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A NEW METHOD FOR ESTABLISHING AND PROVING

ACCURATE BOUNDS FOR THE WALLIS RATIO

CRISTINEL MORTICI

(Communicated by N. Elezović)

Abstract. The aim of this paper is to establish new inequalities about the Wallis ratio that im-
prove the Gautschi-Kershaw results.

1. Introduction

In the recent past, the problem of finding new, sharp inequalities about the Euler
gamma function and in particular about the Wallis ratio

Γ(n+1)
Γ
(
n+ 1

2

) =
1√
π
· (2n)!!
(2n−1)!!

has attracted the attention of many authors. See, e.g., [1-3, 6-27]. From the following
result of Gautschi [9]

n1−s � Γ(n+1)
Γ(n+ s)

� (n+1)1−s , 0 � s � 1,

it follows, for s = 1/2,
√

n � Γ(n+1)
Γ
(
n+ 1

2

) �
√

n+1,

and Wallis [26] proved before that
√

n+1 can be replaced by
√

n+ 1
2 .

D. K. Kazarinoff [11] has proved√
n+

1
4

<
Γ(n+1)
Γ
(
n+ 1

2

) <

√
n+

1
2
,

for every positive integer n, but these estimates are not optimal because Watson [27]
proposed the following inequality√

x+
1
4

<
Γ(x+1)
Γ
(
x+ 1

2

) �
√

x+
1
π

, x � 0,
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wherein the constants 1/4 and 1/π are the best possible.
Moreover, using the following inequality [15, p. 322]√

2πn(2n+1)
4n+1

<
(2n)!!

(2n−1)!!
,

we get √
n+

1
4
− 1

16n+4
<

Γ(n+1)
Γ
(
n+ 1

2

) (1)

and, according to a result of Gurland [10], we have

Γ(n+1)
Γ
(
n+ 1

2

) <

√
n+

1
4

+
1

16n+2
(2)

Related to (1)–(2), we mention the double inequality√
n+

1
4
− 1

(4n−2)2
<

Γ(n+1)
Γ
(
n+ 1

2

) <

√
n+

1
4

+
1

16n−4
,

which is a consequence of a result of Chu [5].
A better result is the following inequality, for every x � 0,√

x+
1
4

+
1

32x+8+ 36
4x−1

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x+

1
4

+
1

32x+8
(3)

obtained by Slavić [25], who improved the earlier work of Boyd [4]:

√
n+

1
4

+
1

32n+32
<

Γ(n+1)
Γ
(
n+ 1

2

) <

√
n+

1
4

+
1

32n− 64n−148
8n+11

. (4)

We can see now that the constants 1
4 and 1

32 (the coefficient of n−1 ) are sharp in the
problem of approximation of the Wallis ratio.

One of the purpose of this paper is to prove the sharp approximations family

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
1

32n
− 1

128n2 −
5

2048n3 +
23

8192n4 (5)

where the involved coefficients provide the best results. Furthermore, we show the
following double inequality for every x � 0,√

x+
1
4

+
1

32x
− 1

128x2 −
5

2048x3 <
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x+

1
4

+
1

32x
− 1

128x2 , (6)

which improves much all the above results.
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Looking carefully at (3)–(4), a new idea arises naturally, that is to introduce a new
type of approximations in terms of continued fractions. We are speaking about the
following new estimates of the form

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√√√√√√n+

1
4

+
1

32n+8+ 9
2n+ 1

2 + 25

32n+8+ 49
2n +

.. .

. (7)

It is to be noticed that Slavić correctly found in (3) the first coefficients 32 and 8 (from
32x+8), but the next performant coefficient proved to be 9

2 as in (7).
We prove that for every x � 5,√√√√x+

1
4

+
1

32x+8+ 9
2x+ 1

2

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√√√√x+
1
4

+
1

32x+8+ 9
2x+ 1

2 + 25
32x

. (8)

Fihtenholt [8, p. 371] proved the formula

(2n)!!
(2n−1)!!

=
√
πnexp

4θ −θ ′

4n
,

for some θ ,θ ′ ∈ (0,1) , which can be used to get the inequality

Γ(n+1)
Γ
(
n+ 1

2

) <
√

nexp
1
6n

. (9)

We establish the following new approximation formula

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n− 1
12

+
1

288n
− 109

10368n2+
433

497664n3+
92231

29859840n4 exp
1
6n

(10)

and we prove that for every x � 2,√
x− 1

12
+

1
288x

− 109
10368x2 exp

1
6x

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x− 1

12
+

1
288x

exp
1
6x

. (11)

We show that better results can be obtained if in (9)–(11) we replace 1
6n by 1

8n . More
precisely, we establish the approximation formula

Γ(n+1)
Γ
(
n+ 1

2

) ≈√
nexp

(
1
8n

− 1
192n3 +

1
640n5 −

17
14336n7 +

31
18432n9

)
(12)

and we prove the following inequality for every x � 2,

√
xexp

(
1
8x

− 1
192x3

)
<

Γ(x+1)
Γ
(
x+ 1

2

) <
√

xexp

(
1
8x

− 1
192x3 +

1
640x5

)
, (13)
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that refines (10)–(11). Moreover, numerical computations show that (11) improves
much the following double inequalities involving the psi, or digamma function ψ :

√
x+

1
4

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x− 1

2
+

√
3
4

exp

(
1
2
Psi

(
x+

√
1
2

))
<

Γ(x+1)
Γ
(
x+ 1

2

) < exp

(
1
2
Psi

(
x+

3
4

))
,

called the first and the second Kershaw’s double inequality, see [12].

2. A series under the radical

In order to illustrate our new method, we begin this section by searching the best
approximation of the form

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
a
n

+
b
n2 , (14)

where a,b are real parameters. A method to compare two approximations (14) is to
define the sequence (wn)n�1 by the relations

Γ(n+1)
Γ
(
n+ 1

2

) =

√
n+

1
4

+
a
n

+
b
n2 · expwn (15)

and to a consider an estimate (14) as better as (wn)n�1 faster converges to zero. Note
that a powerful way to measure the rate of convergence of a sequence is the following
result first used by Mortici [16]-[23] to construct asymptotic expansions or to accelerate
some convergences.

LEMMA 2.1. If (xn)n�1 is convergent to zero and there exists the limit

lim
n→∞

nk(xn− xn+1) = l ∈ R, (16)

with k > 1, then there exists the limit:

lim
n→∞

nk−1xn =
l

k−1
.

For complete proof and other details, see, e.g., [18].

Now we can see from this Lemma 2.1 that the speed of convergence of the se-
quence (xn)n�1 is even higher as the value k satisfying (16) is greater.

By (15), we have

wn = lnΓ(n+1)− lnΓ
(

n+
1
2

)
− 1

2
ln

(
n+

1
4

+
a
n

+
b
n2

)
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and we develop the difference wn −wn+1 as power series in n−1,

wn −wn+1 =
(

1
32

−a

)
1
n3 +

(
15
8

a− 3
2
b− 9

128

)
1
n4 +O

(
1
n5

)
. (17)

Having in mind Lemma 2.1, we can see that the fastest sequence (wn)n�1 is obtained
when the first two coefficients of the expansion (17) vanish. The corresponding values
a = 1

32 , b = − 1
128 give the best approximation of the form (14):

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
1

32n
− 1

128n2 .

Using the same idea, the approximation (5) was obtained.
In fact, using (17) and Lemma 2.1, we can state the following theoretical result:

THEOREM 2.1. (i) If a �= 1
32 , then the sequence (wn)n�1 behaves as n−2, for

n → ∞, since lim
n→∞

n2wn = 1
2

( 1
32 −a

) �= 0.

(ii) If a = 1
32 and b �= − 1

128 , then the sequence (wn)n�1 behaves as n−3, for
n → ∞, since lim

n→∞
n3wn = − 1

256 (128b+1) �= 0.

(iii) If a = 1
32 and b = − 1

128 , then the sequence (wn)n�1 behaves as n−4, for

n → ∞, since lim
n→∞

n4wn = − 5
4096 .

The same method presented above can be used to obtain other new estimates (5)
of increasing accuracy. This represents a systematically way to proceed, unlike the
methods used to obtained (1)–(4). Inductively, if assume that the coefficients a1, a2,
..., ak are already known in the estimate

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
a1

n
+ ...+

ak

nk +
ak+1

nk+1 ,

then the new coefficient ak+1 is the value which vanishes the first term of the expansion
in power series of wn −wn+1, where the sequence (wn)n�1 is defined by

Γ(n+1)
Γ
(
n+ 1

2

) =

√
n+

1
4

+
a1

n
+ ...+

ak

nk +
ak+1

nk+1 · expwn, n � 1.

In this way, we obtained (5), but we omit the proofs for sake of simplicity.
In order to prove the announced inequalities, we use a result of Alzer, who proved

in [2, Theorem 8] that for every integer n � 0, the functions

Fn (x) = lnΓ(x)−
(

x− 1
2

)
lnx+ x− 1

2
ln2π−

2n

∑
i=1

B2i

2i(2i−1)x2i−1 (18)

and

Gn (x) = − lnΓ(x)+
(

x− 1
2

)
lnx− x+

1
2

ln2π +
2n+1

∑
i=1

B2i

2i(2i−1)x2i−1 (19)
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are strictly completely monotonic on (0,∞) (Bj is the j th Bernoulli number). In par-
ticular, by taking n = 1,2 in (18)–(19), we obtain that for every x > 0,

exp

(
1

12x
− 1

360x3 +
1

1260x5 −
1

1680x7

)
<

<
Γ(x+1)√

2π · xx+ 1
2 e−x

< exp

(
1

12x
− 1

360x3 +
1

1260x5

)
. (20)

Designating by

f (x) =
√

2π · xx+ 1
2 e−x exp

(
1

12x
− 1

360x3 +
1

1260x5 −
1

1680x7

)

and

g(x) =
√

2π · xx+ 1
2 e−x exp

(
1

12x
− 1

360x3 +
1

1260x5

)
,

(20) can be written as f (x) < Γ(x+1) < g(x) . The following bounds for the Wallis
ratio can be stated now:

LEMMA 2.2. For every x > 1
2 , it holds:

√
x
e

(
x

x− 1
2

)x

exp

(
− P(x)

x7 (2x−1)5

)
<

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x
e

(
x

x− 1
2

)x

exp

(
− Q(x)

x5 (2x−1)7

)
, (21)

where

5040P(x) = 6720x10−13440x9 +9408x8−2352x7 +180x6

−84x5−94x4 +200x3−116x2 +30x−3

and

2520Q(x) = 13440x10−40320x9 +49056x8−30240x7 +
+9768x6−2088x5 +742x4−462x3 +161x2−28x+2

Proof. Using (20) in terms of f and g , we have

f (x)
g
(
x− 1

2

) <
Γ(x+1)
Γ
(
x+ 1

2

) <
g(x)

f
(
x− 1

2

) ,
and the conclusion follows by direct computations. �
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THEOREM 2.2. For every x � 3, it holds:√
x+

1
4

+
1

32x
− 1

128x2 −
5

2048x3 <
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x+

1
4

+
1

32x
− 1

128x2 .

Proof. By combining the requested inequalities with (21), it suffices to show that√
x
e

(
x

x− 1
2

)x

exp

(
− P(x)

x7 (2x−1)5

)
>

√
x+

1
4

+
1

32x
− 1

128x2 −
5

2048x3

and √
x
e

(
x

x− 1
2

)x

exp

(
− Q(x)

x5 (2x−1)7

)
<

√
x+

1
4

+
1

32x
− 1

128x2 ,

or equivalently u(x) > 0 and v(x) < 0, where

u(x) =
1
2

lnx− 1
2

+x ln
x

x− 1
2

− P(x)

x7 (2x−1)5
− 1

2
ln

(
x+

1
4

+
1

32x
− 1

128x2 −
5

2048x3

)

and

v(x) =
1
2

lnx− 1
2

+ x ln
x

x− 1
2

− Q(x)

x5 (2x−1)7
− 1

2
ln

(
x+

1
4

+
1

32x
− 1

128x2

)
.

We have

u′′ (x) =
S (x)

210x9 (2x−1)7 (2048x4 +512x3 +64x2−16x−5)2

and

v′′ (x) = − R(x)

210x7 (2x−1)9 (128x3 +32x2 +4x−1)2
,

where

S (x) = 175−1330x−3793x2+33486x3 +34491x4 +234150x5

−3754991x6 +1577142x7+38668410x8−74954668x9+287074624x10

−2384044544x11+8141418656x12−12731165888x13+7387989504x14

+5192728576x15−13991362560x16+4748083200x17

and

R(x) = 5−130x+1193x2−4618x3 +10995x4−77385x5 +522624x6−1720276x7

+3485128x8−12092528x9+65962400x10−243328960x11+507941504x12

−839207936x13+655818240x14−262348800x15+43008000x16.

As all the coefficients of the polynomials S (x+3) and R(x+3) are positive, it results
that S (x) > 0 and R(x) > 0, for every x � 3. In consequence, u′′ > 0 and v′′ < 0 on
[3,∞). But limx→∞ u(x) = limx→∞ v(x) = 0, so u > 0 and v < 0, and the conclusion is
proved. �
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3. A continued fraction under the radical

In order to improve (3)–(4), we introduce the estimates family

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
1

32n+a+ b
n

, a,b ∈ R, (22)

which is in fact the first approximation of a future continued fraction. As before, we
define the sequence (zn)n�1 by the relations

Γ(n+1)
Γ
(
n+ 1

2

) =

√
n+

1
4

+
1

32n+a+ b
n

· expzn , n � 1,

for which

zn − zn+1 =
3(a−8)
2048n4 +

32b−56a−a2+368
16384n5 +O

(
1
n6

)
.

The solution a = 8, b = 9
2 of the system{

a−8 = 0
32b−56a−a2+368 = 0

,

provides the best approximation of the form (22), namely

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+
1
4

+
1

32n+8+ 9
2n

.

Using the same method, approximations (7) were obtained.

THEOREM 3.1. For every x � 5, it holds√√√√x+
1
4

+
1

32x+8+ 9
2x+ 1

2

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√√√√x+
1
4

+
1

32x+8+ 9
2x+ 1

2 + 25
32x

. (23)

Proof. For the left-hand side inequality of (23), using (21), it suffices to show that

√
x
e

(
x

x− 1
2

)x

exp

(
− P(x)

x7 (2x−1)5

)
>

√√√√x+
1
4

+
1

32x+8+ 9
2x+ 1

2

,

or h(x) > 0, where

h(x) =
1
2

lnx− 1
2

+ x ln
x

x− 1
2

− P(x)

x7 (2x−1)5
− 1

2
ln

⎛
⎝x+

1
4

+
1

32x+8+ 9
2x+ 1

2

⎞
⎠ .
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We have

h′′ (x) =
T (x)

210x9 (4x+1)2 (2x−1)7 (64x2 +32x+13)2 (64x2 +32x+15)2
,

where

T (x) = 266175+849030x−4753313x2−18580378x3+4378923x4

+194938270x5+349569953x6−952687221x7−2583975732x8

−1993959336x9+16439848808x10+5908730096x11

−19460247040x12−166020044288x13−109494392448x14

−397316964352x15−407518806016x16−1020855320576x17

+260112384000x18.

As all the coefficients of the polynomial T (x+5) are positive, it results that T (x) > 0,
for every x > 0. Now, h > 0 on [5,∞), since h′′ > 0 on [5,∞) and limx→∞ h(x) = 0.

The bounds (21) prove to be weak for showing the right-hand side inequality (23).
We are forced to use the following stronger double inequality

exp

(
1

12x
− 1

360x3 +
1

1260x5 −
1

1680x7

)
<

<
Γ(x+1)√

2π · xx+ 1
2 e−x

< exp

(
1

12x
− 1

360x3 +
1

1260x5 −
1

1680x7 +
1

1188x9

)
,

which is also a particular case of (18)–(19). Then

Γ(x+1)
Γ
(
x+ 1

2

) <

√
x
e

(
x

x− 1
2

)x exp
(

1
12x − 1

360x3 + 1
1260x5 − 1

1680x7 + 1
1188x9

)
exp

(
1

12(x− 1
2 )

− 1

360(x− 1
2 )

3 + 1

1260(x− 1
2 )

5 − 1

1680(x− 1
2 )

7

)

<

√√√√x+
1
4

+
1

32x+8+ 9
2x+ 1

2 + 25
32x

.

The last inequality can be equivalently written as q(x) < 0, where

q(x) =
1
2

lnx− 1
2

+ x ln
x

x− 1
2

+
(

1
12x

− 1
360x3 +

1
1260x5 −

1
1680x7 +

1
1188x9

)

−
(

1

12
(
x− 1

2

) − 1

360
(
x− 1

2

)3 +
1

1260
(
x− 1

2

)5 − 1

1680
(
x− 1

2

)7
)

.

We have

q′′ (x) = − W (x)
2310x11 (2x−1)9

,
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where

W (x) = 175−3150x+25123x2−116214x3+341767x4−654846x5

+793411x6−531510x7 +89425x8 +87115x9 +41580x10

−392700x11 +1413720x12−4047120x13+7428960x14

−8796480x15 +6652800x16−2956800x17+591360x18.

All the coefficients of the polynomial W (x+2) are positive, so W (x) > 0, for every
x ∈ [2,∞). As a consequence, q < 0 on [2,∞), since q′′ (x) < 0, for every x ∈ [2,∞)
and limx→∞ q(x) = 0. �

4. Involving the exponential

In order to improve (9), we introduce the approximations family

Γ(n+1)
Γ
(
n+ 1

2

) ≈
√

n+a+
b
n

+
c
n2 exp

1
6n

, a,b,c ∈ R, (24)

As before, we define the sequence (tn)n�1 by the relations

Γ(n+1)
Γ
(
n+ 1

2

) =

√
n+a+

b
n

+
c
n2 exp

1
6n

· exptn , n � 1,

for which

tn − tn+1 =
(
−1

2
a− 1

24

)
1
n2 +

(
1
2
a−b+

1
2
a2 +

1
24

)
1
n3

+
(

3
2
b− 1

2
a− 3

2
c+

3
2
ab− 3

4
a2− 1

2
a3− 11

192

)
1
n4 +O

(
1
n5

)
. (25)

According to Lemma 2.1, the best approximation (24) is obtained for the values a =
− 1

12 , b = 1
288 , c =− 109

10368 , which vanish the first three coefficients of (25). Continuing
this method, other more accurate approximations of the form (9) can be obtained.

THEOREM 4.1. For every x � 2, it holds√
x− 1

12
+

1
288x

− 109
10368x2 exp

1
6x

<
Γ(x+1)
Γ
(
x+ 1

2

) <

√
x− 1

12
+

1
288x

exp
1
6x

.

Proof. Using (21), it suffices to prove that

√
x
e

(
x

x− 1
2

)x

exp

(
− P(x)

x7 (2x−1)5

)
>

√
x− 1

12
+

1
288x

− 109
10368x2 exp

1
6x
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and √
x
e

(
x

x− 1
2

)x

exp

(
− Q(x)

x5 (2x−1)7

)
<

√
x− 1

12
+

1
288x

exp
1
6x

,

or j (x) > 0 and m(x) < 0, where

j (x) =
1
2

lnx− 1
2

+x ln
x

x− 1
2

− P(x)

x7 (2x−1)5
− 1

2
ln

(
x− 1

12
+

1
288x

− 109
10368x2

)
− 1

6x
,

respective

m(x) =
1
2

lnx− 1
2

+ x ln
x

x− 1
2

− Q(x)

x5 (2x−1)7
− 1

2
ln

(
x− 1

12
+

1
288x

)
− 1

6x
.

We have

j′′ (x) =
Z (x)

210x9 (2x−1)7 (10368x3−864x2 +36x−109)2
,

and

m′′ (x) = − T (x)

210x7 (2x−1)9 (288x2−24x+1)2
,

where

Z (x) = 83167−1219274x+9023263x2−61873002x3+405113451x4

−2052079218x5+8471225687x6−32594847367x7

+109847017800x8−273055428688x9+436652163416x10

−365860041456x11−11573535680x12+367665187456x13

−352043798400x14+44836485120x15+25140326400x16

and

T (x) = 5−330x+10793x2−210258x3 +2644525x4−21495852x5

+114989958x6−411059684x7+969881640x8−1377152784x9

+632956128x10+1693333824x11−4830053760x12

+5072103680x13−2624670720x14+562544640x15.

We have T (x) > 0 and Z (x) > 0, for every x � 2. In consequence, j > 0 and m < 0
on [2,∞), since j′′ > 0 and m′′ < 0, with j (∞) = m(∞) = 0. �

The ideas presented in the previous sections can be used to establish further im-
provements, when also some surpringsly results can be obtained. We refer to the fact
that the best results in (10)–(11) are obtained when we replace 1

6n by 1
8n . In this sense,

let us introduce the following extended family of approximations:

Γ(n+1)
Γ
(
n+ 1

2

) ≈√
nexp

(
a
n

+
b
n3 +

c
n5

)
, a,b,c ∈ R. (26)
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The associated sequence (yn)n�1 , defined by

Γ(n+1)
Γ
(
n+ 1

2

) =
√

nexp

(
a
n

+
b
n3 +

c
n5

)
· expyn

satisfies

yn− yn+1 =
(
−a+

1
8

)
1
n2 +

(
a− 1

8

)
1
n3 +

(
−a−3b+

7
64

)
1
n4

+
(

a+6b− 3
32

)
1
n5 +

(
−a−10b−5c+

31
384

)
1
n6 +O

(
1
n7

)
.

The solution a = 1
8 ,b = − 1

192 ,c = 1
640 of the system⎧⎪⎪⎨

⎪⎪⎩
a = 1

8

−a−3b+ 7
64 = 0

−a−10b−5c+ 31
384 = 0

provides the best approximation (26). The same method permited us to establish (12).
Using (21), the bounds (13) can be similarly proved. Being similar with the previous
proofs, we omit the details.

Finally, it is to be noticed that other more accurate formulas (5), (7), (10), (12), or
stronger bounds (6), (11), (13) can be obtained, considering more terms in (18)–(19).
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[7] N. ELEZOVIĆ, AND J. PEČARIĆ, Differential and integral f−means and applications to digamma

function, Math. Inequal. Appl., 3, 2 (2000), 189–196.
[8] G. M. FIHTENHOLT, Course on differential and integral calculus, vol. 2, Moscow, 1969.
[9] W. GAUTSCHI, Inequalities for gamma and incomplete gamma function, J. Math. Phys., 39 (1959),

77–81.
[10] J. GURLAND, On Wallis’ formula, Amer. Math. Monthly, 63 (1956), 643–645.
[11] D. K. KAZARINOFF, On Wallis’ formula, Edindurgh Math. Notes, 40 (1956), 19–21.
[12] D. KERSHAW, Some extentions of W. Gautschi’s inequalities for the gamma function, Math. Comp.,

41, 164 (1983), 607–611.
[13] S. KOUMANDOS, Monotonicity of some functions involving the gamma and psi functions, Math.

Comp., 77 (2008), 2261–2275.
[14] A.-J. LI, J. YUAN, AND C.-P. CHEN, Monotonicity results for the polygamma functions, Math. In-

equal. Appl., 11, 3 (2008), 307–316.



A NEW METHOD FOR ESTABLISHING AND PROVING ACCURATE BOUNDS. . . 815
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