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(Communicated by J. Pečarić)

Abstract. As we showed in [5] and [6], the basic inequalities, involving Riemannian invariants
of a Lagrangian submanifold immersed in a complex space form, can be improved using opti-
mization methods. Also in [1] is showed that the improved Chen’s inequality from [5] is optimal.
In this paper we find another proof for a Chen’s inequality, regarding the Ricci curvature [2] and
we improve this inequality in the Lagrangian case.

1. Optimizations on Riemannian submanifolds

Let (N, g̃) be a Riemannian manifold, (M,g) a Riemannian submanifold of it, and

f : N → R

a differentiable function . To these ingredients we attach the optimum problem

min
x∈M

f (x). (1.1)

Let’s remember the result obtained in [4].

THEOREM 1.1. If x0 ∈ M is a optimal solution of the problem (1) , then

i) (grad f )(x0) ∈ T⊥
x0

M,

ii) the bilinear form

α : Tx0M×Tx0M → R,

α(X ,Y ) = Hess f (X ,Y )+ g̃ (h(X ,Y ),(grad f )(x0))

is positive semidefinite, where h is the second fundamental form of the submanifold M
in N.

REMARK 1.1. The bilinear form α is nothing else but Hess f |M(x0) .
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A very nice application of this result is the partial solution of the next problem:
find the 2-plane in the tangent space at the given point x of a Riemannian manifold
(M,g) which minimize the sectional curvature. A equivalent conditioned extremum
problem is

min R(X ,Y,X ,Y ), (1.2)

subject to ‖ X ‖= 1,‖Y ‖= 1, g(X ,Y ) = 0,

where X and Y are two vectors from TxM .
A 2-plane π ⊂ TxM , π =Sp{X ,Y} which verifies the first condition from Theorem

1 is called critical plane for the sectional curvature at the point x . Using Theorem 1,
in [4] we showed that a 2-plane π is a critical plane for the sectional curvature at the
point x if and only if for every tangent vectors U , V , W ∈ π the vector R(U,V )W
lies in π , where R is the curvature tensor of the Riemannian manifold (M,g) .

2. The Ricci curvature of a submanifold in a real space form

In this section we give a new proof of the next inequality

THEOREM 2.1. (Chen [2]). Let M be a n-dimensional Riemannian submani-
fold of a real space form (M̃(c),g) and x a point in M. Then, for each unit vector
X ∈ TxM, we have

Ric (X) � (n−1)c+
n2

4
‖H‖2 ,

where H is the mean curvature vector of M in M̃(c) and Ric(X) the Ricci curvature
of M at x .

Proof. We fix the point x in M, the vector X ∈ TxM , with‖X‖ = 1, the orthonor-
mal frame {e1,e2, ...,en} in TxM such that e1 = X and {en+1,en+2, ...,em} a orthonor-
mal frame in T⊥

x M .
From Gauss equation we have

R̃(e1,e j,e1,e j) = R(e1,e j,e1,e j)− g̃(h(e1,e1),h(e j,e j))+ g̃(h(e1,e j),h(e1,e j))

= R(e1,e j,e1,e j)−
m

∑
r=n+1

(hr
11h

r
j j − (hr

1 j)
2), j ∈ 2,n.

(2.1)
Using the fact that the sectional curvature of M̃(c) is constant, we obtain

(n−1)c = Ric(X)−
m

∑
r=n+1

n

∑
j=2

(hr
11h

r
j j − (hr

1 j)
2), (2.2)

therefore

Ric(X)− (n−1)c =
m

∑
r=n+1

n

∑
j=2

(hr
11h

r
j j − (hr

1 j)
2) �

m

∑
r=n+1

n

∑
j=2

hr
11h

r
j j. (2.3)
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For r ∈ n+1,m, let us consider the quadratic form

fr : Rn → R,

fr(hr
11,h

r
22, ...,h

r
nn) =

n

∑
j=2

hr
11h

r
j j

and the constrained extremum problem

max fr,

subject to P : hr
11 +hr

22 + ...+hr
nn = kr,

where kr is a real constant.
The gradient vector of fr is given by

grad fr = (
n

∑
j=2

hr
j j,h

r
11, ...,h

r
11).

Let us denote with p = (hr
11,h

r
22, ...,h

r
nn) a optimal solution of the problem in

question.
As grad fr is normal to P at the point p , we obtain

hr
11 =

n

∑
j=2

hr
j j =

kr

2
. (2.4)

Let q ∈ P be an arbitrary point.
The bilinear form α : TqP×TqP → R has the expression

α(X ,Y ) = Hess ( fr)(X ,Y )+ 〈h′
(X ,Y ),grad fr(q)〉,

where h
′
is the second fundamental form of P in Rn , and 〈 , 〉 is the standard inner-

product on Rn .
In the standard frame of Rn , the Hessian of fr has the matrix⎛

⎜⎜⎝
0 1 . 1
1 0 . 0
. . . .
1 0 . 0

⎞
⎟⎟⎠ .

A vector X ∈ TqP satisfies
n
∑
i=1

Xi = 0.

As P is totally geodesic in Rn, we have α(X ,X) = 2
n
∑
j=2

X1X j = −2(X1)2.

So fr|P is a concave function, therefore the points which satisfies the relation
(2.4) are global maximum points for fr|P .

One gets

fr � (kr)2

4
=

1
4
(∑
i=1

hr
ii)

2 =
n2

4
(Hr)2. (2.5)
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Using (2.3) and (2.5) we find

Ric (X)− (n−1)c �
m

∑
r=n+1

n2

4
(Hr)2 =

n2

4
‖H‖2 . (2.6)

3. The Ricci curvature of a Lagrangian submanifold in a complex space form

Let (M̃, g̃,J) be a Kähler manifold of real dimension 2m. A submanifold M of
dimension n of (M̃, g̃,J) is called a totally real submanifold if for any point x in M the
relation J(TxM) ⊂ T⊥

x M holds.
If, in addition, n = m, then M is called Lagrangian submanifold. For a Lagrangian

submanifold, the relation J(TxM) = T⊥
x M occurs.

A Kähler manifold with constant holomorphic sectional curvature is called a com-
plex space form and is denoted by M̃(c) . The Riemann curvature tensor R̃ of M̃(c)
satisfies the relation

R̃(X ,Y )Z =
c
4
{g̃(Y,Z)X − g̃(X ,Z)Y + g̃(JY,Z)JX − g̃(JX ,Z)JY +2g̃(X ,JY )JZ}.

A totally real submanifold of real dimension n in a complex space form M̃(c) of
real dimension 2m satisfies a Chen’s inequality

THEOREM 3.1. (Chen). Let M be a n-dimensional Riemannian submanifold
of a complex space form (M̃(c),g) and x a point in M. Then, for each unit vector
X ∈ TxM, we have

Ric(X) � (n−1)
c
4

+
n2

4
‖H‖2 ,

where H is the mean curvature vector of M in M̃(c) and Ric(X) the Ricci curvature
of M at x .

REMARK 3.1. i) If M is a totally real submanifold of real dimension n in a com-
plex space form M̃(c) of real dimension 2m, then

AJY X = −Jh(X ,Y) = AJXY,

where X and Y are two arbitrary vector fields.
ii) Let m = n (M is Lagrangian in M̃(c)). If we consider the point x ∈ M , the

orthonormal frames {e1, ...,en} in TxM and {Je1, ...,Jen} in T⊥
x M , then

hi
jk = h j

ik,∀ i, j,k ∈ 1,n,

where hi
jk is the component after Jei of the vector h(e j,ek).

With these ingredients we prove the next result which improve Chen’s inequality
in the Lagrangian case.
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THEOREM 3.2. Let M be a Lagrangian submanifold in a complex space form
M̃(c) of real dimension 2n, n � 2 , x a point in M and X a unit tangent vector in TxM.
Then we have

Ric (X) � n−1
4

(c+n‖H‖2).

Proof. We fix the point x in M, the tangent vector X ∈ TxM , with ‖X‖ = 1, the
orthonormal frame {e1,e2, ...,en} in TxM such that e1 = X and {Je1,Je2, ...,Jen} a
orthonormal frame in T⊥

x M .
From the Gauss equation we get

R̃(e1,e j,e1,e j) = R(e1,e j,e1,e j)− g̃(h(e1,e1),h(e j,e j))+ g̃(h(e1,e j),h(e1,e j))

= R(e1,e j,e1,e j)−
n

∑
r=1

(hr
11h

r
j j − (hr

1 j)
2), ∀ j ∈ 2,n.

(4.1)
Therefore

(n−1)
c
4

= Ric(X)−
n

∑
r=1

n

∑
j=2

(hr
11h

r
j j − (hr

1 j)
2) (4.2)

which implies

Ric(X)− (n−1)
c
4

=
n

∑
r=1

n

∑
j=2

(hr
11h

r
j j − (hr

1 j)
2)

� (
n

∑
r=1

n

∑
j=2

hr
11h

r
j j)−

n

∑
j=2

(h1
1 j)

2 −
n

∑
j=2

(h j
1 j)

2

= (
n

∑
r=1

n

∑
j=2

hr
11h

r
j j)−

n

∑
j=2

(h j
11)

2 −
n

∑
j=2

(h1
j j)

2.

(4.3)

Let us consider the quadratic forms

f1, fr : Rn → R,

f1(h1
11,h

1
22, ...,h

1
nn) =

n

∑
j=2

h1
11h

1
j j −

n

∑
j=2

(h1
j j)

2,

fr(hr
11,h

r
22, ...,h

r
nn) =

n

∑
j=2

hr
11h

r
j j − (hr

11)
2,

where r ∈ 2,n.
We need the maximum of f1 and f2 . For fr , r ∈ 3,n , we can solve similar

problems.
We start with the problem

max f1,

subject to P : h1
11 +h1

22 + ...+h1
nn = k1,

where k1 is a real constant.



856 TEODOR OPREA

The partial derivatives of the function f1 are

∂ f1
∂h1

11

=
n

∑
j=2

h1
j j, (4.4)

∂ f1
∂h1

j j

= h1
11−2h1

j j, ∀ j ∈ 2,n. (4.5)

As for a optimal solution (h1
11,h

1
22, ...,h

1
nn) of the problem in question the vector

grad f1 is normal to P , we obtain

h1
22 = h1

33 = ... = h1
nn = a1 (4.6)

and

h1
11−2h1

22 =
n

∑
j=2

h1
j j. (4.7)

Using (4.6) and (4.7) we find

h1
11 = (n+1)a1. (4.8)

From the relation h1
11 +h1

22 + ...+h1
nn = k1, we get

(n+1)a1 +(n−1)a1 = k1, (4.9)

therefore

a1 =
k1

2n
. (4.10)

As f1 is obtained from the function studied in previous section by subtracting
some square terms, f1 |P will have the Hessian negative semidefinite. Consequently
the point (h1

11,h
1
22, ...,h

1
nn) given by the relations (4.6), (4.8) and (4.10) is a maximum

point, and hence

f1 � (n+1)a1(n−1)a1− (n−1)(a1)2 =
n−1
4n

(k1)2 =
n(n−1)

4
(H1)2. (4.11)

Further on, we shall consider the problem

max f2,

subject to P : h2
11 +h2

22 + ...+h2
nn = k2,

where k2 is a real constant.
The first two partial derivatives of the function f2 are

∂ f2
∂h2

11

=
n

∑
j=2

h2
j j −2h2

11, (4.12)
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∂ f2
∂h2

j j

= h2
11, ∀ j ∈ 2,n. (4.13)

As for a optimal solution (h2
11,h

2
22, ...,h

2
nn) of the problem in question the vector

grad f2 is normal to P , we obtain

3h2
11 =

n

∑
j=2

h2
j j = 3a2. (4.14)

Using the relation h2
11 +h2

22 + ...+h2
nn = k2, one gets

a2 +3a2 = k2, (4.15)

therefore

a2 =
k2

4
. (4.16)

With an similar argument to those in the previous problem we obtain that the points
(h2

11,h
2
22, ...,h

2
nn) given by the relations (4.14) and (4.16) are global maximum points.

Therefore

f2 � a23a2− (a2)2 = 2(a2)2 =
(k2)2

8
=

n2

8
(H2)2. (4.17)

Similarly one gets

fr � n2

8
(Hr)2, ∀r ∈ 2,n. (4.18)

As n(n−1)
4 � n2

8 , ∀ n � 2, using (4.11) and (4.18) we find

fr � n(n−1)
4

(Hr)2, ∀r ∈ 1,n. (4.19)

From (4.3) and (4.19) it follows

Ric(X)− (n−1)
c
4

� n(n−1)
4

n

∑
r=1

(Hr)2 =
n(n−1)

4
‖H‖2 , (4.20)

therefore

Ric (X) � n−1
4

(c+n‖H‖2). (4.21)

REMARK 3.2. i) If the mean curvature vector field H vanish at the point x ∈ M ,
then in precedent inequality the equality occurs for a tangent vector X ∈ TxM if and
only if h(X ,Y ) = 0,∀ Y ∈ TxM.

ii) If n � 3, the mean curvature vector field H don’t vanish at the point x ∈M and
the tangent vector X ∈ TxM satisfies

Ric (X) =
n−1

4
(c+n‖H‖2),
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then X = ±JH
‖H‖ . Indeed, the above equality implies that H2,H3, ...,Hn are 0. Con-

sequently, the mean curvature vector H is colinear with Je1 . It follows that JH is
colinear with X , therefore X = ±JH

‖H‖ .

iii) If n � 3, in theorem 4 the equality occurs for any tangent vector X ∈ TxM if
and only if x is a totally geodesic point.

iv) If n = 2, in theorem 4 the equality occurs for any tangent vector X ∈ TxM if
and only if there is an orthonormal frame {e1,e2} in TxM in which the Weingarten
operators take the following form

AJe1 =
(

3a1 a2

a2 a1

)
, AJe2 =

(
a2 a1

a1 3a2

)
.
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