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INVERSION THEOREM FOR NONCONVEX MULTIFUNCTIONS
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(Communicated by Z. Daróczy)

Abstract. Using the techniques of variational analysis, we extend the inversion theorem of Robin-
son for convex multifunctions to γ -paraconvex multifunctions, preinvex multifunctions and
strongly convex multifunctions, respectively. The results are used to derive upper bounds on
the distance from an approximate solution to the solution set.

1. Introduction

Let X and Y be normed spaces and F : X → 2Y be a multifunction. For a given
b ∈ F(X) , an inclusion problem is to find a point x ∈ X such that

b ∈ F(x). (1)

However, in general, one can only find an approximate solution of the inclusion prob-
lem (1). Therefore, it is important to have an estimate of the distance d(x,F−1(b))
which from an approximate solution x to the solution set F−1(b) . One estimate of
d(x,F−1(b)) is given by using the distance d(b,F(x)) . A positive constant τ is called
a global error bound for the problem (1) if for each x ∈ X ,

d(x,F−1(b)) � τd(b,F(x)).

Error bounds occur in many optimization problems, and have important applica-
tions in the convergence analysis of some algorithms and in the sensitive analysis of
mathematical programming [8]. One of the important results on error bounds is the
inversion theorem, which is established by Robinson [Theorem 2, 7] (see also [11]) for
convex multifunctions. Li and Singer [Theorem 3.1, 5] gave several equivalent char-
acterizations of the inversion theorem of Robinson. Under the weaker conditions than
Robinson’s, Zheng [Theorem 2.1, 13] gave an improvement of the inversion theorem
for convex multifunctions.
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Recall [10] that a multifunction F from a normed space X to a normed space Y is
called γ -paraconvex (γ > 0) if there is a constant C > 0 such that for all x,u ∈ X and
all α ∈ [0,1] ,

αF(x)+ (1−α)F(u) ⊂ F(αx+(1−α)u)+C‖x−u‖γBY ,

here BY denotes the closed unit ball of Y . In the case γ > 1, Rolewicz [10] proved that
F is γ -paraconvex if and only if there exists C > 0 such that for all x,u ∈ X and all
α ∈ [0,1] ,

αF(x)+ (1−α)F(u) ⊂ F(αx+(1−α)u)+Cmin(α,1−α)‖x−u‖γBY .

Motivated by this, we adopt the following definition of γ -paraconvex multifunction
throughout this paper (see also this adoption in [Remarks, 4]).

DEFINITION 1.1. A multifunction F from a normed space X to a normed space
Y is called γ -paraconvex (γ > 0) if there is a constant C > 0 such that for all x,u ∈ X
and all α ∈ [0,1] ,

αF(x)+ (1−α)F(u) ⊂ F(αx+(1−α)u)+Cmin(α,1−α)‖x−u‖γBY .

Jourani [4] established the following inversion theorem, which extended the result
of Robinson from convex multifunction to γ -paraconvex multifunctions.

THEOREM 1.1. Let X and Y be Banach spaces, and F : X → 2Y be a γ -paraconvex
multifunction with closed graph. Then the following are equivalent:
(i) b ∈ int(F(X));
(ii) for all a ∈ F−1(b) there are τ,r > 0 such that

d(x,F−1(y)) � τd(y,F(x))

for all x ∈ B(a,r) and y ∈ B(b,r) . Here we use B(a,r) to denote the closed ball
centered at a with radius r (in X and Y , this will not lead to confusion in the context).

Let X and Y be normed spaces, and F : X → 2Y be a multifunction. The following
notions are needed in this paper. As usual, Dom(F) := {x ∈ X : F(x) �= /0} denotes the
domain of F . The multifunction F is said to have closed values if F(x) is a closed
subset of Y for each x ∈ X . For A ⊂ X , diam(A) denote the diameter of A , where

diam(A) := sup{‖x− y‖ : x,y ∈ A}.

Let b ∈ Y and r > 0, we define

BF(b,r) :=
{

b+ r
b− y
‖b− y‖ : y ∈ F(x) and d(b,F(x)) > 0

}
.

Clearly, BF(b,r) ⊂ B(b,r) . Recently, Huang [Theorem 4.3, 3] obtained the fol-
lowing result.
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THEOREM 1.2. Let X and Y be normed spaces, and F : X → 2Y be a convex
multifunction with closed values. Let b ∈ F(X) , a ∈ X , r > 0 , δ > 0 . If BF(b,r) ⊂
F(B(a,δ )) , then

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

(δ +‖x−a‖), for all x ∈ Dom(F).

In this paper, we study the inversion theorem for γ -paraconvex multifunctions,
preinvex multifunctions and strongly convex multifunctions, respectively. The coeffi-
cient of error bound of these results can be easily calculated, which will bring conve-
nience for applications.

2. Inversion Theorem for γ -Paraconvex Multifunction

THEOREM 2.1. Let X and Y be normed spaces, and F : X → 2Y be a multifunc-
tion with closed values. Let b ∈ F(X) , a ∈ X ,r > 0 and δ > 0 . Suppose that F−1 is
γ -paraconvex and BF(b,r) ⊂ F(B(a,δ )) . Then for all x ∈ Dom(F) ,

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

[‖x−a‖+ δ+C(d(b,F(x))+ r)γ ] ,

where C is as in the definition of γ -paraconvexity for F−1 .

Proof. Let x∈Dom(F) . Without loss of generality, we assume that x∈Dom(F)\
F−1(b) . Let ε > 0 be an arbitrary positive number. Then there exists y ∈ F(x) such
that

‖b− y‖< d(b,F(x))+ ε.

Since F(x) is closed in Y , d(b,F(x)) > 0. Therefore, z := b+ r b−y
‖b−y‖ ∈ BF(b,r) . By

assumption, there exists a1 ∈ B(a,δ ) such that z ∈ F(a1) . Clearly, b = ‖b−y‖
r+‖b−y‖z +

r
r+‖b−y‖y. Let λ = ‖b−y‖

r+‖b−y‖ . Then b = λ z+(1−λ )y . By the γ -paraconvexity of F−1 ,
we have

λa1 +(1−λ )x∈ λF−1(z)+ (1−λ )F−1(y)
⊂ F−1(λ z+(1−λ )y)+Cmin(λ ,1−λ )‖y− z‖γBY

⊂ F−1b+Cλ‖y− z‖γBY .

Then there exists e ∈ BY such that

λa1 +(1−λ )x−Cλ‖y− z‖γe ∈ F−1(b).
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Therefore,

d(x,F−1(b)) � ‖x−λa1− (1−λ )x+Cλ‖y− z‖γe‖
= λ‖x−a1 +C‖y− z‖γe‖
� λ (‖x−a1‖+C‖y− z‖γ)
� λ [‖x−a‖+‖a−a1‖+C(‖y−b‖+‖b− z‖)γ]
� λ [‖x−a‖+ δ+C(‖y−b‖+ r)γ]

=
‖y−b‖

r+‖y−b‖ [‖x−a‖+ δ+C(‖y−b‖+ r)γ]

� d(b,F(x))+ ε
r+d(b,F(x))+ ε

[‖x−a‖+ δ+C(d(b,F(x))+ ε+ r)γ ]

where the last inequality holds since g(t) = t
r+t is increasing on [0,+∞) . Leting ε →

0+ , we have

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

[‖x−a‖+ δ+C(d(b,F(x))+ r)γ ] . �

COROLLARY 2.1. Let X and Y be Banach spaces, and F : X → 2Y be a mul-
tifunction with closed graph. Suppose that b ∈ int(F(X)) , a ∈ F−1(b) and F−1 is
γ -paraconvex. Then there exist r,δ > 0 such that for all x ∈ Dom(F) ,

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

[‖x−a‖+ δ+C(d(b,F(x))+ r)γ ] , (2)

where C is as in the definition of γ -paraconvexity for F−1 .

Proof. Since X and Y are Banach spaces, and F−1 is a γ -paraconvex multi-
function, by [Theorem 2.3 and Remarks, 4], there exist r,δ > 0 such that B(b,r) ⊂
F(B(a,δ )) . By Theorem 2.1, (2) holds. �

COROLLARY 2.2. Let X and Y be normed spaces, and F : X → 2Y be a mul-
tifunction with closed values. Let b ∈ F(X) , a ∈ X ,r > 0 and δ > 0 . Suppose that
F−1 is γ -paraconvex, BF(b,r) ⊂ F(B(a,δ )) and F−1(b) is bounded. Then for all
x ∈ Dom(F) with d(b,F(x)) � L,

d(x,F−1(b)) � d(b,F(x))
r

[
diam(F−1(b))+d(a,F−1(b))+ δ +C(L+ r)γ

]
, (3)

where C is as in the definition of γ -paraconvexity for F−1 .

Proof. Since

‖x−a‖� ‖x−u‖+‖u− v‖+‖v−a‖� ‖x−u‖+diam(F−1(b))+‖v−a‖,
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for all u,v ∈ F−1(b) , it follows that

‖x−a‖� d(x,F−1(b))+diam(F−1(b))+d(a,F−1(b)).

By Theorem 2.1, we have

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

[
d(x,F−1(b))+diam(F−1(b))

+d(a,F−1(b))+ δ +C(L+ r)γ
]
,

and hence (2) holds. �

In the following, we give an example as application of Corollary 2.2.

EXAMPLE 2.1. Let X = Y = R . We define F : X → 2Y as

F(x) =
{

(−∞,−√−x], if x � 0,
/0, if x > 0.

Clearly,

F−1(y) =
{

[−y2,0], if y � 0,
/0, if y > 0.

Then F−1 is a 2-paraconvexmultifunction, since for all y1,y2 ∈ (−∞,0] and λ ∈ [0,1] ,

λF−1(y1)+ (1−λ )F−1(y2) ⊂ F−1(λy1 +(1−λ )y2)+λ (1−λ )|y1− y2|2BY .

However, F is not convex, since

1
2
F(−1)+

1
2
F(0) =

(
−∞,−1

2

]
�⊂ F

(
1
2
(−1)+

1
2
0

)
=

(
−∞,−

√
2

2

]
.

Take b = −1. It is easy to verify that

BF(−1,1)⊂ [−2,0]⊂ F(B(−1,1)) = F([−2,0]) = (−∞,0],

and F−1(b)= [−1,0] is bounded. By Corollary 2.2, for all x∈Dom(F) wiht d(b,F(x))
� L ,

d(x,F−1(−1)) � d(−1,F(x))
1

[
diam(F−1(−1))+d(−1,F−1(−1))+1+(L+1)2]

= d(−1,F(x))
[
2+(L+1)2] .

REMARK 2.1. The techniques of the proof of Theorem 2.1 are based on [4, 7].
However, in compared with Theorem 1.1, the upper bound of d(x,F−1(b)) of the re-
sults in this section are more precise.
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3. Inversion Theorem for Preinvex Multifunction

It is konwn that convexity plays an important role in mathematical programming
and optimization theory. In order to generalize convexity, Weir and Mond [12] in-
troduced a kind of significant generalized convex function, i.e., the preinvex function.
After that, several authors [1, 9] extended this kind of function into many aspects. Es-
pecially, Bhatia and Mehra [1] introduced the following definition.

DEFINITION 3.1. Let X , Y be Banach spaces, F : X → 2Y be a multifunction.
We say that F is preinvex on X if there exists a function η : X ×X → X such that for
all x1,x2 ∈ X and all λ ∈ [0,1],

λF(x1)+ (1−λ )F(x2) ⊂ F(x2 +λη(x1,x2)).

THEOREM 3.1. Let X and Y be normed spaces, F be a preinvex multifunction
on X with the associated function η , and with closed values. Let b ∈ F(X),a ∈ X ,r >
0,δ > 0 . Assume that BF(b,r) ⊂ F(B(a,δ )) . Then

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

sup
x′∈B(a,δ )

‖η(x′,x)‖ for all x ∈ Dom(F). (4)

Proof. Let x ∈ Dom(F) with d(x,F−1(b)) > 0 (Since the conclusion holds triv-
ially when d(x,F−1(b)) = 0). Following the proof of Theorem 2.1, b = λ z+(1−λ )y .
By the preinvexity of F ,

b ∈ λF(a1)+ (1−λ )F(x) ⊂ F (x+λη(a1,x)) ,

which implies that x+λη(a1,x) ∈ F−1(b). Hence

d(x,F−1(b)) � ‖x− x−λη(a1,x)‖
� d(b,F(x))+ ε

r+d(b,F(x))+ ε
‖η(a1,x)‖

� d(b,F(x))+ ε
r+d(b,F(x))+ ε

sup
x′∈B(a,δ )

‖η(x′,x)‖.

Letting ε → 0+ , then (4) holds. �

COROLLARY 3.1. Let X and Y be normed spaces, F be a preinvex multifunction
on X with the associated function η , and with closed values. Let b ∈ F(X),a ∈ X ,r >
0,δ > 0 . Suppose that for all x′,x ∈ X , ‖η(x′,x)‖ � ‖x′ − x‖ . Assume that BF(b,r) ⊂
F(B(a,δ )) . Then

d(x,F−1(b)) � d(b,F(x))
r+d(b,F(x))

(δ +‖x−a‖) for all x ∈ Dom(F).

Proof. The conclusion follows from Theorem 3.1 immediately by noting that

sup
x′∈B(a,δ )

‖η(x′,x)‖ � sup
x′∈B(a,δ )

‖x′−x‖ � sup
x′∈B(a,δ )

(‖x′−a‖+‖a−x‖) = δ+‖x−a‖. �
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In the following, we give an example as an application of Corollary 3.1.

EXAMPLE 3.1. Let X = Y = R . We define F : X → 2Y as

F(x) = [−|x|,+∞) for all x ∈ X .

Then F is a preinvex multifunction on X . In fact, for all λ ∈ [0,1] and all x1,x2 ∈ X ,
we have

λF(x1)+ (1−λ )F(x2) ⊂ F(x2 +λη(x1,x2)),

where

η(x1,x2) =
{ |x1|− |x2| , if either x1 � 0, x2 � 0 or x1 � 0, x2 � 0,
|x2|− |x1| , if either x1 > 0, x2 < 0 or x1 < 0, x2 > 0.

However, F is not convex, since

1
2
F(−1)+

1
2
F(1) = [−1,+∞) �⊂ F

(
1
2
(−1)+

1
2

)
= F(0) = [0,+∞).

Take b = −3. It is easy to verify that |η(x1,x2)| � |x1 − x2| ,
BF(−3,1) ⊂ [−4,2] ⊂ F(B(−3,1)) = F([−4,2]) = [−4,+∞)

and F−1(−3) = (−∞,−3]∪ [3,+∞) . By Corollary 3.1, we have

d(x,F−1(−3)) � d(−3,F(x)) 1+|x+3|
1 = d(−3,F(x))(1+ |x+3|), for all x ∈ X .

Similar to the proof of Corollary 2.2 but using Corollary 3.1 in place of Theorem
2.1, we immediately obtain the following result.

COROLLARY 3.2. Let X and Y be normed spaces, F be a preinvex multifunction
on X with the associated function η , and with closed values. Let b ∈ F(X),a ∈ X ,r >
0,δ > 0 . Suppose that for all x′,x ∈ X , ‖η(x′,x)‖ � ‖x′ − x‖ . Assume that BF(b,r) ⊂
F(B(a,δ )) , and F−1(b) is bounded. Then

d(x,F−1(b)) � δ +diam(F−1(b))+d(a,F−1(b))
r

d(b,Fx), for all x ∈ X ,

where d(b,F(x)) is understood as ∞ if F(x) = /0 .

REMARK 3.1. In compared with Theorem 1.2, the objective multifunction in this
section are not necessarily convex.

4. Inversion Theorem for Strongly Convex Multifunction

Let X be a normed space. Recall [6] that a function f : X → R is said to be
strongly convex of order γ (γ > 0) if there exists a contant C > 0 such that for all
x,y ∈ X and all t ∈ [0,1] ,

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)−Ct(1− t)‖x− y‖γ.
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Motivated by this, Huang [3] extended this definition to multifunctions.

DEFINITION 4.1. Let X and Y be normed spaces. We say that F : X → 2Y is
strongly convex of order γ (γ > 0) and rank C (C > 0) if for all x,y ∈ X and all
t ∈ [0,1] ,

tF(x)+ (1− t)F(y)+Ct(1− t)‖x− y‖γBY ⊂ F(tx+(1− t)y). (5)

The following lemma can be founded in [Proposition 2.4.1, p.50, 2].

LEMMA 4.1. Let X be a normed space and A ⊂ X be a nonempty subset of X .
Then

|d(x,A)−d(y,A)|� ‖x− y‖.

THEOREM 4.1. Let X and Y be Banach spaces. Let F : X → 2Y be a strongly
convex of order γ and rank C multifunction. Suppose that b ∈ int(F(X)) . Then for all
x ∈ X ,

C[d(x,F−1(b))]γ � d(b,F(x)).

Proof. Let x ∈ X . Without loss of generality, we assume that x ∈ Dom(F) \
F−1(b) . Let t ∈ (0,1) . Take e ∈ F−1(b) such that

‖x− e‖<
d(x,F−1(b))

1− t
. (6)

By Lemma 4.1 and (6),

d(tx+(1− t)e,F−1(b)) � d(x,F−1(b))−‖tx+(1− t)e− x‖> 0. (7)

Since F is a strongly convex multifunction, F is a convex multifunction. Since b ∈
int(F(X)) and X ,Y are Banach spaces, by [Lemma 1, 7], there exists δ ,r > 0 such
that B(b,r) ⊂ F(B(a,δ )). By Corollary 3.1, we have

d(tx+(1− t)e,F−1(b)) � d(b,F(tx+(1− t)e))
r

(δ +‖tx+(1− t)e−a‖). (8)

It follows from (7) and (8) that

d(b,F(tx+(1− t)e)) > 0. (9)

Since F is a strongly convex of order γ and rank C multifunction, it follows from (5)
and (9) that

0 < d(b,F(tx+(1− t)e))
� d(b,tF(x)+ (1− t)F(e)+Ct(1− t)‖x− e‖γBY )
� d(b,tF(x)+ (1− t)b+Ct(1− t)‖x− e‖γBY )
= t[d(b,F(x))−C(1− t)‖x− e‖γ]

that is,
C(1− t)[d(x,F−1(b))]γ � C(1− t)‖x− e‖γ � d(b,F(x)).
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Letting t → 0+ , we have

C[d(x,F−1(b))]γ � d(b,F(x)). �

In the following, we give an example as application of Theorem 4.1.

EXAMPLE 4.1. Let X = Y = R . We define F : X → 2Y as

F(x) = [x2 −1,+∞) for all x ∈ X .

Then F is a strongly convex of order 2 and rank 1 multifunction. Let b = 0. It is easy
to verify that b ∈ int(F(X)) . By Theorem 4.1, we have

[d(x,F−1(0))]2 � d(0,F(x)) for all x ∈ X .

Acknowledgement. The author expresses his deep gratitude to the referee for many
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