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RICCI CURVATURE OF LAGRANGIAN
SUBMANIFOLDS IN COMPLEX SPACE FORMS

TEODOR OPREA

(Communicated by J. Pecaric)

Abstract. As we showed in [5] and [6], the basic inequalities, involving Riemannian invariants
of a Lagrangian submanifold immersed in a complex space form, can be improved using opti-
mization methods. Also in [1] is showed that the improved Chen’s inequality from [5] is optimal.
In this paper we find another proof for a Chen’s inequality, regarding the Ricci curvature [2] and
we improve this inequality in the Lagrangian case.

1. Optimizations on Riemannian submanifolds

Let (N,g) be a Riemannian manifold, (M, g) a Riemannian submanifold of it, and

f:N—R
a differentiable function. To these ingredients we attach the optimum problem

min f(x). (1.1)

Let’s remember the result obtained in [4].

THEOREM 1.1. If xo € M is a optimal solution of the problem (1), then

i) (grad f)(xo) € Tt M,

ii) the bilinear form

o ThiyMxTyM — R,
a(X,Y) =Hess;(X,Y) +g (h(X,Y), (grad f)(x0))

is positive semidefinite, where h is the second fundamental form of the submanifold M
in N.

REMARK 1.1. The bilinear form ¢ is nothing else but Hess 737(xo)-
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A very nice application of this result is the partial solution of the next problem:
find the 2-plane in the tangent space at the given point x of a Riemannian manifold
(M,g) which minimize the sectional curvature. A equivalent conditioned extremum
problem is

min R(X,Y,X,Y), (1.2)

subjectto || X |=1,||Y ||=1,¢(X,Y) =0,

where X and Y are two vectors from T, M .

A 2-plane 1 C TuM, 1 =Sp{X,Y} which verifies the first condition from Theorem
1 is called critical plane for the sectional curvature at the point x. Using Theorem 1,
in [4] we showed that a 2-plane 7 is a critical plane for the sectional curvature at the
point x if and only if for every tangent vectors U, V., W € 1 the vector R(U,V)W
lies in 7, where R is the curvature tensor of the Riemannian manifold (M, g).

2. The Ricci curvature of a submanifold in a real space form

In this section we give a new proof of the next inequality

THEOREM 2.1. (Chen ~[2]). Let M be a n-dimensional Riemannian submani-
fold of a real space form (M(c),g) and x a point in M. Then, for each unit vector
X € M, we have

2
Ric (X) < (n— e+ |H|P,

where H is the mean curvature vector of M in M(c) and Ric(X) the Ricci curvature
of M at x.

Proof. We fix the point x in M, the vector X € T,M, with | X|| = 1, the orthonor-
mal frame {ey,ez,...,e,} in T,M such that e; =X and {e,11,¢€,42,...,em} & orthonor-
mal frame in 7,*M.

From Gauss equation we have

R(e1,ej,e1,¢;) = R(e1,eje1,ej) —&(h(er,e1),hlej e;)) +&(h(er,e;), her,e;))

m

:R(el,ej,€1,€j)— 2 ( ’ilh};/_( 1 ) ) ]EZ n.
r=n+1
_ (2.1)
Using the fact that the sectional curvature of M(c) is constant, we obtain
(n=1ec=Ric(X)~ ¥ ¥ (Hhj;—(h)?), (2.2)
r=n+1j=2
therefore

Ric(X)—(n—1)c= Y Z( Lh = (R )% 2 Zh (2.3)
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For r € n+ 1, m, let us consider the quadratic form
friR"—R,
Sr(hy Wy, b)) = Y By
=2

and the constrained extremum problem
max f;.,

subjectto P : hy +ho+...+h,, =k,

where k" is a real constant.
The gradient vector of f; is given by

grad f, = (2 h;j7 Ty 1)
Jj=2

Let us denote with p = (h{,,h5,,....h},,) a optimal solution of the problem in
question.
As grad f; is normal to P at the point p, we obtain

n kl’
j=2

Let g € P be an arbitrary point.
The bilinear form o : TP x T,P — R has the expression

a(X,Y) =Hess (£;)(X,Y) + (h (X,Y),grad f:(q)),

where /' is the second fundamental form of P in R",and (, ) is the standard inner-
product on R".
In the standard frame of R", the Hessian of f, has the matrix

01.1
10.0

10.0

n .
A vector X € T, P satisfies } X' =0.

i=1

n .
As P is totally geodesic in R", we have a/(X,X)=2 Y X'X/ = —2(Xx")2.
j=2

So f,|P is a concave function, therefore the points which satisfies the relation

(2.4) are global maximum points for f|P.

One gets
(K ’

r\2 n
o< G = 3B e = e @25)
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Using (2.3) and (2.5) we find

m

Ric(X)—(n—1)c< Y
r=n+1

n2
(H')? = |H|’. (2.6)

n2
4 4

3. The Ricci curvature of a Lagrangian submanifold in a complex space form

Let (M ,8,J) be a Kéhler manifold of real dimension 2m. A submanifold M of
dimension n of (M ,8,J) is called a totally real submanifold if for any point x in M the
relation J(T,M) C T;"M holds.

If, in addition, n = m, then M is called Lagrangian submanifold. For a Lagrangian
submanifold, the relation J(T,M) = T.*M occurs.

A Kihler manifold with constant holomorphic sectional curvature is called a com-
plex space form and is denoted by M(c). The Riemann curvature tensor R of M(c)
satisfies the relation

R(X,Y)Z= g{g(y,z)x —3(X,Z2)Y +3(JY,Z)JX — g(JX,Z)JY +28(X,JY)JZ}.

A totally real submanifold of real dimension n in a complex space form M (c) of
real dimension 2m satisfies a Chen’s inequality

THEOREM 3.1. (Chen). Let M be a n-dimensional Riemannian submanifold
of a complex space form (M(c),g) and x a point in M. Then, for each unit vector
X € M, we have
c

2
. n 2
Ric(X) < (n—1)4+—4 lH|",

where H is the mean curvature vector of M in M(c) and Ric(X) the Ricci curvature
of M at x.

REMARK 3.1. i) If M is a totally real submanifold of real dimension n in a com-
plex space form M(c) of real dimension 2m, then

AyyX = —Jh(X,Y) =AY,

where X and Y are two arbitrary vector fields.
ii) Let m =n (M is Lagrangian in M(c)). If we consider the point x € M, the
orthonormal frames {ey,...,e,} in T,M and {Jey,...,Je,} in T;"M, then

ffk = hl{]uv i7jak € 1,_71,
where h;k is the component after Je; of the vector h(e;,ex).

With these ingredients we prove the next result which improve Chen’s inequality
in the Lagrangian case.
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THEOREM 3.2. Let M be a Lagrangian submanifold in a complex space form

1\71(0) of real dimension 2n, n > 2, x a pointin M and X a unit tangent vector in T,M.
Then we have

. —1
Ric (X) < 2 (c+nH|?).
Proof. We fix the point x in M, the tangent vector X € TyM, with || X|| =1, the

orthonormal frame {ej,ey,...,e,} in TyM such that e; =X and {Jey,Jey,....,Je,} a
orthonormal frame in T;"M.

From the Gauss equation we get

ﬁ(ehej»el,ej)=R(€1,€j7€1761) g(h(er,er), (ej»ej))+§(h(€1»€j)7h(el7ej))

n

:R(ehejaelaej 2 hl/ )a VJEZ,_H
r=1
(4.1)
Therefore
c n n 2
(n—l)Z:Rlc =¥ N (n] (hi;)?) (4.2)
r=1j=2
which implies
c n n 2
Ri —1)-
ic(X)—(n—1) 4 2:1 2:2 )9)
r=1j
n n n n
<(X Zhrlh = X (ki) = X (h]) (4.3)
r=1j=2 j=2 j=2
n n 1 )
-3 Zhhh =2 ()= Y ()
r=1j=2 j=2 j=2

Let us consider the quadratic forms

flvfr R _)R
Si(hyy, gy zhnh 2 )2

Jj=2
fr(h'il7h§27"'7hi};n = 2 hllhjj
j=2

where r € 2, n.

We need the maximum of f; and f>
problems.

We start with the problem

. For f., r € 3,n, we can solve similar

max fi,
subject to P: h}; +hiy + ...+ hh, =K',

where k! is a real constant.
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The partial derivatives of the function f; are

dfi o 1
J=
o, o
ﬁ:h{l—zh}j, Vj €. (4.5)
Ji

As for a optimal solution (h},,hl,,...,h},) of the problem in question the vector
grad f] is normal to P, we obtain

hy=hly=..=hl =ad (4.6)
and
n
hiy—2hy = Y hi;. (4.7)
j=2

Using (4.6) and (4.7) we find
hiy = (n+1)a'. (4.8)
From the relation h}, +hl, + ...+ hl, = k', we get
(n+Da'+ (n—1)a' =&, (4.9)
therefore 1
1_ K
2n’
As f} is obtained from the function studied in previous section by subtracting
some square terms, fi|P will have the Hessian negative semidefinite. Consequently

the point (h},,h,,...,hL,) given by the relations (4.6), (4.8) and (4.10) is a maximum
point, and hence

(4.10)

fi <t Dal(n=1)al — (n =)'y = "L 1) =

nn—1)

Further on, we shall consider the problem
max f2,

subject to P: hij +h3, + ... + 12, = k2,

where k? is a real constant.
The first two partial derivatives of the function f, are

9fr X0 2
.~ Zzhjj—zhn, (4.12)
J=
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d —

98 _3, viezn (4.13)

ohs;

As for a optimal solution (h?,,h3,,...,h2,) of the problem in question the vector
grad f> is normal to P, we obtain

h = Zh (4.14)

Using the relation h}, + 3, + ...+ h2, = k*, one gets
a®+3d> =k, (4.15)

therefore
2K 4.16

With an similar argument to those in the previous problem we obtain that the points
(h3,,13,,...,h%,) given by the relations (4.14) and (4.16) are global maximum points.
Therefore

29,2 2\2 _ 22_(k2)2_f 2\2
fr <a3a”—(a”)" =2(a")" = 2 _8(H). (4.17)
Similarly one gets
2
£ < %(H’)Z, Vre2n. (4.18)

As MU > % > 2 using (4.11) and (4.18) we find

n(n—1)
4

From (4.3) and (4.19) it follows

(H")?, Vreln. (4.19)

n
n—1
Ric (X) — (n—l% 4 )||HH2, (4.20)
r=1
therefore |
Ric (X) < —— (c+n|H|*). (4.21)

REMARK 3.2. i) If the mean curvature vector field H vanish at the point x € M,
then in precedent inequality the equality occurs for a tangent vector X € T,M if and
only if A(X,Y)=0,V Y € T,M.

ii) If n > 3, the mean curvature vector field H don’t vanish at the point x € M and
the tangent vector X € T,M satisfies

Ric () = "L et n|H|P),
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then X = ﬁ Indeed, the above equality implies that H> H3,...,H" are 0. Con-

sequently, the mean curvature vector H is colinear with Je;. It follows that JH is

colinear with X, therefore X = _ﬂHEIﬁ .

iii) If n > 3, in theorem 4 the equality occurs for any tangent vector X € .M if
and only if x is a totally geodesic point.

iv) If n =2, in theorem 4 the equality occurs for any tangent vector X € T,.M if
and only if there is an orthonormal frame {e;,e;} in T,M in which the Weingarten
operators take the following form

3al 42 % al
Aje; = <a2 al)» AJey = (al 32 )
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