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Abstract. Let p > 1 , 1/p + 1/p∗ = 1 , and a = (an)∞n=1 , b = (bm)∞m=1 be two complex se-
quences. We exhibit the generalization of Hardy-Hilbert’s inequality of the following type:

∑
n,m�1

K(φ1(n),φ2(m))|an||bm| < C

(
∞

∑
n=1

| an

f1(φ1(n))
|p
) 1

p
(

∞

∑
m=1

| bm

f2(φ2(m))
|p∗
) 1

p∗
,

where K : (0,∞)× (0,∞) → (0,∞) , f1, f2,φ1,φ2 : (0,∞) → (0,∞) and C is a suitable constant.
We also get several interesting inequalities which generalize many recent results.

1. Introduction

The famous Hardy-Hilbert’s inequality states that if p > 1, 1/p + 1/p∗ = 1,
(an)∞n=1 and (bm)∞m=1 are two complex sequences with 0 < ∑∞

n=1 |an|p < ∞ and 0 <

∑∞
m=1 |bm|p∗ < ∞ , then

∑
n,m�1

|an||bm|
n+m

<
π

sin(πp )

(
∞

∑
n=1

|an|p
) 1

p
(

∞

∑
m=1

|bm|p∗
) 1

p∗

, (1.1)

where the constant π/sin(πp ) is the best possible (see [3, Theorem 315]). That is, this
number in (1.1) can not be replaced by any smaller positive number. This inequality and
its varieties provide useful tools and play important roles in analysis and applications.
Recently, this topic is still popular and many generalizations of such inequalities are
obtained. In [8], B. Yang and L. Debnath exhibited the following results: if p > 1,
1/p + 1/p∗ = 1, 2−min{p, p∗} < λ � 2, α,β > 0, 0 < ∑∞

n=1 n1−λ |an|p < ∞ and
0 < ∑∞

m=1 m1−λ |bm|p∗ < ∞ , then

∑
n,m�1

|an||bm|
(αn+βm)λ

< C

(
∞

∑
n=1

n1−λ |an|p
) 1

p
(

∞

∑
m=1

m1−λ |bm|p∗
) 1

p∗

, (1.2)
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where C =α
2−p−λ

p β
2−p∗−λ

p∗ B( p+λ−2
p , p∗+λ−2

p∗ ) is the best possible and B(·, ·) is the beta
function (see [5, Theorem 8.20]). It is obvious that (1.2) reduces to (1.1) if α = β =
λ = 1. Later, more inequalities are examined and the corresponding non-discrete cases
are given. For details, we refer the readers to [1,2,4,7,8].

In this paper, we introduce inequalities concluding (1.2) as a special case. The
following inequality is under consideration in section 2:

∑
n,m�1

K(φ1(n),φ2(m))|an||bm| < C

(
∞

∑
n=1

| an

f1(φ1(n))
|p
) 1

p
(

∞

∑
m=1

| bm

f2(φ2(m))
|p∗
) 1

p∗

,

where K : (0,∞)× (0,∞) → (0,∞) and f1, f2,φ1,φ2 : (0,∞) → (0,∞) . The readers can
verify (1.2) is the corresponding case for K(x,y) = 1/(αx+βy)λ , φ1(t) = φ2(t) = t ,

f1(t) = t
λ−1

p and f2(t) = t
λ−1
p∗ . In addition, we also give the sufficient conditions under

which the constant C is the best possible. Next, in section 3, some special kernels K
are examined to get several interesting inequalities, which extend many well-known
results (cf. [1,7,8]) and improve some related constants (cf. [2,4]). Finally, we derive
the corresponding integral analogues in the last section.

2. Main result

Now we present our main result in this section. To reach this aim, we introduce
two special classes of nonnegative functions. Let F (α) be the collection of all dif-
ferentiable functions f : (0,∞) → (0,∞) with infx>0 f ′(x) � α > 0. Note that by [6,
Theorem 7.18 & Lemma 7.25], functions in F (α) must be absolutely continuous.
Moreover, for p > 1, denote by Hp the set of all positive functions K defined on
(0,∞)× (0,∞) having the following properties:

(1) K is homogeneous of degree −1, that is, K(tx,ty) = t−1K(x,y) for all t > 0,

(2) K(x,1)x−
1
p is a strictly decreasing function of x and K(1,y)y−

1
p∗ is a strictly

decreasing function of y , where 1/p+1/p∗ = 1, and

(3) kp(K) =
∫ ∞
0 K(x,1)x−

1
p dx =

∫ ∞
0 K(1,y)y−

1
p∗ dy < ∞ .

We mention that under the condition (1), these integrals in (3) must be equal, and hence,
the condition (3) can be replaced by

kp(K) =
∫ ∞

0
K(1,y)y−

1
p∗ dy < ∞.

Moreover, for convenience, we set �p the Banach space consisting of all complex se-

quences x = (xn)∞n=1 with the norm ‖x‖p := (∑∞
n=1 |xn|p)

1
p <∞ . In addition, throughout

this paper, we suppose K is a positive function defined on (0,∞)× (0,∞) and f1 , f2
are two positive functions defined on (0,∞) . The main theorem is stated below.
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THEOREM 2.1. Let p > 1 , 1/p + 1/p∗ = 1 , φi ∈ F (αi) for i = 1,2 . If
K(x,y) f1(x) f2(y) ∈ Hp , then

∑
n,m�1

K(φ1(n),φ2(m))|an||bm| < α
− 1

p∗
1 α

− 1
p

2 kp‖ a
f1(φ1)

‖p‖ b
f2(φ2)

‖p∗ , (2.1)

( ∞

∑
m=1

( ∞

∑
n=1

K(φ1(n),φ2(m)) f2(φ2(m))|an|
)p) 1

p

< α
− 1

p∗
1 α

− 1
p

2 kp‖ a
f1(φ1)

‖p, (2.2)

( ∞

∑
n=1

( ∞

∑
m=1

K(φ1(n),φ2(m)) f1(φ1(n))|bm|
)p∗) 1

p∗
< α

− 1
p∗

1 α
− 1

p
2 kp‖ b

f2(φ2)
‖p∗ , (2.3)

where kp = kp(K(x,y) f1(x) f2(y)) , a
f1(φ1)

= ( an
f1(φ1(n)) )

∞
n=1 and b

f2(φ2)
= ( bm

f2(φ2(m)) )
∞
m=1

are two complex sequences such that 0 < ‖ a
f1(φ1)

‖p,‖ b
f2(φ2)

‖p∗ < ∞ . Moreover, if (2.4)

is true, then the constant α
− 1

p∗
1 α

− 1
p

2 kp is the best possible, where

lim
x→∞

φ ′
i (x) = αi for i = 1,2. (2.4)

Proof. Rewrite ã = a
f1(φ1)

, b̃ = b
f2(φ2)

and K̃(x,y) = K(x,y) f1(x) f2(y) . By the

hypotheses, we get that 0 < ‖ã‖p,‖b̃‖p∗ < ∞ , K̃ ∈ Hp and (2.1) becomes

∑
n,m�1

K̃(φ1(n),φ2(m))|ãn||b̃m| < α
− 1

p∗
1 α

− 1
p

2 kp(K̃)‖ã‖p‖b̃‖p∗ .

Hence, it suffices to prove the case that f1 = f2 = 1. From [3, Theorems 286 & 287],
the inequalities (2.1), (2.2) and (2.3) are equivalent, and we only need to show (2.1)
holds. Applying Hölder’s inequality, we obtain

∑
n,m�1

K(φ1(n),φ2(m))|an||bm| = ∑
n,m�1

|an|K
1
p

(
φ1(n)
φ2(m)

) 1
pp∗ |bm|K

1
p∗
(
φ2(m)
φ1(n)

) 1
pp∗

� P
1
p Q

1
p∗ ,

where

P =
∞

∑
n=1

|an|p
∞

∑
m=1

K(φ1(n),φ2(m))
(
φ1(n)
φ2(m)

) 1
p∗

=
∞

∑
n=1

|an|p
∞

∑
m=1

K(1,
φ2(m)
φ1(n)

)
(
φ1(n)
φ2(m)

) 1
p∗

(φ1(n))−1

<
∞

∑
n=1

|an|p
∫ ∞

0
K(1,

φ2(x)
φ1(n)

)
(
φ2(x)
φ1(n)

)− 1
p∗

(φ1(n))−1dx.
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Putting u = φ2(x)
φ1(n) , we have

P <
∞

∑
n=1

|an|pα−1
2

∫ ∞

φ2(0+)
φ1(n)

K(1,u)u−
1
p∗ du

�
∞

∑
n=1

|an|pα−1
2

∫ ∞

0
K(1,u)u−

1
p∗ du. (2.5)

Here φ2(0+) is the right-hand limit of φ2 at 0 . Similarly, we can get

Q <
∞

∑
m=1

|bm|p∗α−1
1

∫ ∞

0
K(u,1)u−

1
p du. (2.6)

In conjunction with (2.5) and (2.6), this proves the inequality (2.1). Finally, we show

the number α
− 1

p∗
1 α

− 1
p

2 kp is the best possible constant if (2.4) holds. Note that φi is
strictly increasing, absolutely continuous and

lim
x→∞

φi(x)
αix

= 1 (2.7)

for i = 1,2. Let (εk)∞k=1 be a sequence with εk → 0+ as k → ∞ . We define a(k) =

(an(k))∞n=1 and b(k) = (bm(k))∞m=1 , where an(k) = (φ1(n))−
(1+εk)

p and bm(k) =

(φ2(m))−
(1+εk)

p∗ for all n,m � 1. (2.7) leads us to the fact 0 < ‖a(k)‖p,‖b(k)‖p∗ < ∞
for all k . Let N > 0. We have

∑
n,m�1

K(φ1(n),φ2(m))|an(k)||bm(k)|

�
∫ ∞

N2

∫ ∞

N
K(φ1(x),φ2(y))(φ1(x))

− (1+εk)
p (φ2(y))

− (1+εk)
p∗ dxdy

since the integrand is both decreasing in x and in y by the conditions (1)–(2) in the
definition of Hp . Furthermore,

∫ ∞

N2

∫ ∞

N
K(φ1(x),φ2(y))(φ1(x))

− (1+εk)
p (φ2(y))

− (1+εk)
p∗ dxdy

=
∫ ∞

N2

∫ ∞

N
K(

φ1(x)
φ2(y)

,1)
(
φ1(x)
φ2(y)

)− (1+εk)
p

(φ2(y))−(2+εk)dxdy

�
∫ ∞

N2

(∫ ∞

φ1(N)
φ2(N2)

K(u,1)u−
(1+εk)

p inf
x�N

(φ ′
1(x))

−1du

)
(φ2(y))−(1+εk)dy. (2.8)

From Fatou’s lemma, we get

liminf
k→∞

∫ ∞

φ1(N)
φ2(N2)

K(u,1)u−
(1+εk)

p du �
∫ ∞

φ1(N)
φ2(N2)

K(u,1)u−
1
p du. (2.9)
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On the other hand, with the help of (2.7), we can verify that

α2

∫ ∞

N2
(φ2(y))−(1+εk)dy

/
α

1
p

1 α
1
p∗

2 ‖a(k)‖p‖b(k)‖p∗ −→ 1 as k → ∞. (2.10)

It follows from (2.8)–(2.10) that

liminf
k→∞ ∑

n,m�1
K(φ1(n),φ2(m))

|an(k)|
‖a(k)‖p

|bm(k)|
‖b(k)‖p∗

� α
1
p

1 α
− 1

p
2

∫ ∞

φ1(N)
φ2(N2)

K(u,1)u−
1
p inf

x�N
(φ ′

1(x))
−1du. (2.11)

By (2.7), the last number in (2.11) converges to α
− 1

p∗
1 α

− 1
p

2 kp as N → ∞ . This finishes
the proof. �

Set f1 = f2 = 1 and Theorem 2.1 can be reduced to the following corollary. It is a
generalization of Hardy-Hilbert’s result, which corresponds to the case φ1(t) = φ2(t) =
t (cf. [3, Theorem 318]).

COROLLARY 2.2. Let p > 1 , 1/p+ 1/p∗ = 1 , and φi ∈ F (αi) for i = 1,2 . If
K(x,y) ∈ Hp , then

∑
n,m�1

K(φ1(n),φ2(m))|an||bm| < α
− 1

p∗
1 α

− 1
p

2 kp‖a‖p‖b‖p∗,

( ∞

∑
m=1

( ∞

∑
n=1

K(φ1(n),φ2(m))|an|
)p) 1

p

< α
− 1

p∗
1 α

− 1
p

2 kp‖a‖p,

( ∞

∑
n=1

( ∞

∑
m=1

K(φ1(n),φ2(m))|bm|
)p∗) 1

p∗
< α

− 1
p∗

1 α
− 1

p
2 kp‖b‖p∗,

where kp = kp(K) , a = (an)∞n=1 and b = (bm)∞m=1 are two complex sequences such that

0 < ‖a‖p,‖b‖p∗ < ∞ . Moreover, if (2.4) is true, then the constant α
− 1

p∗
1 α

− 1
p

2 kp is the
best possible.

We mention that Corollary 2.2 also provides a technique to evaluate the norms
of some special Hilbert’s type operators on �p , where p > 1. Suppose T : �p → �p

is a linear operator defined by T (a) = (Tm(a))∞m=1 for each a = (an)∞n=1 ∈ �p , where
Tm(a) = ∑∞

n=1 K(φ1(n),φ2(m))an for each m � 1. We conclude that T is bounded for
such a kernel K(φ1,φ2) involved here, and furthermore, the corresponding operator

norm is exactly the constant α
− 1

p∗
1 α

− 1
p

2 kp(K) .
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3. Some applications

Now it is time to investigate varieties of Hilbert’s type kernel and obtain some
interesting results. Let p > 1 and 1/p + 1/p∗ = 1. From elementary calculation,
we can verify that kp(K) = π/sin(πp ) if K(x,y) = 1/(x + y) and kp(K) = pp∗ if
K(x,y) = 1/max{x,y} . Select appropriate φ1 , φ2 in Corollary 2.2 and we get fol-
lowing inequalities:

∑
n,m�1

|an||bm|
An+Bm+C

<
π

A
1
p∗ B

1
p sin(πp )

(
∞

∑
n=1

|an|p
) 1

p
(

∞

∑
m=1

|bm|p∗
) 1

p∗

;

(A,B > 0; C � 0)

∑
n,m�1

|an||bm|
Amax{Bn+C,Dm+E}+F

<
pp∗

AB
1
p∗ D

1
p

(
∞

∑
n=1

|an|p
) 1

p
(

∞

∑
m=1

|bm|p∗
) 1

p∗

,

(A,B,D > 0; C,E � −A−1F)

where 0 < ∑∞
n=1 |an|p < ∞ and 0 < ∑∞

m=1 |bm|p∗ < ∞ . We emphasize that these es-
timations can not be improved anymore, that is, the corresponding constants are the
best possible. On the other hand, as a consequence, Theorem 2.1 generalizes many
well-known results. The first is the following corollary which extends [7, Theorem 1].

COROLLARY 3.1. Let p > 1 , 1/p + 1/p∗ = 1 , φi ∈ F (αi) for i = 1,2 , 0 <

λ � 2 , α,β ,γ � 0 with α + βγ > 0 , 0 < ∑∞
n=1 φ1(n)p(1− λ

2 )−1|an|p < ∞ and 0 <

∑∞
m=1 φ2(m)p∗(1− λ

2 )−1|bm|p∗ < ∞ . We have

∑
n,m�1

|an||bm|
αmax{φ1(n)λ ,φ2(m)λ}+βφ1(n)λ + γφ2(m)λ

< α
− 1

p∗
1 α

− 1
p

2 Cλ (α,β ,γ)

(
∞

∑
n=1

φ1(n)p(1−λ
2 )−1|an|p

) 1
p
(

∞

∑
m=1

φ2(m)p∗(1− λ
2 )−1|bm|p∗

) 1
p∗

,

(3.1)

where

Cλ (α,β ,γ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
λ
√

γ(α+β )
arctan

√
γ

α+β + 2
λ
√

β (α+γ)
arctan

√
β

(α+γ) for α,β ,γ > 0;

2
λ√αγ arctan

√
γ
α + 2

λ (α+γ) for β = 0,α > 0,γ > 0;

2
λ
√

αβ
arctan

√
β
α + 2

λ (α+β ) for γ = 0,α > 0,β > 0;

4
λα for β = γ = 0,α > 0;

π
λ
√

βγ
for α = 0,β > 0,γ > 0.

Moreover, if (2.4) is true, then the constant is the best possible.
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Proof. Set

K(x,y) =
1

αmax{xλ ,yλ}+βxλ + γyλ
, f1(x) = x

λ
2 − 1

p∗ and f2(y) = y
λ
2 − 1

p .

It is easy to see that K(x,y) f1(x) f2(y) satisfies (1)–(2) in the definition of Hp . Fur-
thermore, since

kp =
∫ ∞

0
K(1,y) f1(1) f2(y)y

− 1
p∗ dy =

∫ ∞

0

y
λ
2 −1

αmax{1,yλ}+β + γyλ
dy,

using change of variable u = yλ and we find that the integral above is equal to [7, Eq.
(8)]. This confirms that kp = Cλ (α,β ,γ) < ∞ and K(x,y) f1(x) f2(y) ∈ Hp . Applying
Theorem 2.1 and we find that (2.1) reduces to (3.1). This completes the proof. �

The second application generalizes [8, Theorems 3.3] (that is, (1.2)) and gives a
partial extension of [2, Theorem 2] and [4, Theorem 1]. The statement is as follows.

COROLLARY 3.2. Let p > 1 , 1/p+1/p∗ = 1 , φi ∈F (αi) for i = 1,2 , α,β ,λ >
0 , −1 < λ−2

p +A2−A1 � 0 , −1 < λ−2
p∗ +A1−A2 � 0 , 0 <∑∞

n=1φ1(n)1−λ+p(A1−A2)|an|p
< ∞ and 0 <∑∞

m=1 φ2(m)1−λ+p∗(A2−A1)|bm|p∗ < ∞ . We have

∑
n,m�1

|an||bm|
(αφ1(n)+βφ2(m))λ

< α
− 1

p∗
1 α

− 1
p

2 kp

(
∞

∑
n=1

φ1(n)1−λ+p(A1−A2)|an|p
) 1

p
(

∞

∑
m=1

φ2(m)1−λ+p∗(A2−A1)|bm|p∗
) 1

p∗

,

(3.2)

where kp =α
2−p−λ

p +A1−A2β
2−p∗−λ

p∗ +A2−A1B( p+λ−2
p +A2−A1,

p∗+λ−2
p∗ +A1−A2) . More-

over, if (2.4) is true, then the constant is the best possible.

Proof. Let

K(x,y) =
1

(αx+βy)λ
, f1(x) = x

λ−1
p −A1+A2 and f2(y) = y

λ−1
p∗ −A2+A1 .

One may check that K(x,y) f1(x) f2(y) satisfies (1)–(2) in the definition of Hp and

kp =
∫ ∞

0
K(1,y) f1(1) f2(y)y

− 1
p∗ dy

= α−λ
∫ ∞

0
y
λ−2
p∗ −A2+A1

(
1+

β
α

y

)−λ
dy

= α
2−p−λ

p +A1−A2β
2−p∗−λ

p∗ +A2−A1

∫ 1

0
u
λ−2

p +A2−A1(1−u)
λ−2
p∗ +A1−A2du

= α
2−p−λ

p +A1−A2β
2−p∗−λ

p∗ +A2−A1B

(
p+λ −2

p
+A2−A1,

p∗ +λ −2
p∗

+A1−A2

)
,
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where u = (1 + β
α y)−1 . This guarantees that K(x,y) f1(x) f2(y) ∈ Hp . Hence, (3.2)

holds by Theorem 2.1. �
It is easy to see that (3.2) reduces to (1.2) if we set 2−min{p, p∗} < λ � 2,

φ1(t) = φ2(t) = t and A1 = A2 . Moreover, the readers can check that −1 < λ−2
p +

A2 −A1 � 0 and −1 < λ−2
p∗ + A1 −A2 � 0 hold if 0 < λ � 1, A1 ∈ ( 1−λ

p∗ , 1
p∗ ) and

A2 ∈ ( 1−λ
p , 1

p) . Hence, Corollary 3.2 improves the constant given in [2, Theorem 2] and
[4, Theorem 1] for the case 0 < λ � 1. For example, select p = 2, α = β = λ = 1,
φ1(t) = φ2(t) = t and A1 = A2 ∈ (0, 1

2 ) . The constant B( 1
2 , 1

2 ) obtained here is the
best possible, which is less than the constant B(1− 2A1,2A1) in [2, Theorem 2] and
[4, Theorem 1] for A1 �= 1

4 since the function log(Γ(x)) is convex on (0,∞) (cf. [5,
Theorem 8.18]). The third application is a generalization of [1, Theorem 3.3].

COROLLARY 3.3. Let p > 1 , 1/p+1/p∗ = 1 , φi ∈F (αi) for i = 1,2 , 0 < λ �
2 , α � 0 , β > 0 , 0 <∑∞

n=1 φ1(n)p(1− λ
2 )−1|an|p <∞ and 0 <∑∞

m=1 φ2(m)p∗(1− λ
2 )−1|bm|p∗

< ∞ . We have

∑
n,m�1

|an||bm|
αmin{φ1(n)λ ,φ2(m)λ}+β max{φ1(n)λ ,φ2(m)λ}

< α
− 1

p∗
1 α

− 1
p

2 Cλ (α,β )

(
∞

∑
n=1

φ1(n)p(1− λ
2 )−1|an|p

) 1
p
(

∞

∑
m=1

φ2(m)p∗(1− λ
2 )−1|bm|p∗

) 1
p∗

,

(3.3)

where

Cλ (α,β ) :=

⎧⎨
⎩

4
λ
√

αβ
arctan

√
α
β for α > 0,β > 0;

4
λβ for α = 0,β > 0.

Moreover, if (2.4) is true, then the constant is the best possible.

Proof. Set

K(x,y) =
1

αmin{xλ ,yλ}+βmax{xλ ,yλ} , f1(x) = x
λ
2 − 1

p∗ and f2(y) = y
λ
2 − 1

p .

Obviously, K(x,y) f1(x) f2(y) satisfies (1)–(2) in the definition of Hp . Moreover,

∫ ∞

0
K(1,y) f1(1) f2(y)y

− 1
p∗ dy =

∫ ∞

0

y
λ
2 −1

αmin{1,yλ}+βmax{1,yλ}dy

=
1
λ

∫ ∞

0

t−
1
2

αmin{1,t}+βmax{1,t}dt

and we can find that the integral above is equal to [1, Eq. (2.4)]. This confirms that
kp = Cλ (α,β ) < ∞ , K(x,y) f1(x) f2(y) ∈ Hp , and hence, (3.3) holds. �

We remark that for these examples in this section, the corresponding inequalities
for (2.2) and (2.3) can be obtained in a similar way (cf. [1, Theorem 3.5] and [8,
Theorem 3.4]).
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4. Integral analogues

Our results introduced in section 2 also have integral analogues. Suppose p > 1
and for any measurable function g defined on (0,∞) , let the norm of g be ‖g‖p =

(
∫ ∞
0 |g(x)|pdx)

1
p . Set Lp(0,∞) the Banach space consisting of such g with ‖g‖p < ∞ .

The following theorem is the non-discrete form of Theorem 2.1.

THEOREM 4.1. Let p > 1 , 1/p + 1/p∗ = 1 , φi ∈ F (αi) for i = 1,2 . If
K(x,y) f1(x) f2(y) is homogeneous of degree −1 and kp = kp(K(x,y) f1(x) f2(y)) < ∞ ,
then

∫ ∞

0

∫ ∞

0
K(φ1(x),φ2(y))|g(x)||h(y)|dxdy < α

− 1
p∗

1 α
− 1

p
2 kp‖ g

f1(φ1)
‖p‖ h

f2(φ2)
‖p∗ , (4.1)

(∫ ∞

0

(∫ ∞

0
K(φ1(x),φ2(y)) f2(φ2(y))|g(x)|dx

)p

dy

) 1
p

< α
− 1

p∗
1 α

− 1
p

2 kp‖ g
f1(φ1)

‖p,

(4.2)

(∫ ∞

0

(∫ ∞

0
K(φ1(x),φ2(y)) f1(φ1(x))|h(y)|dy

)p∗

dx

) 1
p∗

< α
− 1

p∗
1 α

− 1
p

2 kp‖ h
f2(φ2)

‖p∗ ,

(4.3)

where g
f1(φ1)

(x) = g(x)
f1(φ1(x))

and h
f2(φ2)

(y) = h(y)
f2(φ2(y))

are two measurable functions de-

fined on (0,∞) with 0 < ‖ g
f1(φ1)

‖p,‖ h
f2(φ2)

‖p∗ < ∞ . Moreover, if (2.4) is true, then the

constant α
− 1

p∗
1 α

− 1
p

2 kp is the best possible.

Proof. The proof is similar to that of theorem 2.1, so we just sketch it. We may
assume f1 = f2 = 1, K(x,y) is homogeneous of degree −1 and kp(K) < ∞ . One may
check that [3, Theorems 286 & 287] also have integral analogues and hence, it suffices
to show (4.1) is true. The inequality in (4.1) can be established by the fact

∫ ∞

0

∫ ∞

0
K(φ1(x),φ2(y))|g(x)||h(y)|dxdy � P

1
p Q

1
p∗ , (4.4)

where

P =
∫ ∞

0
|g(x)|p

∫ ∞

0
K(1,

φ2(y)
φ1(x)

)
(
φ2(y)
φ1(x)

)− 1
p∗

(φ ′
2(y))

−1
(
φ ′

2(y)
φ1(x)

)
dydx

�
∫ ∞

0
|g(x)|pα−1

2

∫ ∞

0
K(1,u)u−

1
p∗ dudx

= α−1
2 kp‖g‖p

p (4.5)
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and

Q �
∫ ∞

0
|h(y)|p∗α−1

1

∫ ∞

0
K(u,1)u−

1
p dudy � α−1

1 kp‖h‖p∗
p∗.

It is not difficulty to verify that all equalities in (4.5) hold only if φ ′
2(y) = α2 for almost

every y > 0. It tells us that φ2(y) = α2y+ φ2(0+) since φ2 is absolutely continuous.
Moreover, if the equality in (4.4) holds, then

|g(x)|p
(
φ1(x)
φ2(y)

) 1
p∗

= A|h(y)|p∗
(
φ2(y)
φ1(x)

) 1
p

for almost every (x,y) ∈ (0,∞)× (0,∞) and for some A > 0. This implies |h(y)|p∗ =
Cφ2(y)−1 for almost every y > 0, where C > 0, and this contradicts to ‖h‖p∗ < ∞ .
In addition, assume (2.4) holds. To show the constant is the best possible, one may

take the functions gk(x) = (φ1(x))
− (1+εk)

p χ[1,∞)(x) and hk(y) = (φ2(y))
− (1+εk)

p∗ χ[1,∞)(y) ,
where εk → 0+ as k → ∞ and χE denote the characteristic function of E . The details
are left to the readers. �

As in section 3, one can test some special kernels in Theorem 4.1 and obtain
corresponding well-known results (cf. [1, Theorems 2.3 & 2.5] and [8, Theorems 2.1 &
2.2]). The case f1 = f2 = 1 is also under consideration, and the statement is as follows.

COROLLARY 4.2. Let p > 1 , 1/p+ 1/p∗ = 1 , and φi ∈ F (αi) for i = 1,2 . If
K(x,y) is homogeneous of degree −1 and kp = kp(K) < ∞ , then

∫ ∞

0

∫ ∞

0
K(φ1(x),φ2(y))|g(x)||h(y)|dxdy < α

− 1
p∗

1 α
− 1

p
2 kp‖g‖p‖h‖p∗,

(∫ ∞

0

(∫ ∞

0
K(φ1(x),φ2(y))|g(x)|dx

)p

dy

) 1
p

< α
− 1

p∗
1 α

− 1
p

2 kp‖g‖p,

(∫ ∞

0

(∫ ∞

0
K(φ1(x),φ2(y))|h(y)|dy

)p∗

dx

) 1
p∗

< α
− 1

p∗
1 α

− 1
p

2 kp‖h‖p∗,

where g and h are two measurable functions defined on (0,∞) with 0 < ‖g‖p,‖h‖p∗ <

∞ . Moreover, if (2.4) is true, then the constant α
− 1

p∗
1 α

− 1
p

2 kp is the best possible.

Finally, we give a remark here. Suppose T is a linear operator on Lp(0,∞) defined
by Tg(y) =

∫ ∞
0 K(φ1(x),φ2(y))g(x)dx , where g ∈ Lp(0,∞) and K , φ1 , φ2 satisfy the

hypotheses in Corollary 4.2. As a consequence, we conclude that T is bounded on

Lp(0,∞) and the corresponding operator norm is exactly the constant α
− 1

p∗
1 α

− 1
p

2 kp(K) .
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