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Abstract. In this paper we provide an unified approach to the Hilbert-type inequalities with ho-
mogeneous kernel of degree 0 and certain weight functions. As an application, we define the
related Hilbert-type operators and analyze their norms. In the case of conjugate exponents, we
obtain the best possible constants involved in the right-hand sides of derived inequalities, and
norms of the Hilbert-type operators as well. Finally, we consider some special choices of homo-
geneous kernels and parameters.

1. Introduction

Let p and q be conjugate exponents, that is, 1
p + 1

q = 1, p > 1. One of the earliest
versions of the classical Hilbert inequality, that holds for all non-negative functions
f ∈ Lp(R+) and g ∈ Lq(R+) , is∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy � π

sin
(
π
p

)‖ f‖Lp(R+)‖g‖Lq(R+), (1)

where the constant factor π
sin

(
π
p

) is the best possible in the sense that it can not be

replaced with a smaller constant (see [10]).
In 1934, Hardy et. al. (see [11]) extended (1) to the case of non-homogeneous

kernel k1(x,y) of degree −1,∫ ∞

0

∫ ∞

0
k1(x,y) f (x)g(y)dxdy � c1(p)‖ f‖Lp(R+)‖g‖Lq(R+), (2)

where c1(p) =
∫ ∞
0 k1(u,1)u−

1
p du ∈ R and p,q are conjugate exponents with p > 1.

Recall that homogeneous function kα : R+ ×R+ → R has degree −α , α > 0, if
kα(tx, ty) = t−αkα(x,y) for all t,x,y ∈ R+ .

The Hilbert inequality is very important in mathematical analysis and its appli-
cations and, although classical, is still a field of interest of numerous mathematicians.
During decades, it was generalized in many different directions, such as different choices
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of kernels, sets of integration etc. One of the most interesting problems concerning the
Hilbert inequality is the problem of the best possible constant factors. That problem
will be investigated in this paper.

In paper [2], Y. Bicheng obtained generalization of (1) considering the kernel
1

xs+ys , s > 0, and introducing two pairs of conjugate parameters. Also, Y. Bicheng
established in [4] extension of (2) by introducing the non-homogeneous kernel. In both
papers, the best possible constants are obtained.

On the other hand, M. Krnić and J. Pečarić provided in [12] an unified treatment
of the Hilbert-type inequalities. As an application, they obtained appropriate results for
homogeneous kernels of negative degree and power weights. Further, M. Krnić et. al.
obtained in [13] the inequality∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)l dxdy � B(1−A2p, l−1+A2p)×

×
[∫ ∞

0
xpqA1−1 f p(x)dx

] 1
p
[∫ ∞

0
xpqA2−1gq(y)dy

] 1
q

, (3)

with the best possible constant factor on the right-hand side of the inequality, where
l > 0, A1 ∈

〈
1
q , 1−l

q

〉
, A2 ∈

〈
1−l
p , 1

p

〉
, pA2 +qA1 = 2− l , and B(·, ·) is the usual Beta

function. Moreover, M. Krnić obtained in [15] the best constant factors expressed in
terms of Gaussian hypergeometric functions.

Very recently, Y. Bicheng obtained in [7] the best possible constants for arbitrary
homogeneous kernel of negative degree and some special power weights. Namely, he
considered non-negative homogeneous kernel kl : R

2
+ → R of degree −l , l > 0, two

pairs p,q and r,s of conjugate exponents, and power weights ϕ ,ψ : R+ → R defined

by ϕ(x) = xp(1− l
r )−1 , ψ(y) = yq(1− l

s)−1 . He obtained the Hilbert-type inequality∫ ∞

0

∫ ∞

0
kl(x,y) f (x)g(y)dxdy � cl(r)‖ f‖Lp

ϕ (R+)‖g‖Lq
ψ(R+), (4)

where cl(r) =
∫ ∞
0 kl(t,1)t

l
r−1dt and f ,g : R+ → R are non-negative measurable func-

tions with respect to the norm

‖ f‖Lr
Ω〈a,b〉 =

[∫ b

a
Ω(x) f r(x)dx

] 1
r

, (5)

for r > 0 and non-negative measurable weight function Ω : 〈a,b〉 → R+ Moreover,
the related Hilbert-type operator Tl : Lp

ϕ(R+) �→ Lp
ψ1−p(R+) , defined by (Tl f )(y) =∫ ∞

0 kl(x,y) f (x) dx is also studied. Since cl(r) is the best possible constant in (4), one
obtains that the norm of the Hilbert-type operator Tl is ‖Tl‖ = cl(r) .

The best possible constant factors were also studied in extensions of the Hilbert
inequality to a multidimensional case. See, for example, papers [1], [3] and [14].

In 2007, Y. Bicheng obtained in [5] the best possible constant factor for the homo-
geneous kernel of degree 0 and non-negative measurable functions f ,g : R+ → R :∫ ∞

0

∫ ∞

0

min{x,y}
max{x,y} f (x)g(y)dxdy � 2

[∫ ∞

0
x f 2(x)dx

] 1
2
[∫ ∞

0
yg2(y)dy

] 1
2

. (6)
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The main objective of this paper is an investigation of the Hilbert-type inequali-
ties with homogeneous kernels of degree 0. We provide an unified treatment to such
inequalities and also obtain the best possible constant factors in some general cases. As
an application, we define the related Hilbert-type operators and analyze their norms.
Further, we regard the Hilbert-type inequalities in more general manner, that is, in the
setting of non-conjugate exponents. Basic definitions and results about non-conjugate
exponents will be introduced in the next section.

Techniques that will be used in the proofs are mainly based on the classical real
analysis. Also, throughout this paper we suppose that all functions are non-negative
and measurable, so that all integrals converge.

2. Non-conjugate exponents

Suppose p and q are real parameters, such that

p > 1, q > 1,
1
p

+
1
q

� 1, (7)

and let p′ = p
p−1 and q′ = q

q−1 respectively be their conjugate exponents, that is, 1
p +

1
p′ = 1 and 1

q + 1
q′ = 1. Further, define

λ =
1
p′

+
1
q′

(8)

and observe that 0 < λ � 1 holds for all p and q as in (7). In particular, equality
λ = 1 holds in (8) if and only if q = p′ , that is, only if p and q are mutually conjugate.
Otherwise, we have 0 < λ < 1, and such parameters p and q will be referred to as
non-conjugate exponents.

Considering p , q , and λ as in (7) and (8), Hardy, Littlewood, and Pólya, [11],
obtained an extension of (1). However, the original proof did not bring any informa-
tion about the value of the constant included in the right-hand side of the inequality.
That drawback was improved by Levin, [17], who obtained an explicit upper bound for
the constant, that, in conjugate case, reduces to the previously known sharp constant

π
sin

(
π
p

) . A simpler proof of that extension, based on a single application of the Hölder

inequality, was given later by F. F. Bonsall, [8].
Very recently, A. Čižmešija et. al. developed in paper [9] an unified treatment of

the general Hilbert-type inequalities extended to the case of non-conjugate exponents.
Their main result, based on one Bonsall’s idea from paper [8], is the following.

THEOREM 1. Let real parameters p, q , and λ be as in (7) and (8), and let X and
Y be measure spaces with positive σ -finite measures μ1 and μ2 respectively. Let K be
a non-negative measurable function on X ×Y , ϕ a measurable, a.e. positive function
on X , and ψ a measurable, a.e. positive function on Y . If the functions F on X and
G on Y are defined by

F(x) =
[∫

Y
K(x,y)ψ−q′(y)dμ2(y)

] 1
q′

, x ∈ X , (9)
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and

G(y) =
[∫

X
K(x,y)ϕ−p′(x)dμ1(x)

] 1
p′

, y ∈ Y, (10)

then for all non-negative measurable functions f on X and g on Y the inequalities∫
X

∫
Y

Kλ (x,y) f (x)g(y)dμ1(x)dμ2(y) � ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2) (11)

and {∫
Y

[
(ψG)−1(y)

∫
X

Kλ (x,y) f (x)dμ1(x)
]q′

dμ2(y)

} 1
q′

� ‖ϕF f‖Lp(μ1) (12)

hold and are equivalent.

Clearly, inequalities (11) and (12) are further generalizations of the classical Hilbert
and Hardy inequality. So, inequalities deduced from (11) will be referred to as the
Hilbert-type inequalities and inequalities deduced from (12), as the Hardy-Hilbert type
inequalities.

Further, in paper [9] it was shown that necessary and sufficient conditions for
equalities in (11) and (12) are described with relations

f = αϕ−p′F
q′
p −1 a.e. on X and g = βψ−q′G

p′
q −1 a.e. on Y, (13)

and
K = γFq′Gp′ a.e. on X ×Y, (14)

where α,β and γ are some positive real constants.
The same authors also considered reversed inequalities in (11) and (12), these are

the inequalities with reversed sign of inequality. They obtained that reverse inequalities
in (11) and (12) hold if

p < 0, q ∈ 〈0,1〉, 1
p

+
1
q

� 1, (15)

or

p ∈ 〈0,1〉, q < 0,
1
p

+
1
q

� 1, (16)

since the crucial step in proving Theorem 1 was in applying the Hölder inequality, and
parameters given by (15) or (16) provide the so-called reversed Hölder inequality (for
details, see e.g. [18, Chapter V]). Note that in conjugate case, reverse inequalities in
(11) and (12) are achieved if 0 < p < 1 and q < 0.

We proceed with an application of Theorem 1 to homogeneous kernels of degree
0 and certain power weights. All results will be given in two equivalent forms in non-
conjugate setting, analogous to (11) and (12). However, the best possible constants will
be obtained only in the conjugate case, since described problem in non-conjugate case
seems very difficult and remains open.
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3. Two kinds of the Hilbert-type operators

In this section we provide an unified treatment of the Hilbert and Hardy-Hilbert
type inequalities with homogeneous kernels of degree 0 and power weights. We con-
sider two types of kernels deduced from mentioned homogeneous functions. As an
application, we define the corresponding Hilbert-type operators. Before we state and
prove our results, we have to establish some definitions.

Let 〈a,b〉 ⊆ R be an interval and let u,v : 〈a,b〉→ R be non-negative, measurable
functions satisfying following conditions:

(i) u and v are differentiable on 〈a,b〉 ;

(ii) u and v are strictly increasing on 〈a,b〉 ;

(iii) lim
x→a+

u(t) = v(t) = 0 and lim
x→b−

u(t) = v(t) = ∞.

Further, we suppose that k0 : R
2
+ �→ R is non-negative, measurable homogeneous

function of degree 0. Also, we consider the integral

c0(α) =
∫ ∞

0
k0(1,t)t−αdt, (17)

defined in terms of the function k0 . Clearly, the convergence of integral (17) depends
on the function k0 , so we consider only the parameters α such that (17) converges.

Now, we define the kernel by means of the function k0 . More precisely, let K0 :
〈a,b〉× 〈a,b〉 �→ R be non-negative measurable function defined by

K0(x,y) = k0 (u(x),v(y)) , (18)

where functions u and v fulfill conditions (i)-(iii).
Above definitions and notations will be valid through the whole paper. Our first

result, in non-conjugate form, reads:

THEOREM 2. Let real parameters p, q , and λ be as in (7) and (8) and let u and
v be non-negative measurable functions on 〈a,b〉 , fulfilling conditions (i), (ii) and (iii).
Suppose K0 : 〈a,b〉× 〈a,b〉 �→ R is non-negative measurable function defined by (18)
and A1 , A2 are real parameters such that c0(2− p′A1) < ∞ and c0(q′A2) < ∞ . Then
the inequalities

∫ b

a

∫ b

a
Kλ

0 (x,y) f (x)g(y)dxdy � c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)×

×
[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(19)
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and ⎧⎨⎩
∫ b

a

v′(y)

v
(A2−A1)q′+ q′

p′ (y)

[∫ b

a
Kλ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

� c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(20)

hold for all non-negative measurable functions f and g on 〈a,b〉 and are equivalent.
Equalities in (19) and (20) hold if and only if f = 0 or g = 0 a.e. on 〈a,b〉 .

Proof. It is easy to see that this theorem is a consequence of Theorem 1. We
substitute the kernel K0 , defined by (18), in inequalities (11) and (12) and

ϕ(x) =
uA1(x)

(u′)
1
p′ (x)

, ψ(y) =
vA2(y)

(v′)
1
q′ (y)

, x ∈ 〈a,b〉, (21)

instead of weight functions ϕ and ψ as well. Then considering v(y) = tu(x) , using the
variable substitution theorem, and homogeneity of the function k0 , we get

F(x) =
[∫ b

a
k0(u(x),v(y))v−q′A2(y)v′(y)dy

] 1
q′

= u
1
q′ −A2(x)

[∫ ∞

0
k0(1,t)t−q′A2dt

] 1
q′

= c
1
q′
0 (q′A2)u

1
q′ −A2(x), x ∈ 〈a,b〉.

Using the same argument, we also obtain

G(y) = c
1
p′
0 (2− p′A1)v

1
p′ −A1(x), y ∈ 〈a,b〉,

which gives relations (19) and (20).
It remains to investigate the case of equality in obtained inequalities. According

to conditions (13) and (14), necessary condition for equality in (19) and (20) is that the
function f has the form

f (x) = αc1−λ
0 (q′A2)u−A1p′+(1−λ )(1−A2q

′)(x)u′(x), 〈a,b〉, (22)

for some positive real constant α . Now, by inserting (22) in (20), the right-hand side
of (20) reads

α pc0(q′A2)
∫ ∞

0
t1−p′A1−q′A2dt,

where we used the substitution u(x) = t . Hence, we came to a contradiction since
obtained integral diverges. Thus, the equality in (19) and (20) holds only if f or g are
zero-functions a.e. on 〈a,b〉 . �

We continue with some interesting examples of functions u and v , fulfilling condi-
tions (i)-(iii). Obviously, functions u,v : R+ �→ R , defined by u(x) = Axμ , v(y) = Byν ,
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where A,B,μ ,ν > 0, satisfy mentioned conditions. So, as a direct consequence of
Theorem 2, we obtain the following result.

COROLLARY 1. Suppose p, q , and λ are as in (7) and (8) and k0 : R
2
+ �→ R

is non-negative measurable homogeneous function of degree 0 . Let A1 , A2 be real
parameters such that c0(2− p′A1) <∞ and c0(q′A2) <∞ , and let A,B,μ ,ν > 0 . Then
the inequalities∫ ∞

0

∫ ∞

0
kλ0 (Axμ ,Byν) f (x)g(y)dxdy

� c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)C0

[∫ ∞

0
x

(
A1−A2+ 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

×

×
[∫ ∞

0
y

(
A2−A1+ 1

p′
)
qν+(q−1)(1−ν)

gq(y)dy

] 1
q

(23)

and{∫ ∞

0
y

(
A1−A2− 1

p′
)
q′ν+ν−1

[∫ ∞

0
kλ0 (Axμ ,Byν) f (x)dx

]q′

dy

} 1
q′

� c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)C0

[∫ ∞

0
x

(
A1−A2+ 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

, (24)

where

C0 = μ− 1
p′ ν− 1

q′ A
A1−A2+ 1

q′ −
1
p′ B

A2−A1+ 1
p′ −

1
q′ ,

hold for all non-negative measurable functions f and g on R+ and are equivalent.
Equalities in (23) and (24) hold if and only if f = 0 or g = 0 a.e. on R+ .

REMARK 1. Corollary 1 is obtained in paper [9] (see relations (47) and (48)). So,
we can regard Theorem 2 as a generalization of mentioned results from [9]. �

Another interesting application of Theorem 2 appears if we consider the functions
u,v : R �→ R , defined by u(x) = ex and v(y) = ey .

COROLLARY 2. Let real parameters p, q , and λ be as in (7) and (8) and let
k0 : R

2
+ �→ R be non-negative measurable homogeneous function of degree 0 . Suppose

A1 and A2 are real parameters such that c0(2− p′A1) < ∞ and c0(q′A2) < ∞ . Then
the inequalities∫ ∞

−∞

∫ ∞

−∞
kλ0 (ex,ey) f (x)g(y)dxdy � c

1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)×

×
[∫ ∞

−∞
e

[
(A1−A2)p+1− p

q

]
x
f p(x)dx

] 1
p
[∫ ∞

−∞
e

[
(A2−A1)q+1− q

p

]
y
gq(y)dy

] 1
q

(25)
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and {∫ ∞

−∞
e

[
(A1−A2)q′+1− q′

p′
]
y
[∫ ∞

−∞
kλ0 (ex,ey) f (x)dx

]q′

dy

} 1
q′

� c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

[∫ ∞

−∞
e

[
(A1−A2)p+1− p

q

]
x
f p(x)dx

] 1
p

(26)

hold for all non-negative measurable functions f and g on R and are equivalent.
Equalities in (25) and (26) hold if and only if f = 0 or g = 0 a.e. on R .

Now, we consider another interesting kernel depending on homogeneous function
k0 : R

2
+ �→ R of degree 0. Namely, let K̃0 : 〈a,b〉× 〈a,b〉 �→ R be non-negative mea-

surable function defined by

K̃0(x,y) = k0 (1,u(x)v(y)) , (27)

where the functions u and v fulfill conditions (i)-(iii). The following result is an ana-
logue of Theorem 2.

THEOREM 3. Let real parameters p, q , and λ be as in (7) and (8) and let u and
v be non-negative measurable functions on 〈a,b〉 , fulfilling conditions (i), (ii) and (iii).
Suppose K̃0 : 〈a,b〉× 〈a,b〉 �→ R is non-negative measurable function defined by (27)
and A1 , A2 are real parameters such that c0(p′A1) < ∞ and c0(q′A2) < ∞ . Then the
inequalities∫ b

a

∫ b

a
K̃λ

0 (x,y) f (x)g(y)dxdy � c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)×

×
[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(28)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A1+A2)q′− q′

p′ (y)

[∫ b

a
K̃λ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

� c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(29)

hold for all non-negative measurable functions f and g on 〈a,b〉 and are equivalent.
Equalities in (28) and (29) hold if and only if f = 0 or g = 0 a. e. on 〈a,b〉 .

Proof. We use Theorem 1 and follow the same lines as in the proof of Theorem 2.
Considering the weight functions defined by (21), we get

F(x) = c
1
q′
0 (q′A2)u

A2− 1
q′ (x), and G(y) = c

1
p′
0 (p′A1)v

A1− 1
p′ (x), x,y ∈ 〈a,b〉,
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which yields inequalities (28) and (29). The equality in obtained inequalities is estab-
lished in the same way as in proof of Theorem 2. �

Of course, it is easy to obtain analogues of Corollaries 1 and 2, with the kernel K̃0

instead of K0 . Corresponding results are given in the sequel.

COROLLARY 3. Let p, q , and λ be as in (7) and (8) and let k0 : R
2
+ �→R be non-

negative measurable homogeneous function of degree 0 . Let A1 , A2 be real parameters
such that c0(p′A1) < ∞ and c0(q′A2) < ∞ , and let A,μ ,ν > 0 . Then the inequalities∫ ∞

0

∫ ∞

0
kλ0 (1,Axμyν) f (x)g(y)dxdy

� c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)C̃0

[∫ ∞

0
x

(
A1+A2− 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

×

×
[∫ ∞

0
y

(
A1+A2− 1

p′
)
qν+(q−1)(1−ν)

gq(y)dy

] 1
q

(30)

and{∫ ∞

0
y

(
−A1−A2+ 1

p′
)
q′ν+ν−1

[∫ ∞

0
kλ0 (1,Axμyν) f (x)dx

]q′

dy

} 1
q′

� c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)C̃0

[∫ ∞

0
x

(
A1+A2− 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

, (31)

where

C̃0 = μ− 1
p′ ν− 1

q′ AA1+A2−λ ,

hold for all non-negative measurable functions f and g on R+ and are equivalent.
Equalities in (30) and (31) hold if and only if f = 0 or g = 0 a. e. on R+ .

COROLLARY 4. Suppose p, q , and λ are as in (7) and (8) and k0 : R
2
+ �→ R

is non-negative measurable homogeneous function of degree 0 . Further, suppose A1

and A2 are real parameters such that c0(p′A1) < ∞ and c0(q′A2) < ∞ . Then the
inequalities∫ ∞

−∞

∫ ∞

−∞
kλ0 (1,ex+y) f (x)g(y)dxdy � c

1
p′
0 (p′A1)c

1
q′
0 (q′A2)×

×
[∫ ∞

−∞
e

[
(A1+A2)p+1−2p+ p

q

]
x
f p(x)dx

] 1
p
[∫ ∞

−∞
e

[
(A1+A2)q+1−2q+ q

p

]
y
gq(y)dy

] 1
q

(32)

and {∫ ∞

−∞
e

[
1−(A1+A2)q′+ q′

p′
]
y
[∫ ∞

−∞
kλ0 (1,ex+y) f (x)dx

]q′

dy

} 1
q′

� c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

[∫ ∞

−∞
e

[
(A1+A2)p+1−2p+ p

q

]
x
f p(x)dx

] 1
p

(33)
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hold for all non-negative measurable functions f and g on R and are equivalent.
Equalities in (32) and (33) hold if and only if f = 0 or g = 0 a.e on R .

REMARK 2. According to the discussion in Section 2, if non-conjugate exponents
p and q satisfy conditions (15) or (16), then the inequality sign in all relations from
Theorems 2, 3 and Corollaries 1, 2, 3, 4 is reversed.

The Hardy-Hilbert type inequalities (20) and (29) allow us precise definition of
the Hilbert-type operators and some conclusions about their norms as well. We observe
the measure space

Lr
Ω〈a,b〉 =

{
f : 〈a,b〉 �→ R; ‖ f‖Lr

Ω〈a,b〉 < ∞
}

,

where the norm ‖ · ‖Lr
Ω〈a,b〉 is defined by (5).

Hence, if we denote

Φ(x) =
u

(A1−A2)p+ p
q′ (x)

(u′)p−1(x)
and Ψ(y) =

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

, x,y ∈ 〈a,b〉,

we can define the operator T0 : Lp
Φ〈a,b〉 �→ Lq′

Ψ1−q′ 〈a,b〉 as

(T0 f ) (y) =
∫ b

a
Kλ

0 (x,y) f (x)dx, y ∈ 〈a,b〉. (34)

Of course, we suppose p , q and λ are as in (7) and (8). Clearly, the operator T0 is

well defined since from inequality (20) we conclude that T0 f ∈ Lq′
Ψ1−q′ 〈a,b〉 . Further,

we define the norm of the operator T0 as

‖T0‖ = sup
f∈Lp

Φ〈a,b〉, f 
=0

‖T0 f‖
Lq′
Ψ1−q′ 〈a,b〉

‖ f‖Lp
Φ〈a,b〉

. (35)

We conclude, from inequality (20), that the operator T0 is bounded. More precisely,
(20) yields upper bound for the norm of the operator:

‖T0‖ � c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2).

The same type of discussion can also be applied in obtaining the Hilbert-type
operator related to kernel K̃0 , defined by (27). More precisely, if we denote

Φ̃(x) =
u

(A1+A2)p− p
q′ (x)

(u′)p−1(x)
and Ψ̃(y) =

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

, x,y ∈ 〈a,b〉,

we can define the operator T̃0 : Lp

Φ̃
〈a,b〉 �→ Lq′

Ψ̃1−q′ 〈a,b〉 as

(
T̃0 f

)
(y) =

∫ b

a
K̃λ

0 (x,y) f (x)dx, y ∈ 〈a,b〉. (36)



HILBERT-TYPE INEQUALITIES AND RELATED OPERATORS... 827

The operator T̃0 is well defined since inequality (29) implies T̃0 f ∈ Lq′
Ψ̃1−q′ 〈a,b〉 . Since

the norm of the operator T̃0 is given by

‖T̃0‖ = sup
f∈Lp

Φ̃
〈a,b〉, f 
=0

‖T̃0 f‖
Lq′
Ψ̃1−q′ 〈a,b〉

‖ f‖Lp
Φ̃
〈a,b〉

, (37)

inequality (29) yields upper bound for the norm of the operator T̃0 :

‖T̃0‖ � c
1
p′
0 (p′A1)c

1
q′
0 (q′A2).

In the next section we shall consider some general cases in which we are able
to find the norm of operators T̃ and T̃0 . Obviously, that problem is equivalent to the
problem of the best possible constant factors in inequalities (20) and (29).

4. On the best possible constant factors and norms

As already mentioned, the problem of the best possible constant factors in the
Hilbert and Hardy-Hilbert type inequalities seems to be very difficult in the case of
non-conjugate exponents and remains still open.

In spite of that, we can solve mentioned problem in some general settings with
conjugate exponents. Hence, in this section parameters p and q are assumed to be
conjugate, that is, when p = q′ , q = p′ and λ = 1. We consider constant factors
involved in the right-hand sides of inequalities from Theorems 2 and 3. Of course, it is
enough to investigate the problem for the Hilbert-type inequalities since we have pairs
of equivalent inequalities.

The main idea in obtaining the best possible constant factors is a reduction of the
constant in the form without exponents, by appropriate choice of real parameters A1

and A2 . More precisely, in the conjugate case, the constant involved in the right-hand

sides of inequalities (19) and (20) reads c
1
q
0 (2−qA1)c

1
p
0 (pA2) , hence it is natural to set

the condition

pA2 +qA1 = 2. (38)

Thus, if parameters A1 and A2 satisfy (38), the previous constant factor reduce to
c0(pA2) . Moreover, if the constraint (38) is satisfied, inequalities (19) and (20) from
Theorem 2 become respectively (in conjugate case)

∫ b

a

∫ b

a
K0(x,y) f (x)g(y)dxdy

� c0(pA2)
[∫ b

a

upqA1−1(x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

vpqA2−1

(v′)q−1(y)
gq(y)dy

] 1
q

(39)
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and {∫ b

a

v′(y)
v−pqA1+p+1(y)

[∫ b

a
K0(x,y) f (x)dx

]p

dy

} 1
p

� c0(pA2)
[∫ b

a

upqA1−1(x)
(u′)p−1(x)

f p(x)dx

] 1
p

. (40)

Our next step is to show that the constant c0(pA2) is the best possible in both
inequalities (39) and (40). For that sake, we need to establish the following lemma.

LEMMA 1. Suppose that p and q are conjugate parameters. Let functions K0,u,v
be as in the statement of Theorem 2 and let u(c) = 1,v(d) = 1 , c,d ∈ 〈a,b〉 . Let
parameters A1,A2 fulfill conditions as in the statement of Theorem 2 and let qA1 +
pA2 = 2 . Then the relation

ε
∫ b

c

u′(x)

uqA1+ ε
p (x)

[∫ b

d

K0(x,y)v′(y)

vpA2+ ε
q (y)

dy

]
dx = c0(pA2)+o(1) (41)

hold for ε ↘ 0 .

Proof. Let us denote the left-hand side of relation (41) with Iε . By using substitu-
tion x̃ = u(x) and ỹ = v(y) we have

Iε = ε
∫ ∞

1
x̃−qA1− ε

p

[∫ ∞

1
k0(x̃, ỹ)ỹ

−pA2− ε
q dỹ

]
dx̃.

Further, considering substitution ỹ = x̃t , homogeneity of the function k0 and the con-
dition qA1 + pA2 = 2, we obtain the expression

Iε = ε
∫ ∞

1
x̃−1−ε

[∫ ∞

1
x̃

k0(1,t)t−pA2− ε
q dt

]
dx̃.

If we separate the inner integral in Iε into two integrals and apply the Fubini theorem,
we have

Iε = ε
∫ ∞

1
x̃−1−ε

[∫ 1

1
x̃

k0(1,t)t−pA2− ε
q dt +

∫ ∞

1
k0(1,t)t−pA2− ε

q dt

]
dx̃

= ε
∫ ∞

1
x̃−1−ε

[∫ 1

1
x̃

k0(1,t)t−pA2− ε
q dt

]
dx̃+

∫ ∞

1
k0(1,t)t−pA2− ε

q dt

= ε
∫ 1

0
k0(1,t)t−pA2− ε

q

[∫ ∞

1
t

x̃−1−εdx̃

]
dt +

∫ 1

0
k0(t,1)t−qA1+ ε

q dt

=
∫ 1

0
k0(1,t)t−pA2+ ε

p dt +
∫ 1

0
k0(t,1)t−qA1+ ε

q dt. (42)
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Now, we have to distinguish two cases, depending on signs of conjugate parameters p
and q . If p > 1, then q > 1, so ε

p > 0 and ε
q > 0. Hence, relation (42) yields

Iε �
∫ 1

0
k0(1, t)t−pA2dt +

∫ 1

0
k0(t,1)t−qA1dt =

∫ ∞

0
k0(1,t)t−pA2dt = c0(pA2).

Finally, by the Lebesgue control convergent theorem (see [16]) we obtain (41).
It remains to consider the case when 0 < p < 1 and q < 0. Then for ε > 0,

there exist σ > 0 such that ε � −qσ . Namely, we can choose σ = 2ε
−q . Thus, we can

estimate Iε in the following way:

Iε �
∫ 1

0
k0(1,t)t−pA2+ ε

q dt +
∫ 1

0
k0(t,1)t−qA1+ ε

q dt

�
∫ 1

0
k0(1,t)t−pA2−σdt +

∫ 1

0
k0(t,1)t−qA1−σdt.

Clearly, ε ↘ 0 implies σ ↘ 0 and again, by the Lebesgue control convergent theorem
we obtain (41). �

Now, we are ready to state and prove the main result, concerning the best possible
constant factors in inequalities (39) and (40).

THEOREM 4. Let p and q be conjugate exponents, let A1 and A2 be real param-
eters such that qA1 + pA2 = 2 , and let c0(pA2) <∞ . Then the constant factor c0(pA2)
is the best possible in both inequalities (39) and (40).

Proof. We consider two cases depending on weather p > 1 or 0 < p < 1.
If p > 1 then q > 1. Suppose that the constant factor c0(pA2) is not the best

possible in inequality (39). That means that there exist the constant factor k0 < c0(pA2)
such that inequality (39) holds if we replace c0(pA2) with k0 . For ε > 0, we substitute
functions

fε (x) =

{
0, x ∈ 〈a,c〉,

u′(x)
uqA1+ ε

p (x)
, x ∈ [c,b〉,

and

gε(y) =

{
0, x ∈ 〈a,d〉,

v′(y)
v
pA2+ ε

q (y)
, x ∈ [d,b〉,

where c,d ∈ 〈a,b〉 , u(c) = 1, v(d) = 1, in inequality (39). We get

∫ b

a

∫ b

a
K0(x,y) fε (x)gε(y)dxdy � k0

[∫ b

c
u−1−ε(x)u′(x)dx

] 1
p
[∫ b

d
v−1−ε(y)v′(y)dy

] 1
q

,

and further

ε
∫ b

a

∫ b

a
K0(x,y) fε (x)gε(y)dxdy � k0. (43)
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The left-hand side of the inequality (43) coincides with the left-hand side of relation
(41), so by Lemma 1 we have

c0(pA2)+o(1) � k0.

Now by letting ε ↘ 0 we obtain that c0(pA2) � k0 which contradicts with the assump-
tion k0 < c0(pA2) . Thus, the constant c0(pA2) is the best possible.

It remains to consider the case when 0 < p < 1, that is, the case of the reverse
inequality in (39). Suppose that c0(pA2) is not the best possible constant. That means
that there exist the constant factor k′0 > c0(pA2) such that the reverse inequality in (39)
holds if we replace c0(pA2) with k′0 . Now, for above choice of functions fε and gε ,
and with the use of Lemma 1 we obtain

c0(pA2)+o(1) � k′0,

and also c0(pA2) � k′0 , when ε ↘ 0. Hence, we get a contradiction and c0(pA2) is the
best possible in the reverse case as well.

Finally, since (39) and (40) is a pair of equivalent inequalities, it follows that
c0(pA2) is also the best possible constant factor in (40). �

According to discussion in Section 3, the previous result also yields the norm of
the operator T0 , defined by (34), in the case of conjugate exponents.

COROLLARY 5. Let p and q be conjugate exponents, let A1 and A2 be real
parameters such that qA1 + pA2 = 2 , and let c0(pA2) < ∞ . Then, the norm of the
operator T0 : Lp

Φ〈a,b〉 �→ Lp
Ψ1−p〈a,b〉 , defined by (T0 f ) (y) =

∫ b
a K0(x,y) f (x) dx, y ∈

〈a,b〉, is ‖T0‖ = c0(pA2) .

REMARK 3. It is very interesting that we can deduce inequalities (3) and (4) from
(39). First, we show that inequality (39) implies (3). For that sake, we suppose that
parameters A1 and A2 satisfy condition pA2 +qA1 = 2− l , l > 0, as in (3). Note that
parameters A1 + l

q and A2 satisfy condition (38). Further, since k0(x,y) = (x+ y)−lxl

is homogeneous function of degree 0, we have

c0(pA2) =
∫ ∞

0
(1+ t)−lt−pA2dt = B(1−A2p, l−1+A2p),

where B(·, ·) is the usual Beta function. Hence, if we substitute u(x) = x , v(y) = y ,
K0(x,y) = (x+ y)−lxl in (39), and replace A1 and f (x) respectively with A1 + l

q and

x−l f (x) , we obtain (3).
To obtain (4), we suppose that kl(x,y) is homogeneous function of degree −l and

r,s is a pair of conjugate exponents. Then, k0(x,y) = kl(x,y)x
l
r y

l
s is homogeneous

function of degree 0. Now, if we substitute u(x) = x , v(y) = y , A1 = 1
q , A2 = 1

p ,

K0(x,y) = kl(x,y)x
l
r y

l
s in (39), and replace f (x) and g(y) respectively with x−

l
r f (x)

and y−
l
s g(y) , we obtain (4) since

c0(pA2) = c0(1) =
∫ ∞

0
kl(1,t)t

l
s−1dt =

∫ ∞

0
kl(u,1)u

l
r−1du.
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The previous discussion about the best possible constant factors can also be ex-
tended to Theorem 3. Namely, the constant involved in the right-hand sides of inequal-

ities (28) and (29) becomes c
1
q
0 (qA1)c

1
p
0 (pA2) in the conjugate case, so it is natural to

set the condition

pA2 = qA1. (44)

Hence, in this setting the constant becomes c0(pA2) and inequalities (28), (29) respec-
tively read∫ b

a

∫ b

a
K̃0(x,y) f (x)g(y)dxdy

� c0(pA2)
[∫ b

a

upqA1−1(x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

vpqA2−1

(v′)q−1(y)
gq(y)dy

] 1
q

(45)

and {∫ b

a

v′(y)
vpqA1−p+1(y)

[∫ b

a
K̃0(x,y) f (x)dx

]p

dy

} 1
p

� c0(pA2)
[∫ b

a

upqA1−1(x)
(u′)p−1(x)

f p(x)dx

] 1
p

(46)

The crucial step in proving that the constant c0(pA2) in (45) and (46) can not be
replaced with the smaller one, is the following lemma.

LEMMA 2. Let p and q be conjugate parameters, let functions K̃0,u,v be as in
the statement of Theorem 3 and let u(c) = 1,v(d) = 1 , c,d ∈ 〈a,b〉 . Suppose A1,A2

fulfill conditions as in the statement of Theorem 3 and qA1 = pA2 . Then the relation

ε
∫ b

c

u′(x)

uqA1+ ε
p (x)

[∫ d

a

K̃0(x,y)v′(y)

vpA2− ε
q (y)

dy

]
dx = c0(pA2)+ õ(1) (47)

hold for ε ↘ 0 .

Proof. By using substitution x̃ = u(x) and ỹ = v(y) we have

Ĩε = ε
∫ ∞

1
x̃−qA1− ε

p

[∫ 1

0
k0(1, x̃ỹ)ỹ−pA2+ ε

q dỹ

]
dx̃,

where Ĩε denotes the left-hand side of relation (47). Further, considering substitution
x̃ỹ = t , homogeneity of the function k0 and the condition qA1 = pA2 , we get

Ĩε = ε
∫ ∞

1
x̃−1−ε

[∫ x̃

0
k0(1,t)t−pA2+ ε

q dt

]
dx̃.
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Now, if we separate the inner integral in Ĩε , into two integrals and apply the Fubini
theorem, we have

Ĩε = ε
∫ ∞

1
x̃−1−ε

[∫ 1

0
k0(1,t)t−pA2+ ε

q dt +
∫ x̃

1
k0(1,t)t−pA2+ ε

q dt

]
dx̃

=
∫ 1

0
k0(1,t)t−pA2+ ε

q dt + ε
∫ ∞

1
x̃−1−ε

[∫ x̃

1
k0(1,t)t−pA2+ ε

q dt

]
dx̃

=
∫ 1

0
k0(1,t)t−pA2+ ε

q dt + ε
∫ ∞

1
k0(1,t)t−pA2+ ε

q

[∫ ∞

t
x̃−1−εdx̃

]
dt

=
∫ 1

0
k0(1,t)t−pA2+ ε

q dt +
∫ 1

0
k0(t,1)t−2+pA2+ ε

p dt. (48)

Similarly as in Lemma 1, we have to distinguish two cases, depending on signs of
conjugate parameters p and q . If p > 1, then q > 1, so ε

p > 0 and ε
q > 0. Hence,

relation (48) yields

Ĩε �
∫ 1

0
k0(1,t)t−pA2dt +

∫ 1

0
k0(t,1)t−2+pA2dt

=
∫ 1

0
k0(1,t)t−pA2dt +

∫ ∞

1
k0(1,t)t−pA2dt = c0(pA2).

Thus, according to the Lebesgue control convergent theorem (see [16]) we obtain (41).
Now we consider the case when 0 < p < 1 and q < 0. Then, for ε > 0, there exist

σ > 0 such that ε � −qσ . Namely, if we choose σ = 2ε
−q , we get

Ĩε �
∫ 1

0
k0(1,t)t−pA2+ ε

q dt +
∫ 1

0
k0(t,1)t−2+pA2+ ε

q dt

�
∫ 1

0
k0(1,t)t−pA2−σdt +

∫ 1

0
k0(t,1)t−2+pA2−σdt.

Clearly, ε ↘ 0 implies σ ↘ 0 and again, by the Lebesgue control convergent theorem
(see [16]) we obtain (47). The proof is now completed. �

Finally, by means of Lemma 2, we obtain the best possible constant factors in
inequalities (45) and (46).

THEOREM 5. Let p and q be conjugate exponents, let A1 and A2 be real param-
eters such that qA1 = pA2 , and let c0(pA2) < ∞ . Then the constant factor c0(pA2) is
the best possible in both inequalities (45) and (46).

Proof. We perform the proof similarly as the proof of Theorem 4, by means of
Lemma 2. For p > 1, we suppose that there exist the constant factor k0 , smaller than
c0(pA2) such that inequality (45) still holds if we replace c0(pA2) with k0 . Now, we
consider functions

f̃ε (x) =

{
0, x ∈ 〈a,c〉,

u′(x)
u
qA1+ ε

p (x)
, x ∈ [c,b〉,
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and

g̃ε(y) =

{
v′(y)

v
pA2+ ε

q (y)
, x ∈ 〈a,d〉,

0, x ∈ [d,b〉,
where ε > 0 and c,d ∈ 〈a,b〉 , u(c) = v(d) = 1. Clearly, for defined functions fε and
gε , inequality (45), with smaller constant factor k0 , reads

∫ b

a

∫ b

a
K̃0(x,y) fε (x)gε(y)dxdy � k0

[∫ d

a
u−1−ε(x)u′(x)dx

] 1
p
[∫ b

d
v−1+ε(y)v′(y)dy

] 1
q

,

that is,

ε
∫ b

a

∫ b

a
K̃0(x,y) fε (x)gε(y)dxdy � k0. (49)

As the left-hand side of inequality (49) represent the left-hand side of relation (47), we
have

c0(pA2)+ õ(1) � k0.

Thus, by letting ε ↘ 0 we get c0(pA2) � k0 which contradicts with the assumption
k0 < c0(pA2) . Hence c0(pA2) is the best possible constant factor in (45).

For the reverse inequality in (45) we suppose that there exist constant factor k′0 >
c0(pA2) such that reverse inequality in (45) holds if we replace c0(pA2) with k′0 .
Clearly, for above choice of functions fε and gε , with the use of Lemma 2, we ob-
tain

c0(pA2)+ õ(1) � k′0,

which implies c0(pA2) � k′0 when ε ↘ 0. Obviously, we came to a contradiction since
by assumption k′0 > c0(pA2) .

Of course, since (45) and (46) is a pair of equivalent inequalities, it follows that
c0(pA2) is also the best possible constant factor in (46). �

We conclude the previous discussion with the operator analogue of Theorem 5.

COROLLARY 6. Let p and q be conjugate exponents, let A1 and A2 be real
parameters such that pA2 = qA1 , and let c0(pA2) < ∞ . Then the norm of the operator
T̃0 : Lp

Φ̃
〈a,b〉 �→ Lp

Ψ̃1−p〈a,b〉 , defined by
(
T̃0 f

)
(y) =

∫ b
a K̃0(x,y) f (x) dx, y ∈ 〈a,b〉, is

‖T̃0‖ = c0(pA2) .

5. The Hardy-type operators

In Section 3 we have defined two kinds of the Hilbert-type operators. We can
also generate some interesting Hardy-type operators from the Hilbert-type operators.
More precisely, let k0 : R

2
+ �→ R be non-negative measurable homogeneous function of

degree 0. Then the function k0 : R
2
+ �→ R , defined by

k0(x,y) = k0(x,y)χx�y(x,y) =
{

0, x < y,
k0(x,y), x � y,

(50)
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is also homogeneous of degree 0. Now, we define two Hardy-type operators as the
Hilbert-type operators T0 and T̃0 with respect to the kernel k0 : R

2
+ �→ R . More

precisely, we define the operator T 0 : Lp
Φ〈a,b〉 �→ Lq′

Ψ1−q′ 〈a,b〉 as

(
T 0 f

)
(y) =

∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)dx, y ∈ 〈a,b〉, (51)

and T̃ 0 : Lp

Φ̃
〈a,b〉 �→ Lq′

Ψ̃1−q′ 〈a,b〉 as

(
T̃ 0 f

)
(y) =

∫ u
(−1)

(
1

v(y)

)

a
K̃λ

0 (x,y) f (x)dx, y ∈ 〈a,b〉, (52)

where u(−1) is the inverse of the function u . Further, since

c0(α) =
∫ ∞

0
k0(1,t)t−αdt =

∫ 1

0
k0(1, t)t−αdt,

we define

c0(α) =
∫ 1

0
k0(1,t)t−αdt. (53)

Now, we easily obtain corresponding analogues of Theorems 2 and 3 for described
Hardy-type kernels of degree 0.

COROLLARY 7. Let p, q , and λ be as in (7) and (8) and let u , v be non-negative
measurable functions on 〈a,b〉 , fulfilling conditions (i), (ii) and (iii). Suppose K0 :
〈a,b〉×〈a,b〉 �→R is non-negative measurable function defined by (18) and A1 , A2 are
real parameters such that c0(2− p′A1) < ∞ and c0(q′A2) < ∞ . Then the inequalities∫ b

a

∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)g(y)dxdy � c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)×

×
[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(54)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A2−A1)q′+ q′

p′ (y)

[∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

� c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(55)

hold for all non-negative measurable functions f and g on 〈a,b〉 and are equivalent.
Equalities in (54) and (55) hold if and only if f = 0 or g = 0 a.e. on 〈a,b〉 .
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COROLLARY 8. Let p, q , and λ be as in (7) and (8) and let u , v be non-negative
measurable functions on 〈a,b〉 , fulfilling conditions (i), (ii) and (iii). Suppose K̃0 :
〈a,b〉× 〈a,b〉 �→ R is non-negative measurable function defined by (27) and A1 , A2

are real parameters such that c0(p′A1) < ∞ and c0(q′A2) < ∞ . Then the inequalities

∫ b

a

∫ u(−1)
(

1
v(y)

)
a

K̃λ
0 (x,y) f (x)g(y)dxdy � c

1
p′
0 (p′A1)c

1
q′
0 (q′A2)×

×
[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(56)

and

⎧⎨⎩
∫ b

a

v′(y)

v
(A1+A2)q′− q′

p′ (y)

[∫ u(−1)
(

1
v(y)

)
a

K̃λ
0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

� c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(57)

hold for all non-negative measurable functions f and g on 〈a,b〉 and are equivalent.
Equalities in (56) and (57) hold if and only if f = 0 or g = 0 a.e. on 〈a,b〉 .

REMARK 4. According to Corollaries 7 and 8, we can easily obtain analogues of
Corollaries 1, 2, 3 and 4. We just need to replace the constant factor c0(α) with c0(α)
and change the integration sets according to definitions (51) and (52). For example, if
u(x) = ex and v(y) = ey , then u(−1)(v(y)) = y and u(−1)

(
1

v(y)

)
= −y .

REMARK 5. The discussion about the best possible constant factors, carried out in
Section 4, also holds for the Hardy-type operators (51) and (52). More precisely, if p , q
are conjugate parameters and A1,A2 parameters satisfying condition (38), then c0(pA2)
is the best possible constant factor in inequalities (54) and (55). Further, the same
constant is also the best possible in (56) and (57), when parameters A1 and A2 fulfill
condition (44) in conjugate case. Of course, under the same assumptions, we obtain

norms of operators T 0 and T̃ 0 in the conjugate case: ‖T 0‖ = ‖T̃ 0‖ = c0(pA2).

6. Applications

This section is dedicated to some special choices of parameters A1 , A2 and ho-
mogeneous kernels of degree 0 in obtained results. At first, we simplify inequalities in
Theorem 2, Theorem 3, Corollary 7 and Corollary 8 by suitable choices of parameters
A1 and A2 . Namely, if A1 = 1

p′ and A2 = 1
q′ , then the inequalities (19) and (20) become
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respectively∫ b

a

∫ b

a
kλ0 (u(x),v(y)) f (x)g(y)dxdy

� cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p
[∫ b

a

( v
v′

)p−1
(y)gq(y)dy

] 1
q

(58)

and {∫ b

a

(
v′

v

)
(y)

[∫ b

a
kλ0 (u(x),v(y)) f (x)dx

]q′

dy

} 1
q′

� cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p

. (59)

REMARK 6. For the same choice of parameters A1 and A2 , that is A1 = 1
p′ and

A2 = 1
q′ , Theorem 3 yields the same inequalities as (58) and (59), with the kernel

k0(1,u(x)v(y)) instead of k0(u(x),v(y)) . In other words, inequalities (58) and (59)
also hold if we replace the kernel k0(u(x),v(y)) with k0(1,u(x)v(y)) .

We obtain similar results for the Hardy-type kernels defined by (50). Namely, if
A1 = 1

p′ and A2 = 1
q′ , Corollary 7 yields inequalities

∫ b

a

∫ b

u(−1)(v(y))
kλ0 (u(x),v(y)) f (x)g(y)dxdy

� cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p
[∫ b

a

( v
v′

)p−1
(y)gq(y)dy

] 1
q

(60)

and {∫ b

a

(
v′

v

)
(y)

[∫ b

u(−1)(v(y))
kλ0 (u(x),v(y)) f (x)dx

]q′

dy

} 1
q′

� cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p

. (61)

REMARK 7. According to Corollary 8, inequalities (60) and (61) also hold if we
replace the kernel k0(u(x),v(y)) with k0(1,u(x)v(y)) and integration set 〈u(−1)(v(y)),b〉
with 〈a,u(−1)( 1

v(y)

)〉 .
REMARK 8.. In the conjugate case, parameters that generate inequalities (58),

(59), (60), and (61) are A1 = 1
q and A2 = 1

p . Such parameters satisfy condition (38), so
we get the best possible constant facctors c0(1) and c0(1) in this setting.
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Finally, to conclude the paper, we shall consider some interesting examples of ho-
mogeneous kernels of degree 0 in inequalities (58), (59), (60), and (61). We obtain the
constant factors expressed in terms of some special functions, such as Beta and Gamma
function. Of course, the constant factors will be the best possible in the conjugate case.

EXAMPLE 1. Let α > 0, β > −1 and

k0(x,y) =
(

min{x,y}
max{x,y}

)α ∣∣∣ln(y
x

)∣∣∣β . (62)

Then,∫ ∞

0

(
min{1, t}
max{1, t}

)α
|ln t|β t−1dt =

∫ 1

0
tα−1(− ln t)βdt +

∫ ∞

1
t−α−1(ln t)βdt.

It is easy to verify that∫ 1

0
tα−1(− ln t)βdt =

∫ ∞

1
t−α−1(ln t)βdt =

∫ ∞

0
e−αννβdν =

Γ(β +1)
αβ+1

,

where Γ denotes the well-known Gamma function. Hence, in this case we obtain con-
stant factors

c0(1) =
2Γ(β +1)
αβ+1

and c0(1) =
Γ(β +1)
αβ+1

.

This kernel was also considered in paper [6]. Further, if α = 1 and β = 0, we have
c0(1) = 2, that is, we get inequality (6) from the Introduction.

EXAMPLE 2. For homogeneous function defined by

k0(x,y) =
min{x,y}
max{x,y} arctan

(y
x

)
, (63)

we have ∫ ∞

0

min{1,t}
max{1,t} arctant · t−1dt =

∫ 1

0
arctantdt +

∫ ∞

1
t−2 arctantdt.

Clearly, by means of partial integration, we easily obtain required constant factors

c0(1) =
π
2

and c0(1) =
π
4
− ln2

2
.

EXAMPLE 3. Let 0 < α < 1 and

k0(x,y) =
(

min{x,y}
|x− y|

)α
. (64)

Then ∫ ∞

0

(
min{1,t}
|1− t|

)α
t−1dt =

∫ 1

0
tα−1(1− t)−αdt +

∫ ∞

1
t−1(t−1)−αdt.
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Further, it is easy to see that∫ 1

0
tα−1(1− t)−αdt =

∫ ∞

1
t−1(t −1)−αdt = B(1−α,α),

where B is the usual Beta function. Hence, in this setting we obtain constants

c0(1) = 2B(1−α,α) and c0(1) = B(1−α,α).
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