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Abstract. In this note we establish the Harnack inequality for the Riemann-Liouville fractional
derivation operator ∂αt of order α ∈ (0,1) . Here the function under consideration is assumed to
be globally nonnegative. We show that the Harnack inequality in general fails if this global pos-
itivity assumption is replaced by a local one. A Harnack estimate is also derived for nonnegative
solutions of a class of nonhomogeneous fractional differential equations.

1. Introduction

Harnack inequalities have been proved to be an important tool in the theory of
linear and nonlinear partial differential equations. We refer to the recent survey [7] for
an introduction into this subject. A variant of the classical Harnack inequality for the
Laplace operator can be stated as follows. Denote by Bρ(y) the open ball in Rn with
radius ρ > 0 and center y ∈ Rn . Suppose that u is a nonnegative harmonic function in
B4ρ(y) . Then

sup
Bρ (y)

u � 3n inf
Bρ (y)

u,

see e.g. [5, Section 2.3]. The classical parabolic Harnack inequality (i.e. for the heat
operator) is due to Hadamard [6] and Pini [12]. The following version was introduced
by Moser [11] in a more general context, see also [4]. Letting ρ > 0, σ ∈ (0,1) , and
y ∈ R

n we define the boxes

Q− = (−ρ2,−σρ2)×Bρ(y), Q+ = (σρ2,ρ2)×Bρ(y).

Then there exists a constant M > 0 depending only on n and σ such that for any
nonnegative and sufficiently smooth function u in (−4ρ2,ρ2)×B4ρ(y) satisfying

∂t u−Δu = 0 in (−4ρ2,ρ2)×B4ρ(y),

there holds the inequality
sup
Q−

u � M inf
Q+

u.
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For more general results on Harnack inequalities in the elliptic and parabolic case we
refer to [3], [5], [7] [10], and the references given therein.

Concerning non-local operators it is known that the Harnack inequality also holds
for fractional powers of the negative Laplacian. Let α ∈ (0,1) and suppose that u
is a sufficiently smooth function on Rn that is nonnegative everywhere and satisfies
(−Δ)αu = 0 in B4ρ(y) . Then

sup
Bρ (y)

u � M inf
Bρ (y)

u,

where the constant M depends only on α and n , cf. [2, Theorem 5.1]. We point out
that here the Harnack inequality fails, if the global positivity assumption is replaced by
a local one, cf. [8]. This is due to the non-local nature of (−Δ)α . More general results
on Harnack estimates for integro-differential operators like (−Δ)α can be found in [1].

The main objective of this note is to show that a Harnack inequality also holds for
the Riemann-Liouville fractional derivation operator ∂αt with α ∈ (0,1) defined by

∂αt v(t) = ∂t

∫ t

0
g1−α(t− τ)v(τ)dτ, t > 0,

where ∂t is the usual derivation operator and gβ stands for the Riemann-Liouville (or
standard) kernel given by

gβ (t) =
tβ−1

Γ(β )
, t > 0, β > 0.

To state the main result we need some notation. By f1 ∗ f2 we denote the convolution
defined by ( f1 ∗ f2)(t) =

∫ t
0 f1(t− τ) f2(τ)dτ, t � 0, of two functions f1 , f2 supported

on the positive half-line. Given 0 � t1 < t2 we define the space Z(t1, t2) by

Z(t1, t2) = {u ∈C([0,t2]) : g1−α ∗ u|[t1,t2] ∈ H1
1 ([t1,t2])},

where H1
1 ([t1, t2]) stands for the space of all absolutely continuous functions on [t1,t2] .

For t∗ � 0, 0 < σ1 < σ2 < σ3 , and ρ > 0 we introduce the intervals

W− = (t∗ +σ1ρ ,t∗ +σ2ρ), W+ = (t∗ +σ2ρ ,t∗ +σ3ρ).

Then the main result is the following.

THEOREM 1.1. Let t∗ � 0 , 0 < σ1 < σ2 < σ3 , and ρ > 0 . Let further α ∈
(0,1) and u0 � 0 . Then for any function u ∈ Z(t∗,t∗ +σ3ρ) that is nonnegative on
(0,t∗ +σ3ρ) and that satisfies

∂αt (u−u0)(t) = 0, a.a. t ∈ (t∗,t∗ +σ3ρ), (1)

there holds the inequality

sup
W−

u � σ3

σ1
inf
W+

u. (2)
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Note that in Theorem 1.1 we do not assume that u(0) = u0 . So by setting u0 = 0 we
obtain the Harnack inequality for the Riemann-Liouville fractional derivative. If we
assume in addition that u(0) = u0 then Theorem 1.1 yields the Harnack inequality for
the so-called Caputo fractional derivation operator, which is a regularized version of
the Riemann-Liouville fractional derivative, cf. the monographs [9] and [13].

We will also show that, similarly to the case of the fractional Laplacian, the Har-
nack inequality fails if the global positivity assumption is replaced by a local one. Fur-
thermore, we will demonstrate that the above Harnack estimate breaks down if the
relation ∂αt (u−u0) = 0 is only satisfied on the smaller interval (t∗ +σ1ρ , t∗ +σ3ρ) .

In the last section of this note we generalize Theorem 1.1 to nonnegative solutions
of the fractional differential equation

∂αt (u−u0)(t)+ μu(t) = f (t), a.a. t ∈ (t∗,t∗ +σ3ρ), (3)

where u0,μ � 0 and f ∈ Lp([t∗,t∗+σ3ρ ]) for some p > 1/α , see Theorem 4.1 below.
It is highly desirable to have a Harnack inequality also for nonnegative solutions

of fractional evolution equations the prototype of which reads

∂αt (u−u0)(t,x)−Δu(t,x) = 0, t ∈ (0,T ), x ∈Ω, (4)

where T > 0, Ω is a domain in Rn , α ∈ (0,1) , and u0 is a given function depending
only on x . This is an open problem. However, our results indicate that a Harnack
inequality should hold in this situation, too. In this sense our results can be regarded
as an important step towards a better understanding of fractional evolution equations of
the type (4). We remark that in the very recent work [15], it is shown that the weak
maximum principle is valid for (4), which also supports the conjecture that a Harnack
inequality holds in this case, too.

As to literature, hardly anything seems to be known about Harnack estimates for
time fractional equations. To the author’s knowledge the only paper on this subject is
[14], where a weak Harnack inequality is established for nonnegative supersolutions of
(3). Adopting the notation of the present note and assuming for simplicity that f = 0
and μ = 0 it is shown in [14] that for any function u ∈ Z(t∗,t∗ +σ3ρ) that is nonnega-
tive on (0, t∗ +σ3ρ) and that satisfies

∂αt (u−u0)(t) � 0, a.a. t ∈ (t∗,t∗ +σ3ρ), u(0) = u0,

we have
ρ−1/p|u|Lp((t∗,t∗+σ1ρ)) � C inf

W+
u, (5)

for all 0 < p < 1
1−α , where the constant C > 0 depends only on 0 < σ1 < σ2 < σ3 , p ,

and α ∈ (0,1) . The critical exponent 1
1−α is optimal. Notice that on the left of (5) we

have the interval (t∗, t∗ +σ1ρ) , not W− as in (2).

2. Proof of the Harnack inequality

Suppose u ∈ Z(t∗,t∗ +σ3ρ) is nonnegative on (0, t∗ +σ3ρ) and satisfies (1). We
introduce the shifted time s = t − t∗ and define the function ũ by means of ũ(s) =
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u(s+ t∗) , s ∈ (0,σ3ρ) . Then (1) implies that

∂αs ũ(s) = g1−α(t∗ + s)u0 +h(s), s ∈ (0,σ3ρ), (6)

where the history term h(s) is given by

h(s) =
∫ t∗

0
[−ġ1−α(t∗ + s− τ)]u(τ)dτ, s ∈ (0,σ3ρ). (7)

Here, by ġ we mean the derivative of the function g .
Since (g1−α ∗ ũ)(0) = 0 and gα ∗ g1−α = 1, we have

gα ∗ ∂αs ũ = gα ∗ ∂s(g1−α ∗ ũ) = ∂s(gα ∗ g1−α ∗ ũ) = ũ.

Therefore convolving (6) with gα yields

ũ(s) = u0
(
gα ∗ g1−α(·+ t∗)

)
(s)+ (gα ∗ h)(s), s ∈ (0,σ3ρ). (8)

The first term on the right-hand side of (8) can be rewritten by the use of the identity

(
gα ∗ g1−α(·+ t∗)

)
(s) =

∫ s

0
gα(s−σ)g1−α(t∗ +σ)dσ

= s
∫ 1

0
gα(s− rs)g1−α(t∗ + rs)dr

=
∫ 1

0
gα(1− r)g1−α(r+

t∗
s
)dr (9)

=: ϕ(s), s ∈ (0,σ3ρ).

Similarly, we have for the second term

(gα ∗ h)(s) =
∫ s

0
gα(s−σ)

∫ t∗

0
[−ġ1−α(t∗ +σ − τ)]u(τ)dτ dσ

=
1
s

∫ 1

0
gα(1− r)

∫ t∗

0
[−ġ1−α(r+

t∗ − τ
s

)]u(τ)dτ dr (10)

=: ψ(s), s ∈ (0,σ3ρ).

Consequently, (8) is equivalent to

ũ(s) = u0ϕ(s)+ψ(s), s ∈ (0,σ3ρ).

Let now s ∈ (σ1ρ ,σ2ρ) and s ∈ (σ2ρ ,σ3ρ) . Since g1−α is nonincreasing, we
evidently have ϕ(s) � ϕ(s) . As to ψ , we use the positivity of u on (0, t∗) and the
monotonicity of −ġ1−α to estimate as follows.

ψ(s) � 1
σ1ρ

∫ 1

0
gα(1− r)

∫ t∗

0
[−ġ1−α(r+

t∗ − τ
σ2ρ

)]u(τ)dτ dr

� σ3

σ1 s

∫ 1

0
gα(1− r)

∫ t∗

0
[−ġ1−α(r+

t∗ − τ
s

)]u(τ)dτ dr

=
σ3

σ1
ψ(s).
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By positivity of u0 , we thus obtain

ũ(s) � σ3

σ1
ũ(s),

which immediately implies inequality (2). This completes the proof of Theorem 1.1.

REMARK 2.1. Note that in case t∗ = 0 relation (1) implies u(t) = u0 for all t ∈
[0,σ3ρ ] , thus the Harnack inequality (2) trivially holds with the constant σ3

σ1
> 1 being

replaced by 1.

3. Counterexamples

EXAMPLE 3.1. We show first that the Harnack inequality fails for nonnegative
functions u ∈ Z(t∗ +σ1ρ ,t∗ +σ3ρ) satisfying the relation ∂αt (u−u0) = 0 only on the
smaller interval (t∗ +σ1ρ ,t∗ +σ3ρ) .

To this purpose fix W− = (1,2) and W+ = (2,3) and consider the family of func-
tions uε , ε ∈ (0,1] , defined by

uε(t) =
{

0 : 0 � t � 1− ε
1
ε (t −1+ ε) : 1− ε � t � 1,

(11)

and
∂αt uε = 0, a.a. t ∈ (1,3). (12)

Apparently uε |[0,1] ∈ H1
1 ([0,1]) so that (12) means that with s = t − 1 and ũε(s) =

uε(s+1) we have
ũε(s) = (gα ∗ hε)(s), s ∈ (0,2), (13)

where

hε(s) =
∫ 1

0
[−ġ1−α(1+ s− τ)]uε(τ)dτ, s ∈ (0,2).

Observe that uε is nonnegative on (0,3) and that uε ∈ Z(1,3) for all ε ∈ (0,1] . From
uε = 0 in [0,1− ε] and uε � 1 in [1− ε,1] we infer the estimate

hε(s) �
∫ 1

1−ε
[−ġ1−α(1+ s− τ)]dτ = g1−α(s)−g1−α(s+ ε), s ∈ (0,2).

In view of (13) this gives for s ∈ (1,2)

ũ(s) �
∫ s

0
gα(s−σ)[g1−α(σ)−g1−α(σ + ε)]dσ

=
∫ 1

0
gα(1− r)[g1−α(r)−g1−α(r+

ε
s
)]dr

�
∫ 1

0
gα(1− r)[g1−α(r)−g1−α(r+ ε)]dr =: δ (ε).
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By the dominated convergence theorem, δ (ε) vanishes as ε → 0+ . Hence

lim
ε→0+

inf
W+

uε = 0.

On the other hand we have uε(1) = ũ(0) = 1 for all ε ∈ (0,1] , and therefore

sup
W−

uε � 1, ε ∈ (0,1].

This shows that an estimate of the form

sup
W−

u � M inf
W+

u

with M independent of u cannot hold.

EXAMPLE 3.2. We next show that the Harnack inequality fails if the positivity
assumptions u0 � 0 and u � 0 in (0,t∗) are dropped.

Fix t∗ > 0 and consider the family of functions uε , ε > 0, defined by

uε(t) =
1
ε

(t− t∗+ ε), 0 � t � t∗,

and
∂αt (uε −u0,ε) = 0, a.a. t > t∗, (14)

where

u0,ε = uε(0) = 1− t∗
ε

.

Observe that uε has negative values in [0,t∗] if and only if ε ∈ (0,t∗) . Setting s = t− t∗
and ũε(s) = uε(s+ t∗) , s � 0, (14) is equivalent to

ũε(s) = u0,ε
(
gα ∗ g1−α(·+ t∗)

)
(s)+ (gα ∗ hε)(s), s > 0, (15)

where

hε(s) =
∫ t∗

0
[−ġ1−α(t∗ + s− τ)]uε(τ)dτ

=
[
g1−α(t∗ + s− τ)uε(τ)

]τ=t∗

τ=0
−

∫ t∗

0
g1−α(t∗ + s− τ)u̇ε(τ)dτ

= g1−α(s)−g1−α(t∗ + s)u0,ε +
1
ε

(
g2−α(s)−g2−α(s+ t∗)

)
, s > 0.

Inserting the last identity into (15) yields

ũε(s) = 1+
1
ε

(gα ∗ [g2−α−g2−α(·+ t∗)])(s), s � 0.
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In particular ũε is differentiable in (0,∞) and we have

˙̃uε(s) =
1
ε

(gα ∗ [g1−α −g1−α(·+ t∗)])(s)− 1
ε

gα(s)g2−α(t∗)

<
1
ε

(
1−gα(s)g2−α(t∗)

)
, s > 0.

This shows that ũε is strictly decreasing in the interval [0,s∗] with

s∗ =
t∗

[Γ(α)Γ(2−α)]1/(1−α) .

Selecting
ε = (gα ∗ [g2−α(·+ t∗)−g2−α ])(s∗),

we have
ũε(s∗) = 0 and ũε(s) > 0, s ∈ [0,s∗). (16)

Note that ε < t∗ , for otherwise we would have u0,ε � 0 and uε > 0 in (0,t∗] , which by
(15), entails strict positivity of ũε , a contradiction.

Choosing the parameters in such a way that s∗ = t∗ + σ3ρ , (16) shows that an
estimate of the form

sup
W−

uε � M inf
W+

uε

cannot hold.

4. Nonhomogeneous fractional differential equations

In this section we derive a Harnack estimate for nonnegative solutions of the more
general equation

∂αt (u−u0)(t)+ μu(t) = f (t), a.a. t ∈ (t∗,t∗ +σ3ρ), (17)

here μ � 0 is another parameter and we assume that f ∈ Lp([t∗,t∗ +σ3ρ ]) for some
p > 1/α . The other parameters are as before.

Suppose u ∈ Z(t∗,t∗ + σ3ρ) is nonnegative on (0, t∗ + σ3ρ) and satisfies (17).
Setting s = t − t∗ and ũ(s) = u(s + t∗) , f̃ (s) = f (s + t∗) , g̃1−α(s) = g1−α(s + t∗) ,
s ∈ (0,σ3ρ) , we infer from (17) that

∂αs ũ(s)+ μ ũ(s) = g̃1−α(s)u0 +h(s)+ f̃ (s), s ∈ (0,σ3ρ), (18)

where h(s) is given by (7). Let rα ,μ denote the resolvent kernel corresponding to (17),
that is

rα ,μ(s)+ μ(rα ,μ ∗ gα)(s) = gα(s), s > 0.

Equation (18) then implies

ũ(s) = (rα ,μ ∗ [g̃1−αu0 +h+ f̃ ])(s), s ∈ (0,σ3ρ). (19)
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It is well-known (see e.g. [14, Section 2.1]) that

rα ,μ(s) = Γ(α)gα(s)Eα ,α (−μsα), s > 0,

where Eα ,β denotes the generalized Mittag-Leffler-function defined by

Eα ,β (z) =
∞

∑
n=0

zn

Γ(nα +β )
, z ∈ C.

Let now ω > 0 be a fixed constant and assume that

μρα � ω .

By continuity and strict positivity of Eα ,α in (−∞,0] we then have

0 < c1 := min
z∈[0,ωσα

3 ]
Eα ,α(−z) � Eα ,α(−μsα) � max

z∈[0,ωσα
3 ]

Eα ,α(−z) =: c2, s∈ (0,σ3ρ).

Setting Ci = Ci(α,ω ,σ3) = ciΓ(α) , i = 1,2, we thus have

C1gα(s) � rα ,μ(s) � C2gα(s), s ∈ (0,σ3ρ). (20)

Further,

max
s∈[0,σ3ρ ]

(gα ∗ | f̃ |)(s) � |gα |Lp′ ([0,σ3ρ ])| f̃ |Lp([0,σ3ρ ]) = C3ρα−
1
p | f̃ |Lp([0,σ3ρ ]), (21)

with

C3 =
σ
α− 1

p
3

Γ(α)[(α −1)p′+1]1/p′ .

Using the functions ϕ and ψ from Section 2, we infer from (19), (20), and (21) that

ũ(s) � C2
(
ϕ(s)u0 +ψ(s)+C3ρα−

1
p | f̃ |Lp([0,σ3ρ ])

)
, s ∈ (0,σ3ρ), (22)

as well as

ũ(s) � C1
(
ϕ(s)u0 +ψ(s)

)−C2C3ρα−
1
p | f̃ |Lp([0,σ3ρ ]), s ∈ (0,σ3ρ). (23)

Suppose now that s ∈ (σ1ρ ,σ2ρ) and s ∈ (σ2ρ ,σ3ρ) . Employing (22), (23), and
the estimates for ϕ and ψ from Section 2, we have

ũ(s) � C2
(
ϕ(s)u0 +

σ3

σ1
ψ(s)+C3ρα−

1
p | f̃ |Lp([0,σ3ρ ])

)

� C2σ3

C1σ1

(
C1[ϕ(s)u0 +ψ(s)]−C2C3ρα−

1
p | f̃ |Lp([0,σ3ρ ])

)

+C2C3
(
1+

C2σ3

C1σ1

)
ρα−

1
p | f̃ |Lp([0,σ3ρ ])

� C2σ3

C1σ1
ũ(s)+C2C3

(
1+

C2σ3

C1σ1

)
ρα−

1
p | f̃ |Lp([0,σ3ρ ]).

We have thus proved the following result.
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THEOREM 4.1. Let ω > 0 be fixed. Let t∗,μ � 0 , 0 < σ1 < σ2 < σ3 , and ρ > 0 .
Let further α ∈ (0,1) , u0 � 0 , and f ∈ Lp([t∗,t∗ +σ3ρ ]) for some p > 1/α . Assume
that μρα � ω . Then there exists a positive constant M = M(α, p,σ1,σ3,ω) such
that for any function u ∈ Z(t∗,t∗ +σ3ρ) that is nonnegative on (0,t∗ +σ3ρ) and that
satisfies (17) there holds the inequality

sup
W−

u � M
(

inf
W+

u+ρα−
1
p | f |Lp([t∗,t∗+σ3ρ ])

)
. (24)
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