
Mathematical
Inequalities

& Applications
Volume 13, Number 4 (2010), 887–897

A NOTE ON ONE–SIDED MAXIMAL OPERATOR IN Lp(.)(R)
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(Communicated by L. Pick)

Abstract. Consider one-sided Hardy-Littlewood maximal operator on the general Lebesgue space
with variable exponent. It is known a local sufficient condition to the function p(.) for the
boundedness of the one-sided maximal operator on Lp(.)(R) provided p(.) is a constant func-
tion in a neighborhood of infinity. Our main aim is to find a weaker condition to p(.) at infinity
to guarantee the boundedness of the one-sided maximal operator on Lp(.)(R) . We will show
two different sufficient conditions to the behavior of p(.) at infinity under which the one-sided
maximal operator is bounded on Lp(.)(R) .

1. Introduction

The study of Lebesgue spaces with variable exponent and function spaces derived
from them attracts an interest of many mathematicians more and more. One of the fun-
damental questions in this theory is a problem of the boundedness of Hardy-Littlewood
maximal operator. The basic result concerning the bounded domain Ω⊂ R

n was done
by L. Diening (see [3]). This result was later extended to R

n by D. Cruiz-Uribe, A.
Fiorenza and C. J. Neugebauer (see [1] and [2]) and independently by A. Nekvinda
(see [11]). Further results on maximal operator can be found for instance in [4], [5],
[6], [7], [8], [12] and [13].

In connection with the maximal operator there appears a problem on boundedness
of one-sided maximal operators on Lp(.)(R) . This paper generalizes results from [10]
given by D. E. Edmunds, V. Kokilashvili and A. Meskhi where a sufficient local con-
dition is given for boundedness of the one-sided maximal opeartor on R . In fact, the
condition in [10] consists of two parts. The first one controls a local behavior of p(.)
and the second one requires a constancy of the function p(.) near the infinity.

Our main aim is to generalize of the condition at the infinity. We will find two
different conditions to p(.) at the infinity each of them commonly with the local control
preserves the boundedness of the one-sided maximal operators. Both these conditions
are more general then the constancy of p(.) near infinity assumed in [10].

Recall basic definitions of maximal functions and variable Lebesgue spaces. De-
note by M a set of all measurable functions defined on R and B a set of all functions
p(.) ∈ M such that

1 < ess inf{p(x);x ∈ R} � ess sup{p(x);x ∈ R} < ∞.
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DEFINITION 1.1. Let f ∈ L1
loc(R) . Define the one-sided Hardy-Littlewood max-

imal functions M+ f , M− f and the Hardy-Littlewood maximal function M f by

(M+ f )(x) = sup
h>0

1
h

∫ x+h

x
| f (t)|dt, (M− f )(x) = sup

h>0

1
h

∫ x

x−h
| f (t)|dt,

(M f )(x) = sup
h>0

1
2h

∫ x+h

x−h
| f (t)|dt.

It is not difficult to see the sublinearity of all operators M, M+, M− , i. e.

M+( f +g)(x) � M+ f (x)+M+g(x) (1.1)

and analogously for M, M− .

DEFINITION 1.2. Let p(.) ∈ B . Define the variable Lebesgue space Lp(.)(R) as
a set of all functions with a finite norm

‖ f‖p(.) = inf

{
λ > 0;

∫
R

∣∣∣ f (x)
λ

∣∣∣p(x)
dx � 1

}
.

The paper is organized into several parts. In the second part we introduce main re-
sults of this paper (Theorem 1 and Theorem 2). The third one contains basic definitions
and known assertions which we need in proofs of Theorem 1 and Theorem 2. These
theorems are proved in further parts.

2. Main results

Recall that the following well-known class L of functions plays an important role
in boundedness of maximal operator on Lp(.)(R) .

DEFINITION 2.1. Let p(.) ∈ B . Say that p(.) ∈ L if there is a constant K > 0
such that

|p(x)− p(y)|� K
− ln |x− y|

for x,y ∈ R , 0 < |x− y|� 1
2 .

Remind classes L +,L − from [10]. These classes of local conditions are as-
sumed in proofs of boundedness of the one-sided maximal operator on bounded inter-
val.

DEFINITION 2.2. Let p(.) ∈ B . Say that p(.) ∈ L + if there is a constant K > 0
such that

p(y) � p(x)− K

ln 1
y−x

for x,y ∈ R , 0 < y− x � 1
2 .

Say that p(.) ∈ L − if p̃(.) ∈ L + where p̃(x) = p(−x) . Note that L +∩L − =
L .
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Remind now a condition to p(.) at infinity which was investigated in [11].

DEFINITION 2.3. Let r(.)∈M be a measurable. Say that r(.)∈P if there exists
a constant c > 0 such that ∫

{x;r(x) �=0}
c

1
r(x) dx < ∞.

THEOREM 1. Let q(.)∈B be a non-increasing function in R . Assume that p(.)∈
L + and |p(.)−q(.)| ∈ P . Then M+ is bounded on Lp(.)(R) .

Analogously, M− is bounded on Lp(.)(R) provided q(.) ∈ B is non-decreasing
and p(.) ∈ L − .

We will use for the second condition functions lnx, ln lnx, ln ln lnx and so on.
Denote these functions by lnk where the subscript k means the number of symbols
“ln”. Define numbers ek by

e0 = 1, ek+1 = (e)ek (2.1)

and functions lnk x on intervals (ek,∞) by

ln0 x = x, lnk+1 x = ln(lnk x). (2.2)

Set for α > 0

bk,α(x) = − 1
α

d
dx

(ln−αk x). (2.3)

DEFINITION 2.4. Say that an even function p(.) ∈ B quickly tends to a constant
(write p(.) ∈ QC ) if there exist numbers K > 0, k ∈ N and α > 0 such that

(i) p(.) is monotone on (ek,∞),

(ii)
∣∣∣dp
dx

(x)
∣∣∣ � Kbk,α(x), x � ek.

Remark that each function p(x) which is equal to 1
lnα (x) near infinity belongs to

the class QC for any α > 0.

THEOREM 2. Let q(.) ∈ QC . Assume that p(.) ∈ L + ( p(.) ∈ L − ) and |p(.)−
q(.)| ∈ P . Then M+ (M− ) is bounded on Lp(.)(R) .

3. Preparatory assertions

Let us start with the well-known theorem on the maximal operator. The proof can
be found for instance in [9], Theorem 21.76.

PROPOSITION 3.1. Let r ∈ R , 1 < r � ∞ , then there exists Mr > 0 such that∫
R

(
M f (x)

)r
dx � Mr

∫
R

| f (x)|rdx.
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Proofs of the following two lemmas can be found in [11], see Lemma 1.7 and
Lemma 2.12.

LEMMA 3.2. Let p(.) ∈ B . Then the following statements are equivalent.

(i) Then there exists a constant C > 0 such that ‖M f‖p(.) � C‖ f‖p(.) for all f ∈
Lp(.)(R) .

(ii)
∫
Rn |M f (x)|p(x)dx < ∞ provided

∫
Rn | f (x)|p(x)dx � 1 .

LEMMA 3.3. Let |p(.)− q(.)| ∈ P . Assume that | f (x)| � 1 a.e. in R . Then∫
R
| f (x)|p(x)dx < ∞ if and only if

∫
R
| f (x)|q(x)dx < ∞ .

The next theorem is proved in [13], Theorem 7.2.

THEOREM 3.4. Assume that p(.),q(.) ∈ B , q(.) is an even function. Let

(i) p(.) ∈ L ,

(ii) q(.) ∈ QC ,

(iii) |p(.)−q(.)| ∈ P.

Then the operator M is bounded on Lp(.)(R) .

LEMMA 3.5. Assume |p(.)− q(.)| ∈ P and |q(.)− r(.)| ∈ P . Then |p(.)−
r(.)| ∈ P .

Proof. By the assumptions there are c1,c2 > 0 such that∫
{p �=q}

c
1

|p(x)−q(x)|
1 dx < ∞,

∫
{q �=r}

c
1

|q(x)−r(x)|
2 dx < ∞. (3.1)

Without lose of generality we can assume c1 < 1,c2 < 1. Accepting the convention
a∞ = 0 for a < 1 we can rewrite (3.1) as∫

R

c
1

|p(x)−q(x)|
1 dx < ∞,

∫
R

c
1

|q(x)−r(x)|
2 dx < ∞. (3.2)

Choose c3 > 0 such that
√

c3 � min{c1,c2} . Then c3 < 1. Set

A = {x ∈ R; |p(x)−q(x)|> |q(x)− r(x)|}, B = R\A.

Following clear inequalities

1
|p(x)− r(x)| � 1

|p(x)−q(x)|+ |q(x)− r(x)| � 1
2max{|p(x)−q(x)|, |q(x)− r(x)|}
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imply∫
R

c
1

|p(x)−r(x)|
3 dx �

∫
R

(
√

c3)
1

max{|p(x)−q(x)|,|q(x)−r(x)|} dx

=
∫

A
(
√

c3)
1

max{|p(x)−q(x)|,|q(x)−r(x)|} dx+
∫
B
(
√

c3)
1

max{|p(x)−q(x)|,|q(x)−r(x)|} dx

=
∫

A
(
√

c3)
1

|p(x)−q(x)| dx+
∫
B
(
√

c3)
1

|q(x)−r(x)| dx �
∫

A
c1

1
|p(x)−q(x)| dx

+
∫

B
c2

1
|q(x)−r(x)| dx �

∫
R

c1
1

|p(x)−q(x)| dx+
∫

R

c2
1

|q(x)−r(x)| dx < ∞

which finishes the proof. �

4. Boundedness of M+

Divide this part in several subsections. First investigate a local condition an then
conditions at infinity.

4.1. Local condition

Proofs in this part modify proofs from [3], [11] and [10]. Given M ⊂ R and p(.) :
R → R we adopt the notation p−M = ess inf{p(x);x ∈ M} and p+

M = ess sup{p(x);x ∈
M} and denote in the next p∗ := p+

R
.

LEMMA 4.1. Let p(.) be given. Then the following statements are equivalent:

(i) There exists a constant C > 0 such that the inequality

h
p−(x,x+h)−p(x) � C

holds for a. e. x ∈ R and 0 < h � 1
2 .

(ii) There exists a constant L > 0 such that the inequality

hp(x+h)−p(x) � L

holds for all x ∈ R and 0 < h � 1
2 .

(iii) p(.) ∈ L + .

Proof. The proof is done in [10], Proposition B’. �

DEFINITION 4.2. Let p(.) ∈ L + . Say that a function f belongs to a class Gp(.)
(write f ∈ Gp(.) ) if f (x) = 0 or | f (x)| � 1 for each x ∈ R and∫

R

| f (x)|p(x)dx � 1.
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LEMMA 4.3. Let p(.) ∈ L + . Then there exists a constant Cp > 0 such that the
inequality

|M+ f (x)|p(x) � CpM
+(| f (.)|p(.))(x)

holds for all f ∈ Gp(.) and x ∈ R
n .

Proof. Set for h > 0

M+
h f (x) =

1
h

∫ x+h

x
| f (y)|dy.

Suppose f ∈ Gp(.) and x ∈ R
n . Fix for a moment x ∈ R , h > 0 and denote

p− := p−(x,x+h) .

Assume first h � 1
2 . By Jensen’s inequality we obtain

(
M+

h f (x)
)p(x) =

(1
h

∫ x+h

x
| f (y)|dy

)p(x)
�

(1
h

∫ x+h

x
| f (y)|p−dy

) p(x)
p− := I. (4.1)

Since f ∈ Gp(.) and p− � p(y) for y ∈ (x,x+h) we have | f (y)|p− � | f (y)|p(y) which
gives

I � h
− p(x)

p−
(∫ x+h

x
| f (y)|p(y)dy

) p(x)
p− .

Clearly ∫ x+h

x
| f (y)|p(y)dy �

∫
R

| f (y)|p(y)dy � 1

and using f ∈ Gp(.) with p(x)
p− � 1 we obtain

I � h
− p(x)

p−
∫ x+h

x
| f (y)|p(y)dy = h

1− p(x)
p−

(1
h

∫ x+h

x
| f (y)|p(y)dy

)
.

By Lemma 4.1 we have

h
p−−p(x)

p− � C
1

p− � max{1,C}
1

p− � max{1,C}.
Thus, I � max{1,C}Mh

(| f (.)|p(.))(x) which gives with (4.1)∣∣M+
h f (x)

∣∣p(x) � max{1,C}M+
h

(| f (.)|p(.))(x). (4.2)

Assume now h > 1
2 . Clearly, using f ∈ Gp(.) we have

(
M+

h f (x)
)p(x) =

(1
h

∫ x+h

x
| f (y)|dy

)p(x)
= h−p(x)

(∫ x+h

x
| f (y)|dy

)p(x)

� 2p(x)(2h)−p(x)
(∫ x+h

x
| f (y)|p(y)dy

)p(x)
� 2p∗(2h)−1

∫ x+h

x
| f (y)|p(y)dy

= 2p∗−1 1
h

∫ x+h

x
| f (y)|p(y)dy = 2p∗−1M+

h

(| f (.)|p(.))(x)
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which proves with (4.2) ∣∣M+
h f (x)

∣∣p(x) � CpM
+
h

(| f (.)|p(.))(x)
with some positive constant Cp .

Taking supremum on both sides we obtain the required inequality. �

LEMMA 4.4. Let p(.) ∈ L + and f ∈ Gp(.) . Then∫
R

|M+ f (x)|p(x)dx < ∞.

Proof. Set q(x) = p(x)
p∗ and h(x) = | f (x)|q(x) . Then h ∈ Lp∗ and according to

Theorem 3.1 we have∫
Rn

|Mh(x)|p∗dx � Mp∗
∫

Rn
|h(x)|p∗dx < ∞.

It yields with an easy fact q(.) ∈ L + , Proposition 3.1 and Lemma 4.3∫
Rn

|M f (x)|p(x)dx =
∫

Rn
(|M f (x)|q(x))p∗dx � Cp∗

q

∫
Rn

(
M

(
f (.)q(.))(x))p∗

dx

� Cp∗
q

∫
Rn

(
M( f (.)q(.))(x)

)p∗
dx � Cp∗

q Mp∗
∫

Rn

(
( f (.)q(.))(x)

)p∗
dx

= Cp∗
q Mp∗

∫
Rn

| f (x)|p(x)dx

which finishes the proof. �
The following two sections contain the main results of this paper. Proofs of Theo-

rem 1 and Theorem 2 are given here.

4.2. First condition at infinity

LEMMA 4.5. Let p(.) ∈ B be non-increasing and | f (x)| � 1 . Then a point-wise
inequality (

M+ f (x)
)p(x)

�
(
M+ f (.)p(.))(x)

holds for all x ∈ R .

Proof. Let x ∈ R be an arbitrary and fix h > 0. Then(1
h

∫ x+h

x
| f (t)|dt

)p(x)
�

(1
h

∫ x+h

x
| f (t)|p(x)dt

)
�

(1
h

∫ x+h

x
| f (t)|p(t)dt

)
.

Taking supremum on both sides we obtain(
M+ f (x)

)p(x)
�

(
M+ f (.)p(.))(x).

which finishes the proof. �
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LEMMA 4.6. Let p(.) ∈ B be non-increasing and | f (x)| � 1 . Then∫
R

| f (x)|p(x)dx <∞ =⇒
∫

R

|M+ f (x)|p(x)dx < ∞

Proof. Since p(.) is non-increasing there exists p∞ := limx→∞ p(x) . Set q(x) =
p(x)
p∞

. Then q(.) is non-increasing and Lemma 4.5 yields

∫
R

|M+ f (x)|p(x)dx =
∫

R

(|M+ f (x)|q(x))p∞dx �
∫

R

[
M+(

f (.)q(.))(x)]p∞
dx

� C
∫

R

(
f (x)q(x))p∞dx = C

∫
R

f (x)p(x)dx < ∞

and our lemma follows. �

THEOREM 4.7. Let q(.) be non-increasing, |p(.)− q(.)| ∈ P and | f (x)| � 1 .
Then ∫

R

| f (x)|p(x)dx <∞ =⇒
∫

R

|M+ f (x)|p(x)dx < ∞

Proof. Assume
∫
R
| f (x)|p(x)dx < ∞ . By Lemma 3.3 we have

∫
R
| f (x)|q(x)dx <

∞ . Using Lemma 4.6 we obtain
∫
R
|M+ f (x)|q(x)dx < ∞ and again by Lemma 3.3 we

conclude
∫
R
|M+ f (x)|p(x)dx < ∞ which finishes the proof. �

We prove now First theorem. Recall its formulation here.

THEOREM 1. Let q(.)∈B be a non-increasing function in R . Assume that p(.)∈
L + and |p(.)−q(.)| ∈ P . Then M+ is bounded on Lp(.)(R) .

Analogously, M− is bounded on Lp(.)(R) provided q(.) ∈ B is non-decreasing
and p(.) ∈ L − .

Proof. We will investigate only the boundedness of M+ , the boundedness of M−
can be proved by the same way. Assume∫

R

| f (x)|p(x)dx � 1.

Split the function f in two parts as follows:

f (x) = f (x)χ{| f |>1}(x)+ f (x)χ{| f |�1}(x) := f1(x)+ f2(x).

Clearly, an easy fact f1(x) f2(x) = 0 for all x ∈ R gives | f (x)|p(x) = | f1(x)|p(x) +
| f2(x)|p(x) which gives∫

R

| f1(x)|p(x)dx � 1,

∫
R

| f2(x)|p(x)dx � 1.
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Consequently, f1 ∈Gp(.) and using the assumption p(.)∈L + we conclude by Lemma 4.4∫
R

|M+ f1(x)|p(x)dx < ∞. (4.3)

Since q(.) is non-increasing, |p(.)−q(.)| ∈P by the assumptions and | f2(x)|� 1
we have by Lemma 4.7 ∫

R

|M+ f2(x)|p(x)dx < ∞.

Finally, using this last inequality, (1.1) and (4.3) we obtain∫
R

|M+ f (x)|p(x)dx �
∫

R

|M+ f1(x)+M+ f2(x)|p(x)dx

� 2p∗−1
(∫

R

|M+ f1(x)|p(x)dx+
∫

R

|M+ f2(x)|p(x)dx
)

< ∞

and Lemma 3.2 finishes the proof. �

4.3. Second condition at infinity

We prove here Theorem 2. Recall its formulation.

THEOREM 2. Let q(.) ∈ QC . Assume that p(.) ∈ L + ( p(.) ∈ L − ) and |p(.)−
q(.)| ∈ P . Then M+ (M− ) is bounded on Lp(.)(R) .

Proof. Since q(.) ∈ QC it has a derivative and so, q(t) is continuous for large t .
Due to the monotony of q(.) there exists a := limx→∞ q(x) . Again by q(.) ∈ QC we
have a > 1 and limx→∞

∣∣ dq
dx (x)

∣∣ = 0. Then there is x0 > 0 large enough with q(x0) > 1

and
∣∣ dq
dx (x)

∣∣ � 1 for |x| � x0 . Set

r(x) =

{
q(x) for |x| � x0,

q(x0) for |x| < x0.

Thus, r(.) is Lipschitz function (even with a constant 1) and so, r(.) ∈ L . Moreover,
since r(x) = q(x) for large x we have r(.) ∈ QC , even and monotone. By Theorem
3.4 we have that M is bounded on Lr(.)(R) , i. e. the implication∫

R

|g(x)|r(x)dx � 1 =⇒
∫

R

|Mg(x)|r(x)dx < ∞ (4.4)

holds.
Assume ∫

R

| f (x)|p(x)dx � 1.

Split f into two parts as in the proof of Theorem 1. Then

f (x) = f (x)χ{| f |>1}(x)+ f (x)χ{| f |�1}(x) := f1(x)+ f2(x)
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and ∫
R

| f1(x)|p(x)dx � 1,
∫

R

| f2(x)|p(x)dx � 1.

Since f1 ∈ G and p(.) ∈ L + by the assumptions we have by Lemma 4.4∫
R

|M+ f1(x)|p(x)dx. (4.5)

Estimate now
∫
R
|M+ f2(x)|p(x)dx . Since r(x) = q(x) for |x| � x0 we obtain

clearly |q(.)− r(.)| ∈ P . The assumption |p(.)− q(.)| ∈ P and Lemma 3.5 yield
|p(.)− r(.)| ∈ P . The relation

∫
R
| f2(x)|p(x)dx < ∞ with the fact | f2(x)| � 1 gives∫

R
| f2(x)|r(x)dx < ∞ by Lemma 3.3. Using Lemma 4.4 we obtain∫

R

|M+ f2(x)|r(x)dx �
∫

R

|M f2(x)|r(x)dx < ∞

and again by Lemma 3.3 we conclude∫
R

|M+ f2(x)|p(x)dx < ∞.

Now, (1.1), (4.5) and the last inequality give∫
R

|M+ f (x)|p(x)dx �
∫

R

|M+ f1(x)|p(x)dx+
∫

R

|M+ f2(x)|p(x)dx < ∞

which finishes with Lemma 3.2 the proof. �
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