1(t) = tn−1
(
1− log−a(t)+

a
n

log−a−1(t)
)

� tn−1
(
1− log−a(t)

)
= φ̃ (t) .

Further there is B2 > B1 such that for every t > B2

ψ̃1(t) = t
1

n−1

(
1+ log−b1(t)−b1

n−1
n

log−b1−1(t)
)

� t
1

n−1

(
1+

1
2

log−b1(t)
)

= ψ̃(t) .

Clearly, as 0 < b1 < a , there is B3 > B2 such that for t > B3 we have

(
1+

1
2

log−b1(t)
)n−1(

1− log−a(t 1
n−1

))
� 1 .

Moreover ψ̃(t) � t
1

n−1 for t � 1, which implies

1− log−a(ψ̃(t)
)

� 1− log−a(t 1
n−1

)
.

Therefore there is B4 > B3 such that for all t > B4 we have

φ̃ (ψ̃(t)) = ψ̃n−1(t)
(
1− log−a(ψ̃(t))

)
� t

(
1+

1
2

log−b1(t)
)n−1(

1− log−a(t 1
n−1

))
� t .

It follows that φ1(ψ̃1(t)) > t for t > B4 and thus

ψ̃1(t) > φ−1
1 (t) = ψ1(t) . (20)

Hence Ψ′
1(t) < Ψ̃′

1(t) for t > B4 and we can find C > 0 so that for t > B4 we have

Ψ1(t) < Ψ̃1(t)+C .
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Together with b < b1 this implies that there is A1 > B4 such that for all t > A1 we have

Ψ1(t) < Ψ̃(t) .

Thus if A0 � A1 , then (7) and (19) imply

Ψ0(t) � Ψ1(t) < Ψ̃(t) on [A0,∞) . �

Now we need to estimate the term || 1
yn−1 ||LΨ0 ((t,s),ωn−1yn−1dy) .

LEMMA 4.3. Let b > 1 . Then there is A2 = A2(b) > 1 such that if the Young
function Ψ0 satisfies

Ψ0(1) =
n−1

n
(21)

and

Ψ0(t) �
{
Ψ̃1(t) := n−1

n t
n

n−1 for t ∈ [0,A2]

Ψ̃2(t) := n−1
n t

n
n−1

(
1+ log−b(t)

)
for t ∈ [A2,∞) ,

(22)

then for 0 < t < s < ∞ we have∣∣∣∣∣∣ 1
yn−1

∣∣∣∣∣∣
LΨ0 ((t,s),ωn−1yn−1dy)

� ω
n−1
n

n−1

(
log

( s
t

)
+1

) n−1
n

. (23)

Proof. We want to prove that for

λ = ω
n−1
n

n−1

(
log

( s
t

)
+1

) n−1
n

we have

I =
∫ s

t
Ψ0

( 1
λyn−1

)
ωn−1y

n−1 dy � Ψ0(1) =
n−1

n
.

Recall b > 1. Let us find A2 = A2(b) > 1 large enough so that

log1−b(A2)
(n−1)(b−1)

< 1 . (24)

Set M = (A2λ )−
1

n−1 ∈ (0,∞) . We distinguish three cases. If 0 < M � t , then we have
1

λ yn−1 ∈ [0,A2] for all y ∈ (t,s) and from (22) we obtain

I �
∫ s

t
Ψ̃1

( 1
λyn−1

)
ωn−1y

n−1 dy =
n−1

n
ωn−1

λ
n

n−1

∫ s

t

dy
y

=
n−1

n
log(s)− log(t)

log( s
t )+1

=
n−1

n

log( s
t )

log( s
t )+1

� n−1
n

and we are done. If s � M , then A2 � 1
λ sn−1 . Hence from the estimate Ψ0(t) � Ψ̃1(t) �

Ψ̃2(t) , t > 0, and the fact that( 1
(n−1)(b−1)

log1−b
( 1
λyn−1

))′
= log−b

( 1
λyn−1

)1
y

(25)
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we obtain from (24)

I � n−1
n

ωn−1

λ
n

n−1

∫ s

t

(
1+ log−b

( 1
λyn−1

)) dy
y

=
n−1

n

log( s
t )+ 1

(n−1)(b−1)(log1−b( 1
λ sn−1 )− log1−b( 1

λ tn−1 ))

log( s
t )+1

� n−1
n

log( s
t )+ 1

(n−1)(b−1) log1−b(A2)

log( s
t )+1

� n−1
n

.

In the remaining case t < M < s using (22) we have

I �
∫ M

t
Ψ̃2

( 1
λyn−1

)
ωn−1y

n−1 dy+
∫ s

M
Ψ̃1

( 1
λyn−1

)
ωn−1y

n−1 dy = I1 + I2 .

Further

I2 =
n−1

n
ωn−1

λ
n

n−1

∫ s

M

dy
y

=
n−1

n
ωn−1

λ
n

n−1
log

( s
M

)
.

Using (22) and (25) we obtain

I1 =
n−1

n
ωn−1

λ
n

n−1

∫ M

t

(
1+ log−b

( 1
λyn−1

)) dy
y

=
n−1

n
ωn−1

λ
n

n−1

(
log

(M
t

)
+

1
(n−1)(b−1)

(
log1−b

( 1
λMn−1

)
− log1−b

( 1
λ tn−1

)))

� n−1
n

ωn−1

λ
n

n−1

(
log

(M
t

)
+

1
(n−1)(b−1)

log1−b(A2)
)

.

Therefore from (24) we have

I � I1 + I2 � n−1
n

1
log( s

t )+1

(
log

(s
t

)
+

1
(n−1)(b−1)

log1−b(A2)
)

� n−1
n

. �

If we consider the function Φ̃(t) = tn then the norm corresponding to this Young
function has the following property:

If || f ||LΦ̃((α ,β ),dμ) = 1, γ ∈ (α,β ) and || f ||LΦ̃((α ,γ),dμ) =L , then || f ||LΦ̃((γ,β ),dμ) =

(1−Ln)
1
n . In the proof of Proposition 4.1 we need a similar property of the norm given

by the Young function Φ .

LEMMA 4.4. Let Φ(t) = tnφ(t) be a Young function satisfying φ(1) = 1 , φ(t) ∈
[ 1
2 ,1] on (0,∞) and (13). Then there is η ∈ (0,1] with the following property:

If α < γ < β , || f ||LΦ((α ,β ),dμ) � 1 and || f ||LΦ((α ,γ),dμ) = L, then || f ||LΦ((γ,β ),dμ) �
1−ηLn .
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Proof. Since || f ||LΦ((α ,β ),dμ) � 1, by (5) we have

∫ β

α
f n(x)φ( f (x))dμ(x) =

∫ β

α
Φ( f (x))dμ(x) � Φ(1) = 1 . (26)

From || f ||LΦ((α ,γ),dμ) = L > L̃ := 1

2
1
n
L and (4) we obtain

∫ γ

α

( f (x)
L̃

)n
φ
( f (x)

L̃

)
dμ(x) =

∫ γ

α
Φ

( f (x)
L̃

)
dμ(x) > Φ(1) = 1

and thus the assumption φ(t) ∈ [ 1
2 ,1] implies

∫ γ

α
f n(x)φ( f (x))dμ(x) �

∫ γ

α
L̃n

( f (x)
L̃

)n 1
2
φ
( f (x)

L̃

)
dμ(x) � 1

2
L̃ =

1
4
Ln . (27)

Therefore from (26) and (27) we observe

∫ β

γ
f n(x)φ( f (x))dμ(x) � 1− 1

4
Ln . (28)

Let us find η = η(ω ,τ,n) ∈ (0,τ) (where ω and τ come from (13)) small enough so
that for every t ∈ [0,1] we have

( 1
1−ηt

)n( 1
1−ωηt

)
� 1

1− 1
4 t

. (29)

Hence from (13), (28) and (29) we obtain

∫ β

γ
Φ

( f (x)
1−ηLn

)
dμ(x) =

∫ β

γ

( f (x)
1−ηLn

)n
φ
( f (x)

1−ηLn

)
dμ(x)

�
∫ β

γ

( 1
1−ηLn

)n
f n(x)

( 1
1−ωηLn

)
φ( f (x))dμ(x)

� 1

1− 1
4Ln

∫ β

γ
f n(x)φ( f (x))dμ(x) � 1 = Φ(1) . �

Now we can prove Proposition 4.1. The proof uses some ideas of Garsia [10] and
also the technique used in the proof of Lemma 3.2.2 in [1].

Proof of Proposition 4.1. Let A0 � max(A1,A2) (A1 and A2 are given by Lem-
mata 4.2 and 4.3) be large enough so that (1− log−a(t)) > 1

2 for t � A0 . Further we

can suppose that Φ(t) � tn on [0,∞) (the smaller Φ is the worse). Hence φ(t) = Φ(t)
tn ∈

[ 1
2 ,1] on (0,∞) and we can use Lemma 4.4.

As A0 � max(A1,A2) , Lemma 4.2 and Lemma 4.3 give us estimate (23) for any
couple 0 < t < s < ∞ .

Since the C∞
0 (Ω) functions are dense in W0LΦ(Ω) (by the definition) we can sup-

pose without loss of generality that f is Lipschitz continuous. Find R > 0 such that
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Ln(Ω) = Ln(B(0,R)) . From the basic properties of the radially symmetric rearrange-
ment we obtain∫

Ω
exp

(( f (x)
K

) n
n−1

)
dx =

∫
B(0,R)

exp
(( f #(x)

K

) n
n−1

)
dx

and the Polya-Szegö principle (Theorem 2.1) gives us∫
B(0,R)

Φ(|∇ f #(x)|)dx �
∫
Ω
Φ(|∇ f (x)|)dx � 1 . (30)

Hence we can suppose without loss of generality that f (x)= g(|x|) , g is non-increasing,
classically differentiable almost everywhere and moreover Ω = B(0,R) .

Since f ∈ W0LΦ(Ω) we have g(R) = 0. Put dμ(y) = ωn−1yn−1dy . From the
assumption

∫
B(0,R)Φ(|∇ f (x)|)dx � 1, we obtain

∫ R

0
Φ0(|g′(y)|)dμ =

∫ R

0

1
n
Φ(|g′(y)|)ωn−1y

n−1 dy =
1
n

∫
B(0,R)

Φ(|∇ f (x)|)dx

� 1
n
Φ(1) =

1
n

= Φ0(1)

and thus
||g′(y)||LΦ0 ((0,R),dμ) � 1 . (31)

Further (8) (recall Φ0(1)+Ψ0(1) = 1
n + n−1

n = 1) and (23) give us for 0 < t � s �
R that

g(t)−g(s) �
∫ s

t
|g′(y)|dy =

∫
y∈(t,s)

|g′(y)| 1
ωn−1yn−1 dμ(y)

� 1
ωn−1

||g′(y)||LΦ0 ((t,s),dμ)

∣∣∣∣∣∣ 1
yn−1

∣∣∣∣∣∣
LΨ0 ((t,s),dμ)

� ω− 1
n

n−1||g′(y)||LΦ0 ((t,s),dμ)

(
log

( s
t

)
+1

) n−1
n

.

(32)

Since g(R) = 0, estimate (32) in the case s = R reads

g(t) � ω− 1
n

n−1||g′(y)||LΦ0 ((t,R),dμ)

(
log

(R
t

)
+1

) n−1
n

. (33)

Set

G(z) =
(g(Re−

z
n )

K

) n
n−1 − z . (34)

The substitution y = Re−
z
n gives us∫

B(0,R)
exp

(( f (x)
K

) n
n−1

)
dx = ωn−1

∫ R

0
exp

((g(y)
K

) n
n−1

)
yn−1 dy

= C
∫ ∞

0
exp(G(z))dz = C

∫ ∞

0

∫ ∞

−G(z)
e−λ dλdz

= C
∫ ∞

−∞
|Eλ |e−λ dλ

(35)
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where
Eλ =

{
z ∈ (0,∞) : −G(z) < λ

}
.

We want to estimate |Eλ | for every λ ∈ R . For z ∈ (0,∞) let us set

L(z) = ||g′(y)||
LΦ0 ((0,Re−

z
n ),dμ) .

From (31) we see that we always have 0 � L(z) � 1.

If z ∈ Eλ , then from K = n−
n−1
n ω− 1

n
n−1 , (33) and Lemma 4.4 together with (6) and

(31) we obtain

z−λ �
(g(Re−

z
n )

K

) n
n−1

�
(ω− 1

n
n−1

K

(
log

(
e

z
n

)
+1

) n−1
n ||g′(y)||

LΦ0 ((Re−
z
n ,R),dμ)

) n
n−1

�
(
n

n−1
n

( z
n

+1
) n−1

n
) n

n−1
(
1−ηLn(z)

) n
n−1

� (z+n)
(
1−ηLn(z)

)
� z−ηzLn(z)+n .

And thus
λ � ηzLn(z)−n .

This immediately implies

Eλ = /0 whenever λ < −n (36)

and
zLn(z) � C1λ +C2 for λ � −n ,z ∈ Eλ . (37)

We want to show that |Eλ | is small also for λ � −n . Suppose z1,z2 ∈ Eλ , z1 � n

and z2 − z1 � n . Let us set δ = (z2 − z1)
n−1
n . Using K = n−

n−1
n ω− 1

n
n−1 , (6), (32), (33)

and z2−z1
n +1 � 2(z2− z1) = 2δ

n
n−1 we obtain

z1 + δ
n

n−1 −λ = z2 −λ �
(g(Re−

z2
n )

K

) n
n−1

�
(g(Re−

z1
n )

K
+

g(Re−
z2
n )−g(Re−

z1
n )

K

) n
n−1

�
(
n

n−1
n

(
log

(
e

z1
n

)
+1

) n−1
n ||g′(y)||

LΦ0 ((Re−
z1
n ,R),dμ)

+n
n−1
n

(
log

(
e

z2
n − z1

n

)
+1

) n−1
n ||g′(y)||

LΦ0 ((Re−
z2
n ,Re−

z1
n ),dμ)

) n
n−1

�
(
n

n−1
n

(z1

n
+1

) n−1
n +n

n−1
n

(z2 − z1

n
+1

) n−1
n

L(z1)
) n

n−1

�
(
(z1 +n)

n−1
n +2

n−1
n δL(z1)

) n
n−1

.
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Further the inequality

(α +β )1+θ � α1+θ +β max
x∈[0,β ]

d
dx

(
(α + x)1+θ

)
= α1+θ +β (1+θ )(α+β )θ � α1+θ +(1+θ )2θ(αθβ +β 1+θ) ,

which is satisfied for α,β ,θ � 0, implies

z1 + δ
n

n−1 −λ � z1 +n+C3

(
(z1 +n)

1
n δL(z1)+ δ

n
n−1 L

n
n−1 (z1)

)

hence using (37) and the estimate (z1 +n)
1
n � 2z

1
n
1 (recall z1 � n ) we obtain

δ
n

n−1 � λ +n+2C3(C1λ +C2)
1
n δ +C3L

n
n−1 (z1)δ

n
n−1 . (38)

Further the Young inequality

αβ � εn

n
αn +

1
n

n−1ε
n

n−1
β

n
n−1

implies (with suitable ε > 0)

2C3(C1λ +C2)
1
n δ � C4λ +C5 +

1
3
δ

n
n−1 . (39)

From (37) we see that there are C6,C7 > 0 such that if z1 � C6λ +C7 , then

C3L
n−1
n (z1) � 1

3
. (40)

Further we can assume that C6λ +C7 � n for any λ � −n . Therefore from (38), (39)
and (40) we obtain for z1 � C6λ +C7 and z2 � z1 +n

1
3
(z2 − z1) =

1
3
δ

n
n−1 � λ +n+C4λ +C5 � C+Cλ .

Hence we see that |Eλ | = |Eλ ∩ (−n,C6λ +C7)|+ |Eλ ∩ [C6λ +C7,∞)| � C +Cλ .
Using this estimate and (35) we conclude the proof with∫

Ω
exp

(( f (x)
K

) n
n−1

)
dx � C

∫ ∞

−∞
|Eλ |e−λ dλ �

∫ ∞

−n
(C+Cλ )e−λ dλ � C . �

In the following lemma we show that there is a suitable Young function satisfying
assumptions of Proposition 4.1. After this we use such a Young function to remove
assumption (13) from Proposition 4.1 and we obtain Theorem 1.1.

LEMMA 4.5. For every a > 1 there are Ã0 > 1 and Ã1 > Ã0 such that

Φ̃(t) =

⎧⎪⎪⎨
⎪⎪⎩

tn t ∈ [0, Ã0]

Ãn
0 +

∫ t
Ã0

max
(
nÃn−1

0 , d
ds

(
sn

(
1− log−

a+1
2 (s)

)))
ds t ∈ [Ã0, Ã1]

tn
(
1− log−a(t)

)
t ∈ [Ã1,∞)

(41)

is a Young function satisfying assumptions of Proposition 4.1.
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Proof. If Ã0 > A0 (A0 is given by Proposition 4.1) is sufficiently large, then there
is Ã1 > Ã0 such that Φ is continuous. It is not difficult to see that Φ̃ is also increasing
and convex provided Ã0 is large enough. Property (14) follows from (41).

It remains to check condition (13). In the sequel, we say that (13) is satisfied on
the interval I ⊂ (0,∞) if the inequality in (13) is satisfied for couples t, t

1−δ ∈ I .

Step 1. (Properties of condition (13) restricted to an interval)

First, we claim that if a nonnegative nondecreasing function Φ satisfies (13) on I
then also ΦC := Φ+C , C � 0, satisfies (13) on I (with the same parameters ω and
τ ). Indeed, (13) applied to Φ on I implies (recall that we denote φ(t) = Φ(t)

tn )

Φ( t
1−δ )

Φ(t)
(1− δ )n =

Φ( t
1−δ )

Φ(t)
tn

( t
1−δ )n =

φ( t
1−δ )
φ(t)

� 1
1−ωδ

.

Hence, if we define φC(t) := ΦC(t)
tn , t ∈ (0,∞) , then we conclude

φC( t
1−δ )

φC(t)
=

ΦC( t
1−δ )

ΦC(t)
(1− δ )n =

Φ( t
1−δ )+C

Φ(t)+C
(1− δ )n

=
[Φ( t

1−δ )
Φ(t)

+
CΦ(t)−CΦ( t

1−δ )
Φ(t)(Φ(t)+C)

]
(1− δ )n �

Φ( t
1−δ )

Φ(t)
(1− δ )n � 1

1−ωδ
.

The second claim is that if 0 � α < β < γ �∞ and Φ satisfies (13) on (α,β ] (with the
parameters ω1 and τ1 ) and on [β ,γ) (with ω2 and τ2 ), then Φ satisfies (13) on (α,γ)
(with ω =ω1+ω2 , τ = 1

2 min(τ1,τ2)). Let us prove this claim. If either t, t
1−δ ∈ (α,β ]

or t, t
1−δ ∈ [β ,γ) , then the proof is obvious. Therefore let us suppose that t ∈ (α,β )

and t
1−δ ∈ (β ,γ) . Hence (13) on (α,β ] and on [β ,γ) gives

φ( t
1−δ )
φ(t)

=
φ( t

1−δ )
φ(β )

φ(β )
φ(t)

� 1
1−ω2δ

1
1−ω1δ

� 1
1− (ω1 +ω2)δ

.

Step 2. (We check (13) for each part of the function Φ̃ )

First, on (0, Ã0] we have φ̃ (t) := Φ̃(t)
tn = tn

tn ≡ 1. Hence (13) is satisfied on (0, Ã0] .

Next we claim that for every b > 0 there is B � 1 such that the function Φb(t) =
tnφb(t) = tn

(
1− log−b(t)

)
satisfies (13) on [B,∞) . To show this, let B > 1 be large

enough so that log−b(B) � 1
2 and log(1−δ )

log(B) � −δ for every δ ∈ (0, 1
2 ] . Then there is
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ω > 0 such that for every δ ∈ (0, 1
2 ] and t � B we have

φb( t
1−δ )

φb(t)
=

1− log−b( t
1−δ )

1− log−b(t)

= 1+
log−b(t)− log−b( t

1−δ )

1− log−b(t)

= 1+
log−b(t)

1− log−b(t)

(
1− log−b( t

1−δ )

log−b(t)

)

= 1+
log−b(t)

1− log−b(t)

(
1−

( log(t)− log(1− δ )
log(t)

)−b)

= 1+
log−b(t)

1− log−b(t)

(
1−

(
1− log(1− δ )

log(t)

)−b)

� 1+
1
2
1
2

(
1− (1− (−δ ))−b

)

= 1+1− (1+ δ )−b =
2(1+ δ )b−1

(1+ δ )b

� 2(1+ δ )b−1 � 1+ωδ � 1
1−ωδ

.

Hence we are also done on [Ã1,∞) provided Ã1 is sufficiently large (take Ã0 large).
From (41) we see that there is Ã2 ∈ [Ã0, Ã1] such that Φ(t) = Ãn

0 +nÃn−1
0 (t − Ã0)

on [Ã0, Ã2] and Φ(t) = tn(1− log−
a+1
2 (t))+C on [Ã2, Ã1] , with C > 0. Therefore the

first claim from Step 1. and the above claim concerning the function tn(1− log−b(t)) ,
b := a+1

2 , imply that we are also done on [Ã2, Ã1] .

Finally, as the function t �→ Ã0+n( t
1−δ −Ã0)

Ã0+n(t−Ã0)
is decreasing on [Ã0,∞) (the derivative

is Ã0δn(1−n)
(1−δ )(Ã0+n(t−Ã0))2

), it attains its maximum at Ã0 . Hence on [Ã0, Ã2] we conclude

φ̃ ( t
1−δ )

φ̃(t)
=

Φ̃( t
1−δ )

Φ̃(t)
(1− δ )n

=
Ãn

0 +nÃn−1
0 ( t

1−δ − Ã0)

Ãn
0 +nÃn−1

0 (t − Ã0)
(1− δ )n

�
Ã0 +n( t

1−δ − Ã0)

Ã0 +n(t− Ã0)

�
Ã0 +n( Ã0

1−δ − Ã0)

Ã0

=
1+(n−1)δ

1− δ
� 1

1−nδ
.

Step 3. (We prove (13))
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Since all four parts of the function Φ̃ satisfy (13) on the corresponding intervals by
Step 2., applying three times the second claim from Step 1. we obtain that Φ̃ satisfies
(13) on (0,∞) . �

Proof of Theorem 1.1. Pick Φ̃ from Lemma 4.5 and set A = Ã1 . If a Young func-
tion Φ satisfies assumptions of Theorem 1.1, then we have Φ(t) � Φ̃(t) on [0,∞) .
Hence every function f ∈ W0LΦ(Ω) such that

∫
ΩΦ(|∇ f (x)|)dx � 1 satisfies also∫

Ω Φ̃(|∇ f (x)|)dx � 1 and Proposition 4.1 together with Lemma 4.5 conclude the proof.
�
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