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Abstract. The authors introduce a class of generalized Riesz potentials with kernels having weak
regularity on spaces of homogeneous type in the sense of Coifman and Weiss and establish
their boundedness on Lebesgue spaces and Hardy spaces. As applications, the authors obtain
the boundedness on Lebesgue spaces and Hardy spaces of commutators generated by Lipschitz
functions and generalized Riesz potentials or Calderón-Zygmund operators with kernels having
weak regularity on spaces of homogeneous type.

1. Introduction

Let Δ be the Laplacian on Rn . It is well known that the Riesz potential, (−Δ)−α/2

with α ∈ (0,n) , is a useful tool in a variety of problems in analysis such as Partial
Differential Equations and Harmonic Analysis; see [24, 25, 5, 9, 27, 26, 8]. Riesz
potentials on metric measure spaces also attract a lot of attention; see, for example,
[10, 11, 21, 22, 29].

In this paper, motivated by Kurtz [16], we introduce a class of generalized Riesz
potentials with kernels having weak regularity on spaces of homogeneous type in the
sense of Coifman and Weiss [3, 4], and obtain their boundedness on Lebesgue spaces
and Hardy spaces. As applications, we also obtain the boundedness on Lebesgue spaces
and Hardy spaces of commutators generated by Lipschitz functions and generalized
Riesz potentials or Calderón-Zygmund operators with kernels having weak regularity
on spaces of homogeneous type.

We first recall some basic facts on spaces of homogeneous type. Let X be a set.
Endow X with a positive Borel regular measure μ and a quasi-metric d satisfying
that there exists C1 � 1 such that for all x, y, z ∈ X ,

d(x,y) � C1(d(x,z)+d(y,z)). (1.1)

The triple (X ,d,μ) is called a space of homogeneous type in the sense of Coifman
and Weiss ([3, 4]) if μ is doubling, namely, there exists C2 � 1 such that for all x ∈X
and r > 0,

μ(Bd(x,2r)) � C2μ(Bd(x,r)), (1.2)

where Bd(x,r) = {y ∈ X : d(x,y) < r} .
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We remark that although all balls defined by d satisfy the axioms of complete
system of neighborhoods in X , and therefore induce a (separated) topology in X , the
balls Bd(x,r) for x ∈ X and r > 0 need not to be open with respect to this topology.
However, by Theorem 2 in [19], we know that there exists a quasi-metric d̃ such that d̃
is equivalent to d and the balls corresponding to d̃ are open in the topology induced by
d̃ . Based on this, in what follows, we always assume that the balls corresponding to d
are open in the topology induced by d . Otherwise, we replace d by d̃ , since all results
in this paper are invariant for equivalent quasi-metrics. Throughout this paper, we also
assume that μ(X ) = ∞ and μ({x}) = 0 for all x ∈ X .

Recall that the measure distance ρ , induced by the quasi-metric d and the measure
μ , is defined by that for all x, y ∈ X ,

ρ(x,y) = inf{μ(Bd) : Bd is a ball containing x and y};

see [4, 19]. Macı́as and Segovia [19] proved that if the balls corresponding to d are
open in the topology induced by d , then ρ is a quasi-metric where we denote by C3

the corresponding constant in (1.1), the topologies on X induced by d and ρ coincide;
moreover, there exists C4 � 1 such that for all x ∈ X and r > 0,

C−1
4 r � μ(Bρ(x,r)) � C4r; (1.3)

see Theorem 3 in [19]. We conveniently mention that if μ and ρ satisfy (1.3), then the
triple (X ,ρ ,μ) is called to be normal; see [19, p. 258]. In general, ρ is not equivalent
to d . We recall that the quasi-metric ρ is said to be equivalent to the quasi-metric d if
there exists C > 0 such that for all x, y ∈ X , C−1d(x,y) � ρ(x,y) � Cd(x,y). Macı́as
and Segovia in [19, Theorem 2] proved that there exists a quasi-metric ρ̃ on X which
is equivalent to ρ and satisfies that there exist constants θ ∈ (0,1) and C > 0 such that
for all x, x′, y ∈ X ,

|ρ̃(x,y)− ρ̃(x′,y)| � C[ρ̃(x,x′)]θ [ρ̃(x,y)+ ρ̃(x′,y)]1−θ . (1.4)

Noticing again that all the conclusions in this paper are invariant for equivalent quasi-
metrics, thus, if it is necessary, we may also assume that ρ itself satisfies (1.4). In the
sequel, θ is always taken to be the same as in (1.4). Moreover, by the proof of Theorem
2 in [19], we know that θ in (1.4) can be taken to be 1/ log2[C3(2C3 +1)] .

Motivated by [16] on Rn (see also [13, 23]), we introduce the following classes of
kernels with weak regularity of generalized Riesz potentials on (X ,ρ ,μ) .

DEFINITION 1.1. Let κ ∈ [1,∞) and K be a locally integrable function on X ×
X \ {(x,x) : x ∈ X } .

(i) The function K is said to be in Dρ(κ ,γ) with γ ∈ [1,∞) if there exist constants
CK � 2C3 and C > 0 such that for all x, y ∈ X ,{∫

ρ(x,z)>CKρ(x,y)
|K(z,x)−K(z,y)|γ dμ(z)

}1/γ
� C[ρ(x,y)]1/γ−1/κ .
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(ii) Let η = {η j} j∈N ⊂ [0,∞) . The function K is said to be in Dρ(κ ,γ,η) with
γ ∈ [1,∞] if there exists a constant CK � 2C3 such that for all x, y ∈ X and j ∈ N ,

{∫
Rj(Bρ (x,CKρ(x,y)))

|K(z,x)−K(z,y)|γ dμ(z)
}1/γ

� η j[2 jCKρ(x,y)]1/γ−1/κ ,

where and in what follows, Rj(Bρ(x,r)) = Bρ(x,2 j+1r)\Bρ(x,2 jr) for all x ∈ X and
r > 0, and the usual modification is made when γ = ∞ .

We now give some examples of kernels satisfying Definition 1.1 on Rn . Let Ω be
homogeneous of zero on Rn and ωq be its Lq(Sn−1) integral modulus of continuity. If
κ ∈ [1,n) , q ∈ (κ ,∞] and

K(x,y) = |x− y|−n/κΩ(x− y)

for all (x,y) ∈ Rn ×Rn \ {(x,x) : x ∈ Rn} with Ω satisfies the Lq -Dini condition,
namely,

∫ 1
0 ωq(s)s−1 ds < ∞ , then K ∈ Dρ(κ ,κ) ; if κ ∈ [1,n/(n− 1)) , q ∈ (κ ,∞]

and
∫ 1
0 ωq(s)s−[1+n(1−1/κ)] ds < ∞ , then K ∈ Dρ(κ ,γ) for any γ ∈ [1,κ) ; and if

κ ∈ [1,2n/(2n − 1)) , κ̃ ∈ (κ ,n/(n − 1)] , q ∈ (1/[1 + 2n(1/κ − 1)],∞] and∫ 1
0 ωq(s)s−[1+n(1−1/κ̃)] ds <∞ , then K ∈Dρ(κ ,γ,η) with η j � 2− jεγ for any γ ∈ [1,κ) ,

certain εγ ∈ (0,1/κ−1/κ̃) and all j ∈ N ; see [25, 23, 6].
Let κ0 ∈ [1,∞) , p0 ∈ (1,∞) and 1/q0 = 1/p0 + 1/κ0− 1. A linear operator T

is called a generalized Riesz potential if T is bounded from Lp0(X ) to Lq0(X ) with
kernel K as in Definition 1.1; moreover, T satisfies that for any f ∈ Lp0(X ) with
bounded support and x �∈ supp f ,

T f (x) =
∫

X
K(x,y) f (y)dμ(y). (1.5)

We first point out that on Rn with the Euclidean metric | · | and the n -dimensional
Lebesgue measure μ , if T is bounded from Lp0(Rn) to Lq0(Rn) with kernel K ∈
Dρ(κ0,κ0) , where ρ(x,y) = |x− y|n for all x, y ∈ Rn , then Hörmander [13] proved
that T is bounded from L1(Rn) to weak-Lκ0(Rn) with κ0 ∈ [1,∞) ; if K ∈Dρ(κ0,γ,η)
with κ0 ∈ (1,∞) , γ ∈ [κ0,∞] and {η j} j∈N being increasing such that ∑∞

j=1η j <∞ , then
Kurtz [16] obtained the boundedness of T on weighted Lebesgue spaces when 1 < p <
κ0/(κ0−1) ; if K(x,y) = |x−y|−n/κ0Ω(x−y) for all (x,y)∈Rn×Rn\{(x,x) : x∈Rn}
with κ0 ∈ (1,∞) , and Ω being homogeneous of zero and satisfying certain type of Dini
condition, then Ding and Lu [6, 7] established the boundedness of T on Hardy spaces.
On (X ,ρ ,μ) , Gatto and Vagi [10] established the boundedness on Lebesgue spaces
and Hardy spaces of Riesz potentials with kernel K(x,y) = ρ(x,y)1−β and β ∈ (0,1) ;
Coifman and Weiss [3] proved the boundedness from L1(X ) to weak-L1(X ) and
from H1(X ) to L1(X ) of T with K ∈ Dρ(1,1) ; and the boundedness on Hardy
spaces of T with kernel K ∈Dρ(1,γ,η) for certain γ ∈ [1,∞] and η is also considered
in [14] via certain molecular characterization of Hardy spaces related to η .
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The main results of this paper are the following boundedness conclusions of T
with kernel K ∈ Dρ(κ0,γ) or K ∈ Dρ(κ0,γ,η) and κ0 > 1.

THEOREM 1.1. Let κ0 ∈ (1,∞) , p1 ∈ [κ0/(2κ0 − 1),1] ∩ [1/(1 + θ ),1] ,
1/q1 = 1/p1 + 1/κ0− 1 , T be a linear bounded operator from Lp0(X ) to Lq0(X )
with certain p0 ∈ (1,∞) and 1/q0 = 1/p0 + 1/κ0 − 1 and T have a kernel K ∈
Dρ(κ0,q1) as in (1.5). For p∈ [p1, p0) , let 1/q = 1/p+1/κ0−1 . Then T is bounded
from Hp(X ) to Lq(X ) for p ∈ [p1,1] and from Lp(X ) to Lq(X ) for p ∈ (1, p0);
moreover, if p1 = 1 , then T is also bounded from L1(X ) to weak-Lκ0(X ) .

Let T ∗ denote the dual operator of T . Then the boundedness of T from Lp0(X )
to Lq0(X ) implies the boundedness of T ∗ from Lq′0(X ) to Lp′0(X ) .

From this and Theorem 1.1, it also follows that T ∗ is bounded from Lq′(X ) to
Lip(1/p−1) for p ∈ [p1,1) and from Lκ

′
0(X ) to BMO(X ) .

It is easy to see that 1/(1+θ ) = κ0/(2κ0−1) if and only if κ0 = 1/(1−θ ) . In
Theorem 1.1, if κ0 < 1/(1− θ ) , then p1 ∈ [κ0/(2κ0 − 1),1] , and if κ0 � 1/(1− θ ) ,
then p1 ∈ [1/(1+θ ),1] .

When κ0 < 1/(1− θ ) , we have the following results. In what follows, T ∗(1) =
0 means that for any a ∈ L1(X ) with bounded support and

∫
X a(x)dμ(x) = 0,∫

X Ta(x)dμ(x) = 0.

THEOREM 1.2. Let 1 < κ0 < 1/(1−θ ) , p1 ∈ [1/(1+θ ) , κ0/(2κ0−1)] , 1/q1 =
1/p1 + 1/κ0 − 1 , γ ∈ [1,∞] and η = {η j} j∈N ⊂ [0,∞) satisfying that

∑ j∈N 2 j(1−q1)(η j)q1 < ∞ when p1 < κ0/(2κ0−1) , or γ ∈ (1,∞] and η = {η j} j∈N ⊂
[0,∞) satisfying that ∑ j∈N jη j < ∞ when p1 = κ0/(2κ0 − 1) . Let T be a linear
bounded operator from Lp0(X ) to Lq0(X ) with certain p0 ∈ (1,∞) and 1/q0 =
1/p0 + 1/κ0− 1 and T have a kernel K ∈ Dρ(κ0,γ,η) as in (1.5). For p ∈ [p1, p0) ,
let 1/q = 1/p+1/κ0−1 . Then T is bounded from Hp(X ) to Lq(X ) for p ∈ [p1,1] ,
from Lp(X ) to Lq(X ) for p ∈ (1, p0); if further assume that T ∗(1) = 0 , then T is
also bounded from Hp(X ) to Hq(X ) for p ∈ [p1,κ0/(2κ0−1)] .

We remark that Theorem 1.1 and Theorem 1.2 on Rn imply Theorem 1, Theorem
2 and Theorem 3 in [6].

If T ∗(1)= 0, from Theorem 1.2, it follows that T ∗ is bounded from BMO(X ) to
Lip(1−1/κ0) and from Lip(1/q−1) to Lip(1/p−1) when p ∈ [p1,κ0/(2κ0−1)) .

By the definition of the Hardy space Hq(X ) with q ∈ (0,1] , it is easy to see that
T ∗(1) = 0 is also necessary for T to be bounded from Hp(X ) to Hq(X ) .

Notice that if η = 2− jε , then it is easy to see that ∑ j∈N(η j)q12 j(1−q1) < ∞ if
and only if q1 > 1/(1 + ε) . Let κ0 ∈ [1,1/(1− θ )) , ε ∈ (0,θ + 1/κ0 − 1] , q1 =
1/(1+ ε) and η j � C2− jε for all j ∈ N and certain constant C > 0. When κ0 = 1,
if K ∈ Dρ(κ0,∞,η) , then the boundedness from H1/(1+ε)(X ) to weak-L1/(1+ε)(X )
of T was established in [14]. It is still unclear if there is any similar result when
κ0 ∈ (1,1/(1−θ )) .

The proofs of Theorem 1.1 and Theorem 1.2 are given in Section 3 via some
general criteria for boundedness of linear operators on Hardy spaces, which were es-
tablished in [14] via the molecular characterization of Hardy spaces closely related to
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the kernel of the considered operator T , and are stated in Section 2 for the reader’s
convenience. In Section 2, we also recall some basic facts about atomic Hardy spaces
of Coifman and Weiss on spaces of homogeneous type; moreover, we establish an inter-
polation theorem on boundedness of operators on Lp(X ) when p ∈ (1,∞) or Hp(X )
when p∈ (1/(1+θ ),1] , which may have independent interest; see Theorem 2.1 below.

Applying Theorem 1.1 and Theorem 1.2, we in Section 4 establish the bound-
edness on Lebesgue spaces and Hardy spaces of commutators generated by Lipschitz
functions and singular integrals or generalized Riesz potentials with kernels having the
weak regularity as in Definition 1.1 (ii) on spaces of homogeneous type; see Proposi-
tion 4.2 below. We should point out that Janson [15] first discussed the boundedness
on Lebesgue spaces of commutators generated by Calderón-Zygmund operators and
Lipschitz functions on Rn . More references on this topic can be found in [18]. To
be interesting, if b ∈ Lip(β ) for certain β ∈ (0,1/κ0) with κ0 ∈ [1,∞) and T is a
bounded linear operator from Lp0(X ) to Lq0(X ) with kernel K ∈ Dρ(κ0,γ,η) for
certain p0, q0 ∈ (1,∞) , γκ0 ∈ [1,∞) , and sequence η , we then in Section 4 prove
that the commutator [b,T ] is also a bounded linear operator from Lp1(X ) to Lq1(X )
with kernel K̃ ∈ Dρ(κ1,γ, η̃) for certain κ1, p1, q1 ∈ (1,∞) and sequence η̃ , namely,
[b,T ] is also a generalized Riesz potential considered as above; see Proposition 4.1 be-
low. This approach is different from the known approach used for such commutators
on Euclidean spaces; see [18, 15].

We finally make some conventions. Throughout this paper, for any p ∈ [1,∞] , let
1/p′ +1/p = 1. We always use C to denote a positive constant that is independent of
the main parameters involved but whose value may differ from line to line, and f � g
means f � Cg . If f � g � f , we then write f ∼ g . Constants with subscripts, such as
C1 , do not change in different occurrences. For any given quasi-normed linear spaces
Y and Z and a linear operator T which maps Y into Z , T is said to be bounded
from Y to Z , if there exists a positive constant C such that for all f ∈ Y , T f ∈ Z
and ‖T f‖Z � C‖ f‖Y .

2. Preliminaries

We begin with the definition of atomic Hardy spaces on (X ,d,μ) in [4]. To
this end, we first recall the definitions of Lipschitz spaces, the space of functions with
bounded mean oscillation and atoms; see [4].

DEFINITION 2.1. Let α > 0. A function f is said to be in Lip d(α) if there exists
C � 0 such that for all x, y ∈ X and all balls Bd containing x and y ,

| f (x)− f (y)| � C[μ(Bd)]α . (2.1)

The minimal constant C in (2.1) is defined to be the Lip d(α) norm of f and denoted
by ‖ f‖Lipd(α) .
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DEFINITION 2.2. Let 1 � q <∞ . A function f is said to be in BMO q(X ,d,μ)
if there exists C � 0 such that for all balls Bd ⊂ X ,{

1
μ(Bd)

∫
Bd

| f (x)− fBd |qdμ(x)
}1/q

� C, (2.2)

where and in the sequel, fBd = 1
μ(Bd)

∫
Bd

f (y)dμ(y). The minimal constant C in (2.2)

is defined to be the BMO q(X ,d,μ) norm of f and denoted by ‖ f‖BMOq(X ,d,μ) .

Denote BMO1(X ,d,μ) simply by BMO(X ,d,μ) . It is well-known that for
1 < q < ∞ , BMO(X ,d,μ) = BMOq(X ,d,μ) with equivalent norms; see [4].

DEFINITION 2.3. Let 0 < p < q and p � 1 � q � ∞ . A function a is called a
(p,q)d -atom if
(A1) suppa ⊂ Bd = Bd(x,r) for certain x ∈ X and r > 0;
(A2) ‖a‖Lq(X ) � [μ(Bd)]1/q−1/p ;
(A3)

∫
X a(x)dμ(x) = 0.

Now we state the definition of atomic Hardy spaces. For α > 0, let (Lip d(α))∗
be the dual space of Lip d(α) .

DEFINITION 2.4. Let 0 < p < q and p � 1 � q � ∞ . A function f ∈ L1(X )
when p = 1 or a linear functional f ∈ (Lip d(1/p− 1))∗ when p < 1 is said to be in
H1,q(X ,d,μ) when p = 1 or in Hp,q(X ,d,μ) when p < 1 if there exist (p,q)d -
atoms {a j}∞j=1 and {λ j}∞j=1 ⊂C such that f =∑∞

j=1λ ja j, which converges in L1(X )
when p = 1 or in (Lip d(1/p− 1))∗ when p < 1, and ∑∞

j=1 |λ j|p < ∞ . Moreover,

the norm of f in Hp,q(X ,d,μ) is defined by ‖ f‖Hp,q(X ,d,μ) = inf{(∑∞
j=1 |λ j|p)1/p},

where the infimum is taken over all the above decompositions of f .

Coifman and Weiss proved that Hp,q(X ,d,μ) = Hp,∞(X ,d,μ) for 0 < p < q
and p� 1� q�∞ , (H1,q(X ,d,μ))∗ = BMO(X ,d,μ) for 1< q�∞ , and (Hp,q(X ,
d,μ))∗ = Lipd(1/p− 1) for 0 < p < 1 � q � ∞ ; see Theorem A and Theorem B in
[4]. Therefore, in what follows, we denote Hp,q(X , d, μ) simply by Hp(X , d, μ) .

If we replace d by ρ in Definition 2.1 through Definition 2.4, we then obtain
Lipρ(α) , BMO q(X ,ρ ,μ) , (p,q)ρ -atoms and atomic Hardy spaces Hp,q(X ,ρ ,μ) .
All the conclusions stated above still hold for Hp,q(X ,ρ ,μ) , BMO q(X ,ρ ,μ) and
Lipρ(1/p−1). Thus, in what follows, we denote Hp,q(X ,ρ ,μ) simply by Hp(X ,ρ ,μ).

Generally speaking, for two topologically equivalent spaces of homogeneous type,
the corresponding Hardy spaces are not necessary to be equivalent; see, for example,
[1, Theorem 10.5]. We recall that two quasi-Banach spaces B1 and B2 are said to
be equivalent if they are equal as a set and their norms are equivalent. However, for
all α > 0, Macı́as and Segovia [19] proved that Lipρ(α) and Lip d(α) are equivalent.
For p∈ (0,1] , it was proved in [14] that Hp(X ,ρ ,μ) and Hp(X ,d,μ) are equivalent,
which was also mentioned in [4, p. 594] and [20, p. 271]. By the dual theory, we also
have BMO(X ,d,μ) = BMO(X ,ρ ,μ) with equivalent norms. Thus in what follows,
we denote them simply by Lip(α) , Hp(X ) and BMO(X ) ; respectively.
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The following kind of molecules in [14] is closely related to the classes of kernels
in Definition 1.1 (ii).

DEFINITION 2.5. Let 0 < p < q , p � 1 � q � ∞ and η = {ηk}k∈N ⊂ [0,∞)
satisfying

∞

∑
k=1

kηk < ∞, (2.3)

or when p < 1,
∞

∑
k=1

(ηk)p2k(1−p) < ∞. (2.4)

A function M ∈ Lq(X ) is called a (p,q,η)ρ -molecule centered at a ball Bρ if
(M1) ‖M‖Lq(X ) � [μ(Bρ)]1/q−1/p ;

(M2) for all k ∈ N , ‖MχRk(Bρ )‖Lq(X ) � ηk2k(1/q−1)[μ(Bρ)]1/q−1/p;
(M3)

∫
X M(x)dμ(x) = 0.

REMARK 2.1. (a) From Definition 2.4 and Definition 2.5, it is easy to see that if
a is a (p,q)ρ -atom supported in a ball Bρ , then a is a (p,q,η)ρ -molecule centered at
the same ball Bρ . Conversely, if ηk = 0 for all k ∈ N , then a (p,q,η)ρ -molecule is
just a (p,q)ρ -atom.

(b) By Definition 2.5, it is easy to see that if q1 < q2 and M is a (p,q2,η)ρ -
molecule, then there exists a constant C > 0 independent of M such that 1

CM is a
(p,q1,η)ρ -molecule.

(c) Theorem 2.2 in [14] characterizes Hp(X ) with p ∈ (0,1] by molecules in
Definition 2.5; moreover, this characterization is sharp when p < 1.

To establish the boundedness of operators on Hardy spaces on X , we need the
following bounded criteria established in Theorem 3.2 and Corollary 3.1 of [14] (see
also [28, 12] for some more general results on this topic).

LEMMA 2.1. Let p0, q0 ∈ [1,∞) , p ∈ [1/(1+ θ ),1] , q ∈ [1/(1+ θ ),∞) and T
be a linear operator bounded from Lp0(X ) to Lq0(X ) .

(i) If q ∈ [1,∞) and there exists a positive constant C such that for all (p,∞)-atoms
a, ‖Ta‖Lq(X ) � C, then T is bounded from Hp(X ) to Lq(X ) .

(ii) If q ∈ [p,1] , and there exists a positive constant C such that for all (p,∞)-atoms
a, ‖Ta‖Hq(X ) � C, then T is bounded from Hp(X ) to Hq(X ) . Especially,

if there exists q̃ ∈ [1,∞) and η satisfying ∑ j∈N(η j)q2 j(1−q) < ∞ when q < 1 ,
or q̃ ∈ (1,∞) and η satisfying ∑ j∈N jη j < ∞ when q = 1 , such that for all
(p,∞)ρ -atoms, 1

CTa is a (q, q̃,η)ρ -molecule, then T is bounded from Hp(X )
to Hq(X ) .

(iii) If q ∈ [p,1) , and there exist positive constants C and η satisfying
∑ j∈N(η j)q2 j(1−q) < ∞ such that for any (p,∞)-atom a, 1

CTa satisfies condi-
tions (M1) and (M2) of (q,1,η)ρ -molecules in Definition 2.5, then T is bounded
from Hp(X ) to Lq(X ) .
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REMARK 2.2. We point out that Lemma 2.1 (i) still holds for p ∈ (1/(1+θ ), 1]
and q ∈ (1/(1 + θ ),1] . In fact, by Theorem 5.6 of [12], if ‖Ta‖Lq(X ) � C for all
continuous (p,∞)ρ -atoms, then T extends a bounded linear operator from Hp(X )
to Lq(X ) . By the boundedness of T from Lp0(X ) to Lq0(X ) , we know that this
extension coincides with T on all (p,∞)ρ atoms. By the same reason, the results of
Lemma 2.1 can also be deduced from Theorem 5.6 of [12] when p ∈ (1/(1+ θ ), 1] ,
but not when p = 1/(1+θ ) .

Finally, in this section, we establish an interpolation theorem for linear operators,
which is used in the next section and may have independent interesting.

THEOREM 2.1. Let 1/(1+θ ) � p1 � 1 < p2 <∞ , q1 ∈ [p1,∞) and q2 ∈ [p2,∞)
satisfying 1/q1 − 1/p1 = 1/q2 − 1/p2 . Let T be a bounded linear operator from
Hp1(X ) to weak-Lq1(X ) and from Lp2(X ) to weak-Lq2(X ) .

(i) If p∈ (1, p2) and q∈ [p,∞) satisfy 1/q1−1/p1 = 1/q−1/p, then T is bounded
from Lp(X ) to Lq(X ) .

(ii) If p∈ (p1,1] and q∈ [p,q2) satisfy 1/q1−1/p1 = 1/q−1/p, then T is bounded
from Hp(X ) to Lq(X ) .

Proof. To show (i), let p ∈ (1, p2) , and f ∈ L∞(X ) with bounded support and
‖ f‖Lp(X ) � 1. Let p̃ = (1+ p)/2, α > 0 and Ωα = {x∈X : M p̃( f )(x) > α}, where

M p̃( f ) = [M (| f | p̃)]1/ p̃ and M ( f ) denotes the Hardy-Littlewood maximal function of
f . From the Lp/ p̃(X )-boundedness of M (see [3]), we deduce that

μ(Ωα) � α−p‖| f | p̃‖p/ p̃

Lp/ p̃(X )
� α−p‖ f‖p

Lp(X ) < ∞.

From this, it is easy to see that Ωα is an open and bounded set by the definition
of M and Lemma 3.9 in [4], respectively. Applying the Whitney type covering lemma
(Theorem 3.2 in [4]), we obtain a collection of balls, {Bα

j = Bα
j (x

α
j ,r

α
j )} j such that

Ωα = ∪ jBα
j , (3C1Bα

j )∩ (X \Ωα) �= /0 and each x ∈ X is contained in at most N
balls for certain N ∈ N independent of α and f , where 3C1Bα

j = Bα
j (x

α
j ,3C1rαj ) .

Set χαj = χBαj
, ηα

j = χαj (∑ j χαj )−1 , gα =∑ j(ηα
j f )Bαj

χαj + f χ
X \Ωα , bαj = fηα

j −
(ηα

j f )Bαj
χαj , where (ηα

j f )Bαj
= [μ(Bα

j )]
−1 ∫

Bαj
ηα

j (x) f (x)dμ(x) , and b =∑ j b
α
j . Then

f = gα + bα . By an argument similar to that used in [3, 4], there exists a constant
C > 0, independent of α and f , such that

(I) |gα(x)| � Cα for all x ∈ X ;

(II) ∑ j μ(Bα
j ) � C(‖ f‖Lp(X )/α)p ;

(III) ‖bαj ‖Lp̃(X ) � Cα[μ(Bα
j )]

1/ p̃ ;

(IV)
∫
Bαj

bαj (x)dμ(x) = 0 and ∑ j ‖bαj ‖p
Lp(X ) � C‖ f‖p

Lp(X ) .

Set aαj = [Cαμ(Bα
j )

1/p1 ]−1bαj . Notice that suppbαj ⊂ Bα
j . Thus aαj is a (p1, p̃)-atom.
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Hence, by (III) and Definition 2.4, we have bα = Cα∑ j μ(Bα
j )

1/p1aαj ∈ Hp1(X ) and

‖bα‖Hp1 (X ) � α
{
∑
j

μ(Bα
j )
}1/p1

� α[μ(Ωα)]1/p1 . (2.5)

Applying the Minkowski inequality, we have

‖T f‖q
Lq(X ) =

∫ ∞

0
qλ q−1μ({x ∈ X : |T f (x)| > λ})dλ

=
∫ ∞

0
pα p−1μ({x ∈ X : |T f (x)| > α p/q})dα

�
∫ ∞

0
α p−1μ({x ∈ X : |Tgα(x)| > 2−1α p/q})dα

+
∫ ∞

0
α p−1μ({x ∈ X : |Tbα(x)| > 2−1α p/q})dα

�
∫ ∞

0
α p(q−q2)/q−1‖gα‖q2

Lp2(X ) dα +
∫ ∞

0
α p(q−q1)/q−1‖bα‖q1

Hp1 (X ) dα

≡ J1 + J2.

By the Minkowski inequality and q < q2 , we obtain

J1 ∼
∫ ∞

0
α p(q−q2)/q−1

(∫
X

|gα(x)|p2χ{y∈X : |gα (y)|�Cα}(x)dμ(x)
)q2/p2

dα

�
{∫

X
|gα(x)|p2

{∫ ∞

|gα (x)|/C
α p(q−q2)/q−1 dα

}p2/q2

dμ(x)

}q2/p2

�
{∫

X
|gα(x)|p2+p(q−q2)p2/(qq2) dμ(x)

}q2/p2

,

which together with (I) & (IV) as above and 1/q2−1/p2 = 1/q−1/p , implies that

J1 � ‖gα‖pq2/p2
Lp(X ) � ‖ f −bα‖pq2/p2

Lp(X ) � ‖ f‖pq2/p2
Lp(X ) +‖bα‖pq2/p2

Lp(X ) � 1.

By (2.5), the Minkowski inequality and the Lp/ p̃ -boundedness of M , we have

J2 �
∫ ∞

0
α p(q−q1)/q−1αq1 [μ(Ωα)]q1/p1 dα

�
∫ ∞

0
α p+q1−pq1/q−1

(∫
X
χΩα (x)dμ(x)

)q1/p1

dα

�
{∫

X

(∫ Mp̃( f )(x)

0
α p+q1−pq1/q−1 dα

)p1/q1

dμ(x)

}q1/p1

�
{∫

X

[
M p̃( f )(x)

](p+q1−pq1/q)p1/q1 dμ(x)
}q1/p1

.
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Since 1/q1−1/p1 = 1/q−1/p implies (p+q1− pq1/q)p1/q1 = p , we then obtain

J2 �
∥∥M p̃( f )

∥∥pq1/p1
Lp(X ) � ‖ f‖pq1/p1

Lp(X ) � 1.

This combined with the estimate for J1 and a density argument yields (i).
To prove (ii), let p ∈ (p1,1] . Then it suffices to prove that ‖Ta‖Lq(X ) � 1 for all

(p,∞)ρ -atoms a . Assume this for the moment. Let p0 ∈ (1, p2) and 1/q0 − 1/p0 =
1/q1 − 1/p1 ; then by (i), T is bounded from Lp0(X ) to Lq0(X ) . Thus by Lemma
2.1 (i) and Remark 2.2, we obtain the boundedness of T from Hp(X ) to Lq(X ) . As-
sume that a is a (p,∞)ρ -atom supported in certain ball Bρ . Set b = [μ(B)]1/p−1/p1a .
Obviously, b is a (p1,∞)ρ -atom and hence ‖a‖Hp1(X ) � [μ(B)]1/p1−1/p. By the fact
−(q−q1)/q+q1/p1−q1/p = 0 and −(q−q2)/q+q2/p2−q2/p = 0, we have

‖Ta‖q
Lq(X ) =

∫ ∞

0
qλ q−1μ({x ∈ X : |Ta(x)| > λ})dλ

�
∫ [μ(B)]−1/q

0
λ q−1μ({x ∈ X : |Ta(x)| > λ})dλ

+
∫ ∞

[μ(B)]−1/q
λ q−1μ({x ∈ X : |Ta(x)| > λ})dλ

�
∫ [μ(B)]−1/q

0
λ q−q1−1‖a‖q1

Hp1(X ) dλ +
∫ ∞

[μ(B)]−1/q
λ q−q2−1‖a‖q2

Lp2(X ) dλ

� [μ(B)]−(q−q1)/q+q1/p1−q1/p +[μ(B)]−(q−q2)/q+q2/p2−q2/p � 1,

which completes the proof of Theorem 2.1.

REMARK 2.3. It is easy to see that Theorem 2.1 (i) still holds when T is a sublin-
ear operator. We should also point out that Theorem 2.1 (i) when p1 = q1 and Theorem
2.1 (ii) when p1 = q1 and p = 1 are included in Theorem D in [4].

3. Proofs of Theorem 1.1 and Theorem 1.2

We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. We first prove the boundedness of T from L1(X ) to
weak-Lκ0(X ) when p1 = 1. By a density argument, it suffices to verify that for any
λ > 0 and f ∈ L∞(X ) with bounded support and ‖ f‖L1(X ) � 1, we have μ({x∈X :
|T f (x)| > 2λ}) � λ−κ0 .

To this end, let λ > 0, α = λκ0 and f ∈ L∞(X ) with bounded support and
‖ f‖L1(X ) � 1. We recall the Calderón-Zygmund decomposition on spaces of homoge-
neous type; see [3, 4]. There exists N ∈ N , independent of f and α , such that f has a
decomposition f = g+b = g+∑ j b j satisfying
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(I) |g(x)| � α for all x ∈ X ;
(II) suppb j ⊂ Bj = Bρ(x j,r j) for certain x j ∈ X and r j > 0 and

∑ j μ(Bj) � ‖ f‖L1(X )/α ;

(III) [μ(Bj)]−1 ∫
Bj
|b j(x)|dμ(x) � α ;

(IV)
∫
Bj

b j(x)dμ(x) = 0 and ∑ j∈N ‖b j‖L1(X ) � ‖ f‖L1(X ) ;

(V) For any x ∈ X , x belongs to at most N balls Bj .
We then write

μ({x ∈ X : |T f (x)| > 2λ}) � μ({x ∈ X , |Tg(x)| > λ})+ μ({x∈ X , |Tb(x)| > λ})
≡ J1 + J2.

By (II) & (III), we have ‖b‖L1(X ) � ∑i ‖bi‖L1(X ) � ∑iαμ(Bi) � 1, which together
with g = f − b further implies that ‖g‖L1(X ) � 1. From this, the boundedness of T
from Lp0(X ) to Lq0(X ) , α = λκ0 and 1/q0 = 1/p0 +1/κ0−1, we deduce that

J1 �
(
λ−1‖Tg‖Lq0 (X )

)q0 � λ−q0‖g‖q0
Lp0(X ) � λ−q0α(1−1/p0)q0‖g‖q0/p0

L1(X ) � λ−κ0 .

On the other hand, by (II) through (V) above, we have

‖b‖p0
Lp0(X ) �∑

i

‖bi‖p0
Lp0 (X ) �∑

i

∫
Bi

[α p0 + | f (x)|p0 ]dμ(x)

�∑
i
α p0μ(Bi)+∑

i

∫
Bi

| f (x)|p0 dμ(x) � α p0−1‖ f‖L1(X ) +‖ f‖p0
Lp0(X ),

which implies that b = ∑ j b j in Lp0(X ) . Therefore, from this and the boundedness
of T from Lp0(X ) to Lq0(X ) again, it follows that for almost all x ∈ X , Tb(x) =
∑ j Tb j(x) and |Tb(x)| � ∑ j |Tb j(x)| .

Let B̃i = Bρ(xi,2C3CKri) . Then for any y ∈ Bi and x /∈ B̃i , we have ρ(xi,y) �
2CKρ(xi,x) . By this, |Tb(x)| � ∑ j |Tb j(x)| for almost all x ∈ X , (III) & (IV), the
Minkowski inequality and K ∈ Dρ(κ0,κ0) , we have

{∫
X \∪iB̃i

|Tb(x)|κ0 dμ(x)
}1/κ0

�∑
i

{∫
X \B̃i

|Tbi(x)|κ0 dμ(x)
}1/κ0

�∑
i

{∫
X \B̃i

∣∣∣∣∫
X

[K(x,y)−K(x,xi)]bi(y)dμ(y)
∣∣∣∣κ0

dμ(x)
}1/κ0

�∑
i

∫
Bi

{∫
X \B̃i

|K(x,y)−K(x,xi)|κ0 dμ(x)
}1/κ0

|bi(y)|dμ(y)

�∑
i

∫
Bi

|bi(y)|dμ(y) �∑
i
αμ(Bi) � 1.
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This shows that

J2 � μ

(⋃
i

B̃i

)
+ μ

({
x ∈ X \

⋃
i

B̃i : |Tb(x)| > λ

})

� λ−κ0 +λ−κ0

∫
X \⋃∞i=1 B̃i

|Tb(x)|κ0 dμ(x) � λ−κ0 ,

which together with the estimate for J1 confirms the claim. Thus, T is bounded from
L1(X ) to weak-Lκ0(X ) .

To verify the boundedness of T from Hp1(X ) to Lq1(X ) , let a be any (p1,∞)-
atom supported in Bρ = Bρ(x0,r) for certain x0 ∈ X and r > 0. Then by the Hölder
inequality, we have{∫

Bρ (x0,CKr)
|Ta(x)|q1 dμ(x)

}1/q1

� [μ(Bρ)]1/q1−1/q2‖Ta‖Lq2(X )

� [μ(Bρ)]1/p1−1/p2‖a‖Lp2(X ) � 1.

On the other hand,{∫
ρ(x,x0)�CKr

|Ta(x)|q1 dμ(x)
}1/q1

=

{∫
ρ(x,x0)�Ckr

∣∣∣∣∫
Bρ

[K(x,y)−K(x,x0)]a(y)dμ(y)
∣∣∣∣q1

dμ(x)

}1/q1

� [μ(Bρ)]−1/p1

∫
Bρ

{∫
ρ(x,x0)�Ckρ(x0,y)

|K(x,y)−K(x,x0)|q1 dμ(x)
}1/q1

dμ(y) � 1.

Thus Ta ∈ Lq1(X ) and ‖Ta‖Lq1(X ) � 1, which together with Lemma 2.1 (i) gives the
boundedness of T from Hp1(X ) to Lq1(X ) .

From this and Theorem 2.1, we deduce the boundedness of T from Hp(X ) to
Lq(X ) when p ∈ [p1,1] and from Lp(X ) to Lq(X ) when p ∈ (1, p0) , which com-
pletes the proof of Theorem 1.1. �

REMARK 3.1. We remark that some ideas of the proof for the boundedness of T
from L1(X ) to weak-Lκ0(X ) in Theorem 1.1 come from [13, Theorem 2.2] on Rn .

Proof of Theorem 1.2. Let p ∈ [p1,κ0/(2κ0−1)] . It is easy to see that if γ > κ0

then Dρ(κ0,γ,η) ⊂ Dρ(κ0,κ0,η) . Thus, without loss of generality, we may assume
that 1 < γ � κ0 when p = κ0/(2κ0−1) or γ = 1 when p < κ0/(2κ0−1) .

Let a be any (p,∞)-atom supported in Bρ = Bρ(x0,r) for some x0 ∈ X and r >

0. We now claim that there exists a positive constant C independent of a such that 1
CTa

satisfies conditions (M1) and (M2) of (q,γ, η̃)ρ -molecules centered at Bρ(x0,CKr)
in Definition 2.5, where η̃ j = ∑∞

k= j+1ηk2 j−k ; moreover, if T ∗(1) = 0, 1
CTa is a

(q,γ, η̃)ρ -molecule centered at Bρ(x0,CKr) .
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If this is true, then when p ∈ [p1,κ0/(2κ0 − 1)] , Lemma 2.1 (iii) implies the
boundedness of T from Hp(X ) to Lq(X ) ; moreover, if T ∗(1) = 0, Lemma 2.1
(ii) yields the boundedness of T from Hp(X ) to Hq(X ) for p ∈ [p1,κ0/(2κ0−1)] .
Using the boundedness of T from Hp1(X ) to Lq1(X ) and from Lp0(X ) to Lq0(X )
together with Theorem 2.1, we then obtain the boundedness of T from Hp(X ) to
Lq(X ) when p ∈ [κ0/(2κ0−1),1] and from Lp(X ) to Lq(X ) when p ∈ (1, p0) .

To prove the claim, notice that Dρ(κ0,γ,η) ⊂ Dρ(κ0,γ) together with Theorem
1.1 implies the boundedness of T from Hp̃(X ) to Lγ (X ) , where 1/γ = 1/ p̃+1/κ0−
1; then from (1.3), it is easy to see that

‖Ta‖Lγ (X ) � ‖a‖Hp̃(X ) � [μ(Bρ)]1/ p̃−1/p

� [μ(Bρ(x0,CKr))]1/γ−1/q,

which gives (M1). Since T ∗(1) = 0 implies (M3), it remains to verify (M2). For
j ∈ N , by

∫
X a(x)dμ(x) = 0, the Minkowski inequality, K ∈ Dρ(κ0,γ,η) and (1.3),

we obtain

{∫
Rj(Bρ (x0,CKr))

|Ta(x)|γ dμ(x)
}1/γ

� [μ(Bρ)]−1/p
∫

Bρ

{∫
Rj(Bρ (x0,CKr))

|K(x,y)−K(x,x0)|γ dμ(x)
}1/γ

dμ(y)

� [μ(Bρ)]−1/p
∞

∑
k=1

∫
2−kr�ρ(x0,y)<2−k+1r

×
{∫

2 j+k−1CKρ(x0,y)�ρ(x0,x)<2 j+k+1CKρ(x0,y)
|K(x,y)−K(x,x0)|γ dμ(x)

}1/γ
dμ(y)

� [μ(Bρ)]−1/p
∞

∑
k=1

[
η j+k2

( j+k)(1/γ−1/κ0) +η j+k+12
( j+k+1)(1/γ−1/κ0)

]
×
∫

2−kr�ρ(x0,y)<2−k+1r
[ρ(x0,y)]1/γ−1/κ0dμ(y)

� [μ(Bρ(x0,CKr))]1/γ−1/q2 j(1/γ−1/κ0)
∞

∑
k= j+1

ηk2
j−k.

If p = κ0/(2κ0−1) , we then have

∞

∑
j=1

jη̃ j =
∞

∑
j=1

j

(
∞

∑
k= j+1

ηk2
j−k

)
=

∞

∑
k=1

ηk2
−k

(
k

∑
j=1

j2 j

)

�
∞

∑
k=1

kηk < ∞.
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If p ∈ (p1,κ0/(2κ0−1)) , then by q > q1 , we have

∞

∑
j=1

2 j(1−q)(η̃ j)q �
∞

∑
j=1

2 j

(
∞

∑
k= j+1

(ηk)q2−kq

)

�
∞

∑
k=1

(ηk)q2k(1−q) �
{

∞

∑
k=1

2k(1−q1)(ηk)q1

}q/q1

< ∞.

This verifies the claim, and thus finishes the proof of Theorem 1.2. �

4. Some applications

In this section, we apply Theorem 1.1 and Theorem 1.2 to the boundedness of
commutators generated by Lipschitz functions and integral operators with kernels hav-
ing weak regularity as in Definition 1.1 (ii) on spaces of homogeneous type.

In what follows of this subsection, we always let κ0 ∈ [1,∞) , γ ∈ [1,∞] , η =
{η j} j∈N with η j > 0 and K ∈ Dρ(κ0,γ,η) satisfying that |K(x,y)| � [ρ(x,y)]−1/κ0

for all x �= y ; let p0 ∈ (1,∞) , 1/q0 = 1/p0 +1/κ0−1, T be a linear bounded operator
from Lp0(X ) to Lq0(X ) and have a kernel K as in (1.5), and let b ∈ Lip(β ) with
β ∈ (0,1/κ0) . The commutator [b,T ] is defined by

[b,T ] f (x) = b(x)T f (x)−T (b f )(x) (4.1)

for all f ∈ L∞(X ) with bounded supports and almost all x ∈ X .
Recall that on Rn , if b ∈ Lip(β ) with β ∈ (0,1] and K(x,y) = |x− y|−nΩ((x−

y)/|x− y|) for all (x,y) ∈ Rn ×Rn \ {(x,x) : x ∈ Rn} with Ω ∈ C∞(Sn−1) , Janson
[15] then proved that [b,T ] is bounded from Lp(Rn) to Lq(Rn) for p ∈ (1,n/β ) and
1/q = 1/p−β/n ; and it was also proved in [18] that [b,T ] is bounded from Hp(Rn)
to Lq(Rn) for p ∈ (n/(n+β ),1] and 1/q = 1/p−β/n .

For all (x,y) ∈ X ×X \ {(x,x) : x ∈ X } , let K̃(x,y) = K(x,y)[b(x)−b(y)].

PROPOSITION 4.1. Let κ0 ∈ [1,∞) , β ∈ (0,1/κ0) , β1 = 1 + β − 1/κ0 , [b,T ]
and K̃ be the same as above. Then [b,T ] is bounded from Lp1(X ) to Lq1(X ) for
any p1 ∈ (1,1/β1) and 1/q1 = 1/p1−β1 , and from L1(X ) to weak-L1/(1−β1)(X ) .
Moreover, K̃ ∈Dρ(1/(1−β1),γ, η̃) with γ ∈ [1,∞] and η̃ j = η j +2− jβ for all j ∈ N ,
and for any f ∈ L∞(X ) with bounded support,

[b,T ] f (x) =
∫

X
K̃(x,y) f (y)dμ(y) (4.2)

holds in both Lq0(X ) and almost everywhere.

To prove Proposition 4.1, we need the following dyadic decomposition on X of
Christ in [2].
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LEMMA 4.1. Let X be a space of homogeneous type. Then there exists a collec-
tion

{Qk
ν ⊂ X : k ∈ Z+, ν ∈ Ik}

of open subsets, where Ik is index set, and constants δ ∈ (0,1) and C5, C6 > 0 such
that

(i) μ(X \∪νQk
ν) = 0 for each fixed k and Qk

ν ∩Qk
τ = /0 if ν �= τ ;

(ii) for any ν, τ, k, � with � � k, either Q�
τ ⊂ Qk

ν or Q�
τ ∩Qk

ν = /0 ;

(iii) for each (k,ν) and each � < k , there exists a unique τ such that Qk
ν ⊂ Q�

τ ;

(iv) supx,y∈Qk
ν
ρ(x,y) � C5δ k ;

(v) each Qk
ν contains some ball B(zk

ν ,C6δ k) , where zk
ν ∈ X .

Proof of Proposition 4.1. We first prove (4.2) holds in both Lq0(X ) and almost
everywhere. Let f ∈ L∞(X ) with supp f ⊂ Qk0

ν0
. From (1.5) for K , it is easy to see

that K̃ is the kernel of [b,T ] in the sense of (1.5), namely, (4.2) holds for all x /∈ supp f .

On the other hand, by Lemma 4.1, when k > k0 , there exists a finite index set
Ĩk ⊂ Ik such that Qk0

ν0
= ∪ν∈Ĩk

Qk
ν . From (1.3) and Lemma 4.1 (iv) & (v), it is easy to

deduce that � Ĩk � δ−k , where � Ĩk denotes the number of indices in Ĩk . Let f k
ν = f χQk

ν

for ν ∈ Ĩk . Then f = ∑ν∈Ĩk
f k
ν and [b,T ] f = ∑ν∈Ĩk

[b,T ] f k
ν . For each ν ∈ Ĩk , we have

∥∥∥∥{[b,T ] f k
ν −

∫
X

K̃(·,y) f k
ν (y)dμ(y)

}
χQk

ν

∥∥∥∥
Lq0 (X )

�
∥∥∥{[b,T ] f k

ν}χQk
ν

∥∥∥
Lq0 (X )

+
∥∥∥∥{∫

X
K̃(·,y) f k

ν (y)dμ(y)
}
χQk

ν

∥∥∥∥
Lq0 (X )

�
∥∥∥{[b−b(zk

ν)]T f k
ν}χQk

ν

∥∥∥
Lq0 (X )

+
∥∥∥T ([b−b(zk

ν)] f
k
ν )
∥∥∥

Lq0 (X )

+
{∫

Qk
ν

[∫
Qk
ν
[ρ(x,y)]β−1/κ0| f k

ν (y)|dμ(y)
]q0

dμ(x)
}1/q0

� δ kβ‖T f k
ν‖Lq0 (X ) +‖[b−b(zk

ν)] f
k
ν‖Lp0 (X )

+‖ f k
ν‖L∞(X )

{∫
Qk
ν

(∫
Qk
ν
[ρ(x,y)]β−1/κ0 dμ(y)

)q0
dμ(x)

}1/q0

� δ kβ‖ f k
ν‖Lp0 (X ) + δ k(1/q0+1+β−1/κ0)‖ f k

ν‖L∞(X ).

Moreover, by (4.2) for all v ∈ Ĩk and x /∈ Qk
ν , we have

[b,T ] f k
ν (x) =

∫
X

K̃(x,y) f k
ν (y)dμ(y).
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Thus, from p0 � q0 , 1+β −1/κ0 > 0 and � Ĩk � δ−k , we deduce that∥∥∥∥[b,T ] f −
∫

X
K̃(·,y) f (y)dμ(y)

∥∥∥∥q0

Lq0 (X )

=

∥∥∥∥∥∥∑ν∈Ĩk

{
[b,T ] f k

ν −
∫
X

K̃(·,y) f k
ν (y)dμ(y)

}
χQk

ν

∥∥∥∥∥∥
q0

Lq0 (X )

= ∑
ν∈Ĩk

∥∥∥∥[b,T ] f k
ν −

∫
X

K̃(·,y) f k
ν (y)dμ(y)

∥∥∥∥q0

Lq0 (X )

� δ kβq0 ∑
ν∈Ĩk

‖ f k
ν‖q0

Lp0 (X ) + δ k(1+q0+βq0−q0/κ0) ∑
ν∈Ĩk

‖ f k
ν‖q0

L∞(X )

� δ kβq0‖ f‖q0
Lp0(X ) + δ k(q0+βq0−q0/κ0)‖ f‖q0

L∞(X ) → 0,

as k → ∞ . Therefore (4.2) holds in both Lq0(X ) and almost everywhere.
By (4.2) and |K̃(x,y)| � [ρ(x,y)]−1/κ0+β , we have

|[b,T ] f (x)| �
∫

X
[ρ(x,y)]−1/κ0+β | f (y)|dμ(y),

from which and Theorem 1.1 in [10], we deduce that [b,T ] is bounded from Lp1(X )
to Lq1(X ) and from L1(X ) to weak-L1/(1−β1)(X ) .

To verify that K̃ ∈Dρ(1/(1−β1),γ, η̃) , for any x �= y and z∈Rj(Bρ(x,CKρ(x,y)))
with j ∈ N , we have∣∣∣K̃(z,x)− K̃(z,y)

∣∣∣ = |K(z,x)[b(z)−b(x)]−K(z,y)[b(z)−b(y)]|
� |[K(z,y)−K(z,x)][b(z)−b(y)]|+ |K(z,x)[b(x)−b(y)]|
� [ρ(z,y)]β |K(z,y)−K(z,x)|+[ρ(z,x)]−1/κ0 [ρ(x,y)]β .

Thus, by the Minkowski inequality, we obtain{∫
Rj(Bρ (x,CKρ(x,y)))

∣∣∣K̃(z,x)− K̃(z,y)
∣∣∣γ dμ(z)

}1/γ

�
{∫

Rj(Bρ (x,CKρ(x,y)))
|K(z,x)−K(z,y)|γ [ρ(z,y)]βγ dμ(z)

}1/γ

+
{∫

Rj(Bρ (x,CKρ(x,y)))
[ρ(z,x)]−γ/κ0 [ρ(x,y)]βγ dμ(z)

}1/γ

� [2 j+1ρ(x,y)]β
{∫

Rj(Bρ (x,CKρ(x,y)))
|K(z,x)−K(z,y)|γ dμ(z)

}1/γ

+[ρ(x,y)]β [2 jρ(x,y)]−1/κ0 [2 jρ(x,y)]1/γ

� (η j +2− jβ)
[
μ(Bρ(x,2 jCKρ(x,y)))

]1/γ+β−1/κ0 .
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This shows that K̃ ∈ Dρ(1/(1−β1),γ, η̃) with η̃ j = C(η j + 2− jβ ) for all j ∈ N and
certain positive constant C , and hence, finishes the proof of Proposition 4.1. �

Moreover, applying Proposition 4.1, Theorem 1.1 and Theorem 1.2, we obtain the
following conclusions.

PROPOSITION 4.2. Let κ0 ∈ [1,∞) , β ∈ (0,1/κ0) , β1 = 1+β−1/κ0 , and [b,T ]
be the same as in (4.1). For any p ∈ (1/(1+β1),1] , let 1/q = 1/p−β1 .

(i) If p2 ∈ [1/(1+β1),1]∩ [1/(1+θ ),1] , 1/q2 = 1/p2−β1 , K ∈Dρ(κ0,q2,η) with
η ∈ �1 , then [b,T ] is bounded from Hp(X ) to Lq(X ) for p ∈ [p2,1] .

(ii) If β ∈ (1−1/κ0,θ+1/κ0−1] , p2 ∈ [1/(1+θ ),1/(1+β1)]∩(1/(1+2β ),1/(1+
β1)] , 1/q2 = 1/p2−β1 , γ ∈ (1,∞] and η satisfying ∑ j∈N jη j < ∞ when p2 =
1/(1+β1) , or γ ∈ [1,∞] and η satisfying ∑ j∈N 2 j(1−q2)(η j)q2 < ∞ when p2 <
1/(1+β1) , and K ∈Dρ(κ0,γ,η) , then [b,T ] is bounded from Hp(X ) to Lq(X )
for p ∈ [p2,1]; if further assume that ([b,T ])∗(1) = 0 , then [b,T ] is bounded
from Hp(X ) to Hq(X ) with p ∈ [1/(1+θ ),1/(1+β1)] .

Proof. Notice that ∑ j∈Nη j < ∞ implies that ∑ j∈N η̃ j = ∑ j∈N(η j + 2− jβ ) < ∞.

Thus, if K ∈Dρ(κ0,q2,η) with ∑ j∈Nη j <∞ , then by Proposition 4.1, K̃ ∈Dρ(1/(1−
β1),q2) which together with Theorem 1.1 gives Proposition 4.2 (i).

To verify (ii), notice that K ∈ Dρ(κ0,q2,η) implies K̃ ∈ Dρ(1/(1−β1),q2, η̃) by
Proposition 4.1, ∑ j∈N jη j < ∞ if and only if ∑ j∈N jη̃ j < ∞ , p2 > 1/(1+2β ) implies
that q2 > 1/(1+β ) , and ∑ j∈N 2 j(1−q2)(η j)q2 <∞ if and only if ∑ j∈N 2 j(1−q2)(η̃ j)q2 <
∞. This together with Theorem 1.2 gives Proposition 4.2 (ii), and hence, finishes the
proof of Proposition 4.2.

REMARK 4.1. (a) We remark that ([b,T ])∗ = [b̃,T ∗] , where b̃(x) = b(−x) for
all x ∈ X and T ∗ is the dual of T ; and if T ∗(1) = 0 and T ∗(b) = 0, namely,∫
X b(x)T f (x)dμ(x)= 0 for all f ∈Lp1(X ) with bounded support and

∫
X f (x)dμ(x)=

0, then ([b,T ])∗(1) = 0.
(b) Notice [b,T ∗] = ([b̃,T ])∗ . From this and Proposition 4.2, it is easy to deduce

the boundedness of [b,T ∗] from Lebesgue spaces to BMO (X ) or Lipschitz spaces,
and from BMO(X ) or Lipschitz spaces to Lipschitz spaces.

(c) We point out that the regularity of the kernel of the operator T in Proposition
4.2 is weak than the corresponding result in [18]. In fact, in [18],

K(x, y) = |x− y|−nΩ((x− y)/|x− y|)
for all (x,y) ∈ Rn ×Rn and x �= y ; thus κ0 = 1. It was assumed that Ω ∈ Lip1(S

n−1)
in [18], which implies that K ∈Dρ(1,∞,η) with η j =C2− j/n for all j ∈ N and certain
positive constant C . However, in Proposition 4.2, we only assume that K ∈ Dρ(1,γ,η)
with γ and η as in Proposition 4.2. It is easy to see that Dρ(1,∞,η) � Dρ(1,γ,η) .
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