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A NEW METHOD FOR ESTABLISHING AND PROVING
ACCURATE BOUNDS FOR THE WALLIS RATIO

CRISTINEL MORTICI

(Communicated by N. Elezovic)

Abstract. The aim of this paper is to establish new inequalities about the Wallis ratio that im-
prove the Gautschi-Kershaw results.

1. Introduction

In the recent past, the problem of finding new, sharp inequalities about the Euler
gamma function and in particular about the Wallis ratio

F(n+1) 1 (o)

T(n+i)  v@ @n—1)!
has attracted the attention of many authors. See, e.g., [1-3, 6-27]. From the following
result of Gautschi [9]

=< Llnt1) <+, 0<s<,
n—+s)

it follows, for s = 1/2,

T(n+1
Vn < (”7?:) <Vn+t1,
F(H—FE)

and Wallis [26] proved before that v/n+ 1 can be replaced by /n+ %
D. K. Kazarinoff [11] has proved

Ve d < <y

for every positive integer n, but these estimates are not optimal because Watson [27]
proposed the following inequality
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wherein the constants 1/4 and 1/7 are the best possible.
Moreover, using the following inequality [15, p. 322]

2nn(2n+1) (2n)!!
dn+1 (2n—1)11"

/n+1_ 1 <F(n—|—1) "
4 16n+4 "T(n+1)

and, according to a result of Gurland [10], we have

we get

Ctl) [ L, 1
I(n+1) 4 16n+2

2)

Related to (1)—(2), we mention the double inequality

L L _ Tty f1 1
n+-— n+-+-——,
4 (@4n—2* T(n+3) 47 16n—4

which is a consequence of a result of Chu [5].
A better result is the following inequality, for every x > 0,

L1 1 Ty [T ] 3
XT — X —
4 3% +84+ 2%  T(x+3) 4 32x+38

4x

obtained by Slavi¢ [25], who improved the earlier work of Boyd [4]:

IS BN RN Gh ) R ML ! )
n+— -
4 32n+32 TI'(n+3%) 4 30— G 1%

We can see now that the constants ‘l‘ and % (the coefficient of n~!) are sharp in the

problem of approximation of the Wallis ratio.
One of the purpose of this paper is to prove the sharp approximations family

F(”+1)N\/n+l+L_ L5 2 )
T(n+1) ™ 4 32n 12822 20487° ' 81921t

where the involved coefficients provide the best results. Furthermore, we show the
following double inequality for every x > 0O,

\/x+1+i— L <F(x+1)<\/x+1+i—L ©6)
4732 1282 20488 T (xt)) 473 1282

which improves much all the above results.
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Looking carefully at (3)—(4), a new idea arises naturally, that is to introduce a new
type of approximations in terms of continued fractions. We are speaking about the
following new estimates of the form

Pntl) [ 1) 1
T~ "3 9 :
F(n+§) 4 32n+8+2’1+%+#

(7

3n+8+ 40+ .
It is to be noticed that Slavi¢ correctly found in (3) the first coefficients 32 and 8 (from
32x+ 8), but the next performant coefficient proved to be % as in (7).
We prove that for every x > 5,

1 1 C(x+1) 1 1
X+Z+32 3 g <F < X+Z+32 3 9 (8)
X+ +2x+% (x+3) Xt +2x+%+%
Fihtenholt [8, p. 371] proved the formula
et 40 -0’
Qn_1yn VP TT
for some 6,60’ € (0,1), which can be used to get the inequality
I'(n+1) < Viex 1 ©)
— nexp—.
F'(n+1) Pen
We establish the following new approximation formula
(n+1) \/ 1 109 433 92231 1
i L _ — (10
Tnrd) “V" 12" 2880 1036802 T 2976647 29859840m P 17

and we prove that for every x > 2,

\/x_ijL;_ﬂex L Tt 1 Lol an
127 288x 10368 T 6x T (x+1) 12 288x Py

We show that better results can be obtained if in (9)—(11) we replace A by gl More

6n n
precisely, we establish the approximation formula

T(n+1) 1 1 1 17 31 ) 1)

Tntd) Vinexp (5 T 1927 T 640m5 1433607 | 1843200

and we prove the following inequality for every x > 2,

1 T(x+1) o 1
4 < < S ), @3
ﬁexP(Sx 192x3> T(x+1) ﬁexP(Sx 192x3+640x5> (13)
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that refines (10)—(11). Moreover, numerical computations show that (11) improves
much the following double inequalities involving the psi, or digamma function v :

b Bt e
exp(;psi @@) . % <o (ps (e42)),

called the first and the second Kershaw’s double inequality, see [12].

2. A series under the radical

In order to illustrate our new method, we begin this section by searching the best
approximation of the form

r 1 1 b
Lotl) o e tedy b (14)
I(n+1) 4 n n

where a,b are real parameters. A method to compare two approximations (14) is to
define the sequence (wy), by the relations

M =\\/n +1+ +£ expwy (15)
C(n+1) 4

and to a consider an estimate (14) as better as (wy), faster converges to zero. Note
that a powerful way to measure the rate of convergence of a sequence is the following
result first used by Mortici [16]-[23] to construct asymptotic expansions or to accelerate
some convergences.

LEMMA 2.1. If (xn), is convergent to zero and there exists the limit

lim n* (x, —x,41) =1 € R, (16)

n—oo

with k > 1, then there exists the limit:

l
S k=1
,}Ellon x”_k_l'

For complete proof and other details, see, e.g., [18].

Now we can see from this Lemma 2.1 that the speed of convergence of the se-
quence (x,),~ is even higher as the value k satisfying (16) is greater.
By (15), we have

1 1 1 a b
:1n1"(n—|—1)—1n1"<n—|—§> —§1n<n+4—1+;—|—n—2)



A NEW METHOD FOR ESTABLISHING AND PROVING ACCURATE BOUNDS. . . 807

and we develop the difference w, — w1 as power series in n~!,

1 1 /15 3 9\1 1
== (35-a) 5+ (ga—3b- o). 17
YW Wl (32 a) n3+<8 128) * <n5> 17)

Having in mind Lemma 2.1, we can see that the fastest sequence (wy),~ is obtained
when the first two coefficients of the expansion (17) vanish. The corresponding values

a= %, b=— ﬁ give the best approximation of the form (14):
C(n+1) \/ L1l 1
— =\t -t = —.
F(n+%) 4 32n  128n2

Using the same idea, the approximation (5) was obtained.
In fact, using (17) and Lemma 2.1, we can state the following theoretical result:

THEOREM 2.1. (i) If a # 3%, then the sequence (wn),~; behaves as n=2, for
n — oo, since r}ijgonzwn = % (% —a) #£0.

(ii) If a = % and b # — 158, then the sequence (wy),, behaves as n=3, for
n— oo, since lim n’w, = — 5t (l28b+ 1)#0.

Nn—c0
(iii) If a = % and b = —m, then the sequence (wy),, behaves as n=4, for
: 4 5
n — oo, since }Ellon Wn = — 7506 -

The same method presented above can be used to obtain other new estimates (5)
of increasing accuracy. This represents a systematically way to proceed, unlike the
methods used to obtained (1)—(4). Inductively, if assume that the coefficients a;, ay,
..., ay are already known in the estimate

F(n—I— 1) iy \/}’l 1 a ay gy
I'(n+1%) '

then the new coefficient ai | is the value which vanishes the first term of the expansion
in power series of w, — w11, where the sequence (wy),~ is defined by

C(n+1) \/ 1 Af+1

—|—-|— Ly —|— +—exw,n>1.
L (n+3) Pt 2

4 pras]

In this way, we obtained (5), but we omit the proofs for sake of simplicity.
In order to prove the announced inequalities, we use a result of Alzer, who proved
in [2, Theorem 8] that for every integer n > 0, the functions

1 1 2 By,
Fn(x):lnf(x)—< —§>1nx+x—§ln2n—212l(2l_7f)x2l_l (18)
=

and
2n+1
n+ BZi

G, (x)=—InT"(x) + (x——) Inx — x+—ln27r+ 2 W
i=1

19)
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are strictly completely monotonic on (0,e0) (B; is the jth Bernoulli number). In par-
ticular, by taking n = 1,2 in (18)—(19), we obtain that for every x > 0,

1 1 1 1
exp (E " 36007 T 12608 1680x7) <

<M<ex —_L_F; (20)
gt ier P\ 12x T 36003 T 12600 )

Designating by

11 1 1
—V2m e Fexp [ —— — -
) =vam-2ze exp ( 2% 3600 12600 168Ox7>

and

11 1
=2 )864‘"% - R — -
§(x) = V2m-xTieTexp ( 2% 3600 126Ox5> ’

(20) can be written as f (x) <T'(x+1) < g(x). The following bounds for the Wallis
ratio can be stated now:

LEMMA 2.2. For every x > %, it holds:

(N oo P@
\/;<x—%> ) p( x7<2x—1>5> -

F(x—|—1) x X . Q(x)
<W<\/;<x-%> p(‘ﬁ) @b

5040P (x) = 6720x'0 — 13440x” 4-9408x® — 2352x7 + 180x°
—84x° — 94x* +200x° — 116x% + 30x — 3

where

and
25200 (x) = 13440x'° — 40320x° +49056x® — 30240x” +
+9768x° —2088x> + 742x* — 462x° 4+ 161x* — 28x 42

Proof. Using (20) in terms of f and g, we have

f(x) Cx+1) g (x)
e(—1) “Ta+D) T -1

and the conclusion follows by direct computations. [
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THEOREM 2.2. Forevery x > 3, it holds:

\/+1+1 1 5 <F(x+1)<\/+1+1 1
AT 128 204887 T T(xr ) VAT 3 128

Proof. By combining the requested inequalities with (21), it suffices to show that

s x N\ Pw >¢x+1+¢_;_;
e\x-1) P\ g1y 47 30x 12822 2048%3

\/} x ) 0(x) \/+1+1 1
e\x 1) U sy ) SV T T 3 e

1
2
or equivalently u (x) >0 and v(x) < 0, where

09— e Ly P(x) N 1 5
T T T ey 2 U T3 12802 20488

and

and
1 1 0(x) 11 1
= “lnx— = +xl - -1 ).
v(x) = 7 Inx z“nx_% B2e—1) 2 n<x+4+32x 128x2)
We have
S
u//(x): - (x) .
210x% (2x—1)" (2048x* + 512x3 + 64x? — 16x — 5)
and R()
X
V”()C):— 9 5 2
210x7 (2x—1)7 (128x3 +32x2 +4x— 1)
where

S(x) = 175 — 1330x — 3793x* + 33486x° + 34491x* + 234 150x°
—3754991x5 + 1577 142x” + 38668 410x® — 74954 668x° 4 287074 624x'°
—2384044544x'" +8141418656x'% — 12731165 888x'3 + 7387989 504x
+5192728576x" — 13991362 560x'0 + 4748083 200x'7

and

R(x) = 5—130x+ 1193x> — 4618x> + 10995x* — 77385x° + 522624x° — 1720276x’
43485 128x% — 12092 528x” + 65962 400x'" — 243328960x!! 4 507941 504x'2
—839207936x'% + 655818 240x'* — 262348 800x" + 43008 000x'°.

As all the coefficients of the polynomials S (x+3) and R (x4 3) are positive, it results

that S(x) > 0 and R(x) > 0, for every x > 3. In consequence, #” >0 and v/ < 0 on

[3,00). But limy_eo 2 (x) = limy_ee v (x) =0, so u > 0 and v < 0, and the conclusion is
proved. [
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3. A continued fraction under the radical

In order to improve (3)—(4), we introduce the estimates family

T(n+1 1 1
Lrl)z nts+———7, abeR, 22)
I'(n+5) 4 32n+a+?2

which is in fact the first approximation of a future continued fraction. As before, we
define the sequence (z1),> by the relations

C(n+1) 1 1
tory) "3 Sugarg o0 20
2 n
for which
. 3(a—8)  32b—56a—a*+368 of L
T T 048, 163841 )

The solution a =8, b = % of the system

a—8=0
32b—56a—a?+368=0"

provides the best approximation of the form (22), namely

T(n+1) b 1
— =, -t —F.
T (n+3) 4 3n+8+5

Using the same method, approximations (7) were obtained.

THEOREM 3.1. Forevery x > 5, it holds

1 1 I'x+1 1 1
ot 5 < I 1)< X+ — 3
4 32x+8+ F(x—|—§) 4 32x+8+

2x+% 2x+ % + %

Proof. For the left-hand side inequality of (23), using (21), it suffices to show that

x(ox ) P(x) 1 1
= &*xp| = |> |*tt
e\x—3 X7 (2x—1) 4 3248+ 770

or h(x) >0, where

1 1 P 1 1 1
h(x)==zInx— = +xIn xl_ () 5——1n Xt
2 2 X—3 x7(2x—1) 2 4 32x+8+m
2
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‘We have

T (x)

W' (x) = 9 2 7 2 2’
210x% (4x+1)" (2x — 1)" (64x% + 32x + 13)” (64x? + 32x + 15)

where

T (x) = 266175 + 849030x — 4753 313x> — 18 580378x° + 4378 923x*
+194938270x° 4 349569953x° — 952687221x” — 2583975732x°
—1993959336x” + 16439 848 808x'"+ 5908 730096
—19460247040x'2 — 166020044 288x'3 — 109494 392 448x'*
—397316964352x"> — 407518 806016x'° — 1020855320576x'7
+260112384000x!3.

As all the coefficients of the polynomial T (x+ 5) are positive, it results that T (x) > 0,
for every x > 0. Now, i > 0 on [5,e0), since & > 0 on [5,0) and lim,_.. /% (x) = 0.

The bounds (21) prove to be weak for showing the right-hand side inequality (23).
We are forced to use the following stronger double inequality

1 1 1 1
exp (E " 36007 ' 12608 1680x7) <

F'(x+1) < 1 N 1 1 n 1
NGT R P P\12x 73603 T 12606 1680x7 ' 11889 )°
which is also a particular case of (18)—(19). Then

1 1 1

X 1 1
C(x+1) _ \/E( x ) exXp <m ~ 3600 T 13605 Tesor 1188x9>
e 1 . 1 1 . 1
exp <12(x—£) 360(x—1)’ + 1260(x—1)’ 1680(x—§)7>

1 1
+ 4
4 32x48+-—2

1, 25
2x+§+m

The last inequality can be equivalently written as g (x) < 0, where

(x)—llnx—l—kxlni—l— L1 + L1 + !
1Y =73 2 x—3 12x  360x3  1260x> 1680x7 ~ 1188x?

1 1 1 1
— — + — .
(12()6—%) 360 (x—1)° 1260 (x— 1)’ 1680(x—%)7>
We have
W (x)

!
X)=————,
¢ ) 2310x1 (2x—1)°
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where
W (x) = 175 — 3150x +25123x% — 116 214x> + 341 767x* — 654 846x

) =175 —
+793411x° — 531510x7 + 89425x% + 87 115x° + 41 580x'°
— 4047 120x"3 + 7428 960x*

—392700x"! + 1413 720x'?
—2956800x!7 +591360x'8.

—8796480x" 4 6652 800x'°

All the coefficients of the polynomial W (x+2) are positive, so W (x) > 0, for every
). As a consequence, g < 0 on [2,e0), since ¢” (x) <0, for every x € [2,00)

X € [2,00
=0. O

and limy_e. g (x)
4. Involving the exponential

In order to improve (9), we introduce the approximations family

1
"+ 1/n+a—|— +5 exp6 a,b,c € R, (24)

As before, we define the sequence (#,),, by the relations

Fn+
n+a+ + exp6 -expty, n=1,

for which
1 ) 1

1 1
h =41 = <_§a__> - <_a b+_ ﬁ

13 3 3, 1, 11\1 1
b—3 Sab-d—ca—— )= +0(=]. @5
( AT ety 192) e <n5> (23)

Accordlng to Lemma 2.1, the best approximation (24) is obtained for the values a =
109 which vanish the first three coefficients of (25). Continuing

— 15 b= 53, c=—103s> 1the
this method, other more accurate approximations of the form (9) can be obtained

THEOREM 4.1. Forevery x > 2, it holds
\/x Lt w9 1 Tt J 1 1 1
P6x “T(x+1) 12 7288 “Pox

T 12 288 10368x2 <Py

Proof. Using (21), it suffices to prove that

109 1

ﬁ * N oo P@ >%_L+;_7ex
e\ 1) P\ Ty 127 288x 103682 P bx

X—3
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s(x N oW \_ [T 1 1
A\=T) Py 12 288x Py’

or j(x) >0 and m(x) <0, where

P 1 11 109 1
*___PE) ——1n<x 7>_

and

'(x)—llnx—l—kxln ——=tsoo —
JX = 2 12 288x  10368x2

2 x—1 K(2x—1)7 2 6x’
respective
1 1 X 0(x) 1 1 1 1
= —Ilnx— = +xI — —=1 ——t .
) = I T S 1y 2 n<x 12+288x) 6x
We have
.// Z(x)
.] ('x) = 9 7 3 2 27
210x% (2x—1)" (10368x3 — 864x? + 36x — 109)
and T
m//(x):_ 5 ()C) 5
210x7 (2x—1)” (288x%2 —24x+ 1)
where

Z(x) = 83167 — 1219274x +9023263x> — 61873 002x> 4+ 405 113451x*
—2052079218x° + 8471225687x% — 32594 847 367x
+109847017800x* — 273055428 688x” + 436652 163416x'°
—365860041456x'! — 11573535680x'>+ 367665 187456x"3
—352043798400x"* + 44836485 120x" + 25 140326 400x'6

and

T (x) = 5—330x+ 10793x> — 210258x> 4- 2644 525x* — 21495 852x°
+114989958x° — 411059684x” + 969881 640x® — 1377 152784x°
+632956128x'°+ 1693333 824x!! — 4830053 760x'?
+5072103 680x"% — 2624670 720x'* 4 562 544 640x".

We have T (x) >0 and Z(x) > 0, for every x > 2. In consequence, j >0 and m < 0
on [2,0), since j” >0 and m” <0, with j(e0) =m(ec) =0. O

The ideas presented in the previous sections can be used to establish further im-
provements, when also some surpringsly results can be obtained. We refer to the fact
that the best results in (10)—(11) are obtained when we replace 6%1 by SLn In this sense,
let us introduce the following extended family of approximations:

b c

r 1
(n+1) nexp<z+_3+_5>, a,b,ceR. (26)
n n n

I'(n+%)
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The associated sequence (y,), , defined by

F'(n+1)
F(n—l—%)

- + + Ly, 3+ ) L
R TR T\ T e )
1 31 1 1
6b—— | — —10b—5¢ o(=).

=& 40 of the system

b
= \/nexp (ﬁ +=+ %) -€Xpyn
n n n

satisfies

: _1
The solution a = 3,b = 192,

a=}
—a—3b+£ =0
—a—10b—5c+ 3 =0

provides the best approximation (26). The same method permited us to establish (12).
Using (21), the bounds (13) can be similarly proved. Being similar with the previous
proofs, we omit the details.

Finally, it is to be noticed that other more accurate formulas (5), (7), (10), (12), or
stronger bounds (6), (11), (13) can be obtained, considering more terms in (18)—(19).
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