athematical
nequalities
& Papplications
Volume 13, Number 4 (2010), 899-909

ON STOLARSKY AND RELATED MEANS

J. JAKSETIC, J. PECARIC AND ATIQ UR REHMAN

(Communicated by K. B. Stolarsky)

Abstract. We give a simple proof of the Stolarsky means inequality as well as some related
inequalities for similar means of Stolarsky type.

1. Introduction and Preliminaries

Let us consider the following means

1
E(vyins) = ($5=9)7
1

E(r,yir0) = (i)
1

L/ xS\
S
yy
E(x,y;0,0) = /Xy,
where 0 <x <y <o, r and s are any real numbers but 0.

These means, known in literature, are called Stolarsky means. Namely Stolarsky
in [1] (see also [2,p.120]) introduced these means. Stolarsky proved that the function
E(x,y;r,s) is increasing in both r and s i.e. for r < u and s < v, we have

E(x,y;r,s) < E(x,y;u,v). (1)

In this paper, first we shall give a simple proof of inequality (1). Further we shall
introduce two new classes of means of Stolarsky type.
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2. A Simple Proof of Stolarsky Means Inequality

Note that E(x,y;r,s) is continuous in r and s, so it is enough to prove (1) in the
case where r,s,u,v#0, r#s and u # v.
We consider the following function
r+s
S@) = P20 (x) +2pq@(x) + ¢’ ps(x)  where 1= —— andp,g €R,

and

@r(x) = {xr/r, Y

Inx, r=0.

Now
f/(x) — p2xr—l +2pqxt—l+q2xs—l
- (,,x(rfl)/z n qx<s—1>/z>2 0.

This implies f is monotonically increasing. So for x # y

fx) = f(y) >0,
xX—y
i.e.
e 0r(x) — @r(v) L 2pg @ (x) — @ (y) +q @5 (x) — @5(y) > 0.
xX=y x—=y x—y
Let
o() = 2O 00),
y
then
PPo(r) +2pqd(t) +q*d(s) = 0

i.e.

(1) < o(r)-o(s) where t = ?

This implies ¢ is log-convex in Jensen sense.
We observe lirr(l)q)(r) = ¢(0), hence ¢ is continuous on R and therefore is log-
r—

convex function.
We need following lemma (see [2], p. 4).

LEMMA 2.1. Let f be log-convex function and if, xy < y1, X < Y2, X] £ X2, V1 7
vy, then the following inequality is valid:

(H)™ < (o) 7T

Applying Lemma 2.1 for f = ¢, x; =r, y; =u, xo =5, yo = v we get an inequality

() ()

Since E(x,y;r,s) is continuous in r and s, we have (1).
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3. New Class of Means of Stolarsky Type: E|(r,1)

Let us begin with the following lemma, which is a special case of Theorem 6 in

[3].
THEOREM 3.1. Let ¢,y € C*([x,y]). Then for some & € [x,],

v%xj;cy(i)(u)du—(p(%) B 8(&) .
L P w(ndu—y(F) ~ v(E)

REMARK 3.2. Theorem 3.1 enables us to define various types of means, because
if ¢”/y" has inverse, from (3) we have

_ (])_” B y%xfxvq)(u)du—q)(%)
5_<11///> (ﬁfxyllf(u)du—y/(’%) . @)

Specially, if we take ¢(x) =x""!, w(x) =x'~!, and using continuous extension, we
have the following expression

1)(t—2 Xr_yr‘()%)ril =
E1<x,y;r,z>:(g;;;g;:;) i _) | ©)
t(x—y)_<2)

Of course, we suppose 0 < x <y < oo, r,t #0,1,2, r # t. However, we have to
deduce continuous extensions of (5) in order to cover all choices of r and ¢. For that
purpose we consider the following function

1 X —y X+ _ .
(l*l)([*2) [(xf);) - (Ty)t 1:| ) 4 # 07 172’
Inx—Iny 1 .
()= 4 Y = 1=0 ©
ln(’%) + x(lflnx));z(lflny) , =1

2Inx—y?In + + + _
Lot (P)n(P) -, =2,

It is easy to see that ¢ is a continuous function. Now

sisren = (33)

and all continuous extensions of (5) are now obvious but the case r =1 :

(=

Biwyinn = e (i - 07) <o (7 )
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1
Sy 3262 X 23 (xiyylcebyyl ey \ 7
E] (x7y; r, r) — eXp r(x—y) r2(r 1)(r-2) eriyr(rfliifvaii(l 2 ) ( 2 ) ( 2 ) 7
r(x—y)i(T)
forr#£0,1,2;

xX—=y x+y

~7“"2(X*>")"2 Yon(SE)- L2 ()

. — 4=y .

El (x7y’ 1’ 1) = exp x(x.y;l;x—l)—y(lnyfl) Xty ’
Xy

—In(=5>)

2142 21,2 2 2

x“In“x—y“In“y x4y, x+y, x+y, 2, x+y, 3 x“Inx—y“lny

ARSI 0 in (X - X n2 (K52 § T (o)
E, (x7y;2,2) = exp( 4(x—y) PR 2 )71 =y )

lnzxflnzy7§_lnxflnyiiilln(x+y)
El (x7y;0’0) — exp x—y 2 x—y Xty x+y 2 ;

x2Inx—yZ Iny e N (x+y)7m
2(x—y) 2 4

We have proved, in fact

THEOREM 3.3. Ej(x,y;nt), defined above, is mean of the numbers x,y.
Monotonicity property of new mean is the object of the following theorem.

THEOREM 3.4. Let r <u, t <v. Then

Ei(x,y;11) <Ei(x,y;u,v) )
zasve 0 <x <y < oo

We will need following lemma.
LEMMA 3.5. Function ¢ defined by (6) is a log-convex function.

Proof. Let us consider the following function

ﬁ, r 7é O, 1,
or(x) =< —Inx, r=0; (8)
xlnx, r=1.

Then ¢, is a convex function because ¢ (x) =x""2>0, x> 0.
Next we consider the following function

r—+s
f(x) = PP@r—1(x) +2pq@,—1(x) + ¢*@s—1(x) where z = ——andp,g€R.

This function is convex because

0()=— [ or1(wdu qm(”y) ©)
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ie.
1 X —y Fy\i—1 .
(t—l)(t—2) t(x—);) - ()%)t ] ) t# 071723
Inx—Iny 1 A
o) =4 1=0;
ln(%) + x(lflnxl:i(lflny), r=1:
2 Inx—y?1 X X X
RS () In() - 2, =2,

As we noticed before this function is continuous on R.
We now apply Hadamard inequality on the function f, and we conclude

_|_
P2O(r)+2pqd(2) +¢*d(s) >0, where z= % and p,q € R,

which means

90%(2) < 9(r)-9(s) where 7= %

So ¢ is log-convex in Jensen sense and because ¢ is continuous, it is a log-convex
function. [J

Proof of Theorem 3.3. We now apply inequality Lemma 2.1 for f = ¢, x; =
r, y1 =u, x =t, y» = v to deduce that

(6)" < ()

By continuous extensions of E(x,y;r,t), given above, we have for r <u, t < v,

Ei(x,y;nt) < E1(x,y;u,v). O

4. Generalized E; means

We will use Remark 3.2 in the case ¢(x) = x*~!, y(x) =x9"', and then we take
substitutions p — %, g — f;, x — x*, y — y*. So we define new mean for numbers
0<x<y<oo, by

.

sOF ") <xr+ys 5 !
—9)(t=25) TOF=x5) 2
E\(xyintss) = | (=33 =| (10)
s/ =x) (XN s
t(y*—x%) 2

r#£t, rt#0,s,2s.
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Again, we have to cover all continuous extensions of (10). For that purpose we
consider, for s # 0,

1 W—y) R )
(t—s)(t—25) |:rs(xé‘;)é') — zy ) } ) t #0,s,2s;
Inx—Iny 1 .
) t=0
2s5(x5—y$ $2(x5+y5)? 5
MRS yxlws (i) (11)
s [ln( )+ o - ] , t=s;
$(x® Inx—y? Inx X+yS B4y PRNE
& [ (£ () -]

and in the case s = 0 we consider

=
= RV A

| ) B 12)
3z (Inx —1Iny)~, t=0.

wo(t) =

It is easy to see that s — ;(¢) and ¢ — ,(¢) are continuous functions and that

Ei(x,y;1t;8) = (lulﬁ((:s) —

Now all continuous extensions can be deduced easily but cases r =1 :

x(xrlni(*y;lny)73‘(;r276ar+23 x;)r (r +y5 ) { "‘ - 2-r73s2v
Ei(r,r;s) = exp a8 —y) Z(r—s)(r— zv)v(‘rﬂr) + (GRIGDIN
5 —x5) (T)

rs(r—s)(r—2s)#£0;

2 2 S8 S8
xIn“x—yln“y | Xty 12Xty
ECE Tzl“( 2 )*?1“ (=%—)

31 ST Sy
S PN

Ei(s,s;5) = exp | 5#£0;

_1
s

25 102 28112 2s 2s S S8
X 1:(33‘;)1“ »\+r2+2\ In (r+\ )7l¥ lr):f,i,é ln)7x4+2) lnz(x +y )+8i2(xr+),S)
E1(2s,2s;5) = exp - T — e .
Inx— yélny x‘Ury l()cUrvé) x54y5
2(x5—y%) 2 4s
s7#0;
.Y(In2¥*l§2)’)+%In;(*lr;yi vﬁ sy rz 5 I"(Xhzryx)
E(0,0;5) = exp oy ’Xf(l;vxfl;(r %) 5055 5 40:
s y) 2
=y
Py Iny)—3 (" —y" Iy
e iy (3ot
E|(r,r;0) = exp S 105

A S
Inx—Iny Xy

E(0,0;0) = /xy.
We will end this section showing monotonicity of generalized E; means.
THEOREM 4.1. Let r <u, t <v. Then
Ei1(x,y;rt;5) < E1(x,y;u,v;s), (13)

forall se R, 0 <x<y< oo,
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Proof. Let us consider the case s # 0 first. In this case we use Lemma 3.5 and
log-convex function ¢ defined there. From Lemma 2.1 we have

1 1
o)\ 1=r o(v) ) v—u
(55) < (&) (14)
for nt,u,v eR, t <v,r <t £rv#u.
For s > 0 we will make replacements x — x*, y — y*, t — /s in (14) and we get

52 s(xffy’) S 4 yS =s .
T=5)(=29) |te—y) — (55) s ] ) t #0,s,2s;
s(lnx—Iny) 1] .
os(t) = 2 —y5) YD 1=0; (15)
' X4+y* X (1=Inx*)—y*(1=Iny*) o
ln( 2 ) + =y 9 r=s,
$(x%5 Inx—y>S Inx X4y Pannt) X4y
( 2?xu§s) : )_( ) In() — -, 1=2s.

Now, in (14) we replace ¢ — ¢, x = x*, y =y, r —>r/s, t >t/s;,u —ufs, v—v/s

so we get
s s
os(0) \ i=r Os(v) \ v—u
(mr)) < (w)) ~ (16)
By raising both sides in (16) to the power 1/s we have required result.

For s < 0 we make the same substitutions ¢ — ¢, x > x*, y =y, r —r/s, t —
t/s,u—u/s, v—v/s, and noting v/s <t/s, u/s < r/s, we have

N O
By raising both sides in (17) to the power 1/s we have required result again. Hence we

proved (13) for s # 0. Using continuity of the function s — Ej(x,y;r,t;s) and taking
limit in (13) when s — 0 we conclude that

E1(x,y;r,t;0) < E1(x,y;u,v;0). O

5. New Class of Means of Stolarsky Type: E,(r,1)

Next theorem enables us to define new means, similar to E| type means. This is
just a special case of Theorem 7 in [3].

THEOREM 5.1. Let ¢,y € C*([x,y]). Then for some & € [x,)],

¢(X)42r¢(y) —y%xfxy‘P(“)d“ B 0" (&)
VIO b PDy(wdu V()

(18)
REMARK 5.2. If ¢”/y" has inverse, from (18) we have

v W(X)erW(Y) _ y%x 12w (u)du
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Specially, if we take ¢(x) =x"~!, w(x) =x'~!, and using continuous extensions, we

can define new means.
Suppose 0 < x <y < oo are given. Let us define the following expressions

1
P e —t

—D(=2) 2 " r(x—
e
2 txy)

r#t, rnt#0,1,2.
Again, to deduce all continuous extensions of (20) we consider the function

L [alyt ey ,
02 2 t(x_y)] , 1#0,1,2;

x+y _ Inx—Iny =0
. Iy x—y =Y
A= s ony-1) et P 21
x=y 2 ]
’M x+y *2Inx—y*Iny _
* pra

It is easy to see that A is a continuous function. Now

rivr - (3)

and all continuous extensions of (20) are now obvious but the case r =1 :

. ’ A
Extasinr) oo (imiE] - 7) = (510

o 11nx+v’ Yy 32642 -y 23 ATl dine—yiny

26— D)(—2) *V  (=1)(i-2) 2 1(x—y)
E, (X vt t = exp ] 1)(r<x[27)l+)kl A : ?
B R )

t#0,1,2;

R 2(x—y)
x+y _Inx—Iny
2xy Xy

E>(x,y;0,0) = exp

( 2vinct2einy t3etdy 2(In? x—In?y)+3(Inx—Iny)

xln r \In y_In ¥+In2) Inx+lny‘>
2
5

E ()C y’l l lnx 1 ln\ 1) Inx+Iny
2
xIn? ¥+\|n y_ xInx+ylny 2lnz)cfyzlnzy
. _ 7 2 4(x—y)
Er(x,y;2,2) = ex -
2( Va2 ) p xlnx+ylny+x+y7x21nx—y21ny
2 4 2(x—y)

Combining Theorem 5.1 and Remark 5.2 we have
THEOREM 5.3. Ej(x,y;r,t), defined above, is mean of the numbers x,y.

Next step is monotonicity laws of new means.
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THEOREM 5.4. Let r <u, t <v. Then
Ex(x,yint) < Ex(x,y;u,v) (22)

forall 0 <x <y <oo.

This theorem has proof quite similar to Theorem 4.1 using the following lemma
instead of Lemma 3.5.

LEMMA 5.5. Function A defined by (21) is ¢ a log-convex function.

Proof. We will use function ¢, defined by (8) and further we define

- - 1
A =2 1(x)42r<P 1() _y—x/xy(p[il(u)du. (23)

Writing down each case, r = 0,1,2, we see that this is precisely the function defined
by (21) and this function is continuous. The rest part of proof is using same arguments
asin Lemma 3.5. O

6. Generalized E, means

Now we will use Remark 5.2 in case ¢(x) = x"~!, y(x) = x4, and then we
take substitutions p — %, ¢ — é, x —x*, y—y’. So we define new mean for numbers
Xy 0<x<y<o

1
( ( X TSy _ .\'Eyrfx'; —
e fe ) — t—s)(t—2s) 2 O —x
Ea(oyintss) = | otz 7 e | (24)
2 iy x)

r#£t, rt#0,s,2s.
In order to cover all continuous extensions of (24) we consider, for s # 0

L[ s ,
(t—s)(t—2s) 2y - t())ljs—xs)] ) t # O,s,2s,

x’4+y*  Inx—Iny =0
D) = | BB ’ (25)
s Flnx—y'Iny  Inx+lny 1 PR
s(xs—y") 2s §27 -
Flnx+ylny | X+ Flnx—y>Iny -2
2s 452 2s(x5—y$) 7 r=2zs

and in case s = 0 we consider

1 [dey :
Ao(t) = Fl ] 0 (26)
L (Inx—1Iny)?, 1=0.
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It is easy to see that s — A(¢) and ¢ — A(¢) are continuous functions and that

Ey(x,y;1,155) = (/M(r)) =

As(1)

Now all continuous extensions can be deduced easily but cases r =1 :

Ey(t,1;5) = exp

ts(t—s)(r—2s)#0;

s(3t276xt+2s2) ot s(d Inx—y Iny)
2(1—s)(1=2s) ¥

__ 2t—3s
1(x"—y")

(r—s)(t=2s)

A5y =S

2

A—S4yl—s _ sOf =af)

4 s ln)(;\rj*'Y Iny

2 (¥ —x")

»5In?

Inx+Iny + In? )(+In2 y
E>(s,s;5) = exp| —= :

1
X.r ,ys + K

xfy'rlnzy'
25 —y%)
Inx+Iny _ x’Inx—ySiny » 570
2

Sin2x+ySIny X
E(2s,2535) = exp 1

Snx+y¥Iny 125 1n2
2s

n?x—y?In2y
4T —y%) L()
x5 Inx+ySIny Jr)c‘“ry'Y 7xzslnxﬁv2'rln v , 70,
2 s 2(x5—y%)
3 4+y%) +x‘rlny#\’sln)ri2.r(ln2)r—ln2,\r‘)+3(ln)c—lny')
. — 4sx5ys 2x5yS 2(x5—y%) 0.
E>(0,0;s) = exp S S , 5#£0;
25 Ty
X Inx+y' 1ny+3(x’—y’)—t(x’ Inx—) Iny) x4y
. 2(Inx—In Tt
E>(t,1;0) = exp T ()j‘_x, Y) , 170;
2 " t(lny—Inx)
E2(0,0;0) = \/xy.

it here.

THEOREM 6.1. Let r <u, t <v. Then

At the end of paper we have monotonicity for generalized E> means.

Ex(x,yint:s) < Ex(x,ysu,vss),
Jorall seR, 0 <x<y< oo,

Technique of proof of the next theorem is the same as in Theorem 4.1 so we omit

27)



ON STOLARSKY AND RELATED MEANS 909

REFERENCES

[1] K. B. STOLARSKY, Generalization of the logarithmic mean, Math. Mag., 48 (1975), 87-92.
[2] J. E. PECARIC, F. PROSCHAN AND Y. C. TONG, Convex functions, Partial Orderings and Statistical

Applications, Academic Press, New York, 1992.

[3] J. E.PECARIC, 1. PERIC AND H. M. SRIVASTAVA, A family of the Cauchy type mean-value theorems,

J. Math. Anal. Appl., 306 (2005), 730-739.

(Received November 13, 2008)

Mathematical Inequalities & Applications
math.c

www.ele
1@el

~—math.co

om

J. Jakseti¢
University Of Zagreb

Faculty Of Mechanical Engineering and Naval Architecture

Croatia
e-mail: julije@math.hr

J. Pecari¢

Abdus Salam School of Mathematical Sciences
GC University

Lahore, Pakistan

and University Of Zagreb

Faculty Of Textile Technology

Zagreb, Croatia

e-mail: pecaric@mahazu.hazu.hr

Atiq ur Rehman

Abdus Salam School of Mathematical Sciences
GC University

Lahore, Pakistan

e-mail: mathcity@gmail.com



