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INCREASING CO–RADIANT FUNCTIONS AND

HERMITE–HADAMARD TYPE INEQUALITIES

G. R. ADILOV

(Communicated by C. E. M. Pearce)

Abstract. In this paper, we study Hermite-Hadamard type inequalities for increasing co-radiant
functions. Some examples of such inequalities for functions defined on a special domains are
given.

1. Introduction

It is well-known that if f : [a,b] → R is convex function on [a,b], then the in-
equality

f

(
a+b

2

)
� 1

b−a

b∫
a

f (x)dx � 1
2

( f (a)+ f (b)) (1)

holds, and both inequalities in (1) are sharp. These inequalities are well-known as the
Hermite-Hadamard inequalities. There are many different generalizations and compan-
ion results of these inequalities for convex functions, see [3] and [9].

There are also many generalizations of these inequalities for such nonconvex func-
tions as quasiconvex functions [4, 8, 11], P-functions [5, 8], multiplicative convex
functions [7], r-convex functions [6], Godunova-Levin type functions [5], increasing
convex-along-rays functions [2, 10], increasing radiant functions [12], increasing posi-
tively homogeneous functions [1] etc.

For instance, in [6], if f ∈ Q(I) ( I is an interval in R), i.e.,

f (λx+(1−λ )y) � f (x)
λ

+
f (y)

1−λ
, x,y ∈ I, λ ∈ (0,1)

and f ∈ L1[a,b], then

f

(
a+b

2

)
� 4

b−a

b∫
a

f (x)dx

and the inequality is sharp.
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In the present paper, we consider one generalization of Hermite-Hadamard in-
equalities for the class of increasing co-radiant functions defined on the Rn

++ = {x ∈
Rn|xi > 0, i = 1,2, ...,n} .

In Section 2 we give certain concepts of abstract convexity and definition of in-
creasing co-radiant functions and we recall some results related to these functions. In
Section 3 we consider Hermite-Hadamard type inequalities for the class increasing co-
radiant functions. Some examples of such inequalities for functions defined on R++
and R2

++ are given in Section 4. In Section 5 the results are summarized.

2. Preliminaries

2.1. Abstract convexity and Hermite-Hadamard type inequalities

Let R be a real line and R+∞ = R∪ {+∞} . Consider a set X and a set H of
function h : X → R defined on X . We assume that H is equipped with the pointwise
order relation: if f ,g ∈ Y, then f � g if and only if f (x) � g(x) for all x ∈ X .

A function f : X →R+∞ is called abstract convex with respect to H (or H -convex)
if there exists a set U ⊂ H such that

f (x) = sup{h(x) : h ∈U} for all x ∈ X .

Clearly f is H -convex if and only if

f (x) = sup{h(x)|h � f} for all x ∈ X .

Let Y be a set of functions f : X → R+∞. A set H ⊂ Y is called a supremal
generator of the set Y if each function f ∈ Y is abstract convex with respect to H.

A lot of authors study of Hermite-Hadamard type inequalities is based on the fol-
lowing Principle of Preservation of inequalities.

PROPOSITION 1. Let H be a supremal generator of Y and let ψ be increasing
functional defined on Y, that is, ( f ,g ∈ Y , f � g ) =⇒ ψ( f ) � ψ(g). Then

(h(u) � ψ(h) for all h ∈ H) ⇔ ( f (u) � ψ( f ) for all f ∈ Y ).

The proof of Proposition 1 is easy and can be found in [10].

A function f is called increasing (with respect to the coordinate-wise order rela-
tion) if x � y implies f (x) � f (y).

The function f is positively homogeneous of degree one if f (λx) = λ f (x) for all
x ∈ Rn

+ and λ > 0.
Let L be the set of all min-type functions defined on Rn

++, i.e. the set L consists
of all functions of the form:

l(x) = 〈l,x〉 := min
i

xi

li
, x ∈ Rn

++

with l ∈ Rn
++. We know that (see [10]) a function f : Rn

++ → R is L -convex if and only
if f is increasing and positively homogeneous degree one (shortly IPH).
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Let f be a function on Rn
++. For each y ∈ Rn

++ consider the ray {λy|λ > 0} and
the restriction fy of f on this ray. By definition

fy(λ ) = f (λy), λ � 0

The function f is called convex-along-rays if the function fy is convex for all y∈Rn
++.

For the increasing convex-along-rays (shortly ICAR) functions on R2
++, the fol-

lowing proposition is considered in the study of Hermite-Hadamard inequalities (see
[2]).

PROPOSITION 2. Let f be an ICAR function defined on R2
++. Then for each

(x , y) ∈ R2
++ there exists a number b > 0 such that

b

[
min

(
x
x
,
y
y

)
−1

]
� f (x,y)− f (x , y)

for all (x,y) ∈ R2
++.

Proof of this theorem can be found in [10].

Recall that a function f : Rn
++ → R+ = [0,∞] is called radiant if f (λx) � λ f (x)

for all λ ∈ (0,1) and x ∈ Rn
++.

Denote by ϕl the function defined on Rn
++ by the formula

ϕl(x) =

{
0, if 〈l,x〉 < 1

〈l,x〉 , if 〈l,x〉 � 1

where 〈l,x〉 is min-type function.
It is known (see [12]) that the set

H = {cϕl|l ∈ Rn
++,c ∈ [0,∞)

is supremal generator of the class increasing radiant (shortly InR) functions defined on
Rn

++.
Using the properties of IPH functions related to min-type functions [1] and the

properties of InR functions related to ϕl functions [12], Hermite-Hadamard inequali-
ties are studied.

2.2. Increasing co-radiant functions and its some properties

A function f : K → R+∞ defined on a cone K ⊂ Rn is called co-radiant if

f (λx) � λ f (x) for all x ∈ K, λ ∈ [0,1]

It is easy to check that f is co-radiant if and only if

f (νx) � ν f (x) for all x ∈ K, ν � 1
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We shall consider increasing co-radiant (shortly ICR) functions defined on the
cone Rn

++ .
Since an ICR function f is increasing and f (0) � 0 it follows that f (x) � 0 for

all x ∈ Rn
++.

It is easy to check that a finite ICR function f is continuous on the cone Rn
++.

Let us give some examples of ICR functions:

• An increasing positively homogeneous function f of degree μ , where μ ∈ (0,1]
is ICR. In particular, a Cobb-Douglas function

f (x) = kxα1
1 xα2

2 ...xαn
n with

n

∑
i=1

αn = 1, αi � 0

is ICR.

• Let P be a polynomial degree m with nonnegative coefficients. Then the function

f (x) = [P(x)]
1
m

is ICR.

• Let fi, i = 1,2, ...,m be an increasing positively homogeneous function of degree
0 � μi � 1. Then the sum, minimum and maximum of a family f1, f2, ..., fm are
ICR functions.

• For each f ∈ ICR its conjugate function

f ∗(x) =
1

f ( 1
x )

where 1
x = ( 1

x1
, 1

x2
, ..., 1

xn
), is also ICR.

Consider the function ψl defined on Rn
++

ψl(x) =

{
〈l,x〉 if 〈l,x〉 � 1

1 if 〈l,x〉 > 1

where l ∈ Rn
++.

Recall that the set

H =
{
cψl : l ∈ Rn

++,c ∈ [0,∞]
}

is supremal generator of the class ICR functions defined on Rn
++ (see [10]).

PROPOSITION 3. Let f be an ICR function defined on Rn
++. Then the following

inequality holds for all x, l ∈ Rn
++ :

f (l)ψl(x) � f (x) (2)
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Proof. If 〈l,x〉> 1, then ψl(x) = 1 and xi
li

> 1 for all i = 1,2, ...,n. Consequently,
we can write x > l. Since f is increasing functions, then (2) holds.

If 〈l,x〉 � 1, then ψl(x) = 〈l,x〉 . Since 〈l,x〉 = min
1�i�n

xi
li

=⇒ xi � liψl(x) for

i = 1,2, ...,n =⇒ x � lψl(x). Because the function f is ICR, we have

f (x) � f (lψl(x)) � ψl(x) f (l)

Hence inequality (2) holds for all x, l ∈ Rn
++. �

Let f be an ICR function defined on Rn
++ and D ⊂ Rn

++. It can be easily shown
by Proposition 3 such that,

fD(x) = sup
l∈D

( f (l)ψl(x)) (3)

is ICR function and possesses the properties:

fD(x) � f (x) for all x ∈ Rn
++, fD(x) = f (x) for all x ∈ D.

A function f : D → [0,∞] is called ICR on D, if there exists an ICR function F
defined on Rn

++ such that F |D = f , that is, F(x) = f (x) for all x ∈ D.

PROPOSITION 4. Let f : D→ [0,∞] be a function on D∈Rn
++, than the following

assertions are equivalent:
1) f is abstract convex with respect to the set of functions cψl : D → [0,∞] with

l ∈ D, c ∈ [0,∞];
2) f is increasing co-radiant on D;
3) f (l)ψl(x) � f (x) for all l,x ∈ D.

Proof. 1) ⇒ 2). It is obvious since any function cψn defined on D can be con-
sidered as elementary function cψn ∈ H defined Rn

++.
2) ⇒ 3). By definition, there exists an ICR function F : Rn

++ → [0,∞] such that
F(x) = f (x) for all x ∈ D. Then by (3), we have

f (x) = FD(x) = sup
l∈D

F(l)ψl = sup
l∈D

f (x)ψl(x)

for all x ∈ D , what implies the assertion 3).
3) ⇒ 1). Consider the function fD defined on D fD(x) = sup

l∈D
f (x)ψl(x). It is

clear that fD is abstract convex with respect to the set of functions defined on D, i.e.,{
cψl : l ∈ Rn

++,c ∈ [0,∞)
}

. Further, using 3) we get for all x ∈ D

fD(x) � f (x) = f (x)ψx(x) � sup
l∈D

f (l)ψl(x) = fD(x)

Hence fD(x) = f (x) for all x ∈ D and we have the defined statement 1). �

The result of this proposition given below implies that the class ICR is broad
enough.
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COROLLARY 5. Let D ⊂ Rn
++ be a set such that every point x ∈ D is maximal in

D, i.e., for all x,y ∈ D : (y � x) ⇒ (y = x) . Then for any function f : D → [0,∞] there
exists an ICR function F : Rn

++ → [0,∞] , for which F |D = f .

Proof. By proposition 4, it is sufficiently to check only that f (l)ψl(x) � f (x) for
all l,x ∈ D. If l = x, it is clear. If l �= x, then 〈l,x〉 < 1 since l is maximal element in
D, hence ψl(x) = 0 and f (l)ψl(x) = 0 � f (x). �

3. Hermite-Hadamard type inequalities for ICR functions

Using the properties of ICR functions given in the second section, we examine
Hermite-Hadamard type inequalities for ICR functions.

Let’s state an important proposition which can be proved easily:

PROPOSITION 6. Let D⊂ Rn
++, f : D→ [0,∞] is ICR function and integrable on

D. then the following inequality holds for all u ∈ D

f (u)
∫
D

ψu(x)dx �
∫
D

f (x)dx (4)

Proof. It can be easily shown by Proposition 4. �

Now let’s survey Hermite-Hadamard type inequalities for ICR functions via sets
Qk(D) . Let D ⊂ Rn

++ be closed domain, i.e., D is bounded set such that cl(intD) = D
and k is positive number. Let Qk(D) denote the set of all points x ∈ D such that

k
A(D)

∫
D

ψx(x)dx = 1 (5)

where A(D) =
∫
D

dx.

In the case of k = 1, Q1(D) will be the set Q(D) in [2] and [12].

PROPOSITION 7. Let f be an ICR function on D. If the set Qk(D) is nonempty
and f is integrable on D, then

sup
x∈Qk(D)

f (x) � k
A(D)

∫
D

f (x)dx (6)

Proof. If f (x) = +∞, it is clear from Proposition 4 that f is not integrable.
Hence, f (x) < +∞. According to Proposition 4, f (x)ψx(x) � f (x) for all x ∈ D.
Since x ∈ Qk(D), then by (4), we get

f (x) = f (x)
k

A(D)

∫
D

ψx(x)dx =
k

A(D)

∫
D

ψx(x) f (x)dx � k
A(D)

∫
D

f (x)dx
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whence (6) is derived. �

Now that for each x ∈ Qk(D), we have also the following inequality

f (x) � k
A(D)

∫
D

f (x)dx (7)

and it is sharp. For example, if f (x) = ψx(x), then (7) holds as the equality.

Now let us examine the right hand side of (1) for ICR functions. First, let’s
prove the auxiliary proposition. Let’s denote maximum type functions by 〈l,x〉+ , i.e.,
〈l,x〉+ = max

1�i�n

xi
li
.

PROPOSITION 8. Let f be an ICR function on D. Then the following inequalities
hold for all l,x ∈ D

f (l) � ψ+
x (l) f (x) (8)

where

ψ+
x (l) =

{
〈x, l〉+ if 〈x, l〉+ � 1

1 if 〈x, l〉+ � 1.

Proof. Since f is ICR function onD , then f (l)ψl(x) � f (x) for all x, l ∈ D, that
is,

f (l)〈l,x〉 � f (x), if 〈l,x〉 � 1

f (l) � f (x), if 〈l,x〉 � 1

whence
f (l) � f (x)

〈l,x〉 = 〈x, l〉+ f (x), if 〈x, l〉+ � 1

f (l) � f (x), if 〈x, l〉+ � 1

thus
f (l) � ψ+

x (l) f (x) for all x, l ∈ D. �

PROPOSITION 9. Let function f be an ICR function and integrable on D. Then
for all u ∈ D ∫

D

f (x)dx � f (u)
∫
D

ψ+
u (x)dx. (9)

Proof. It follows from Proposition 8 �

Inequality (9) is sharp since we get equality for f (x) = ψ+
u (x). The inequality (9)

can be shown in a more general way as follows:

∫
D

f (x)dx � inf
u∈D

⎧⎨
⎩ f (u)

∫
D

ψ+
u (x)dx

⎫⎬
⎭ (10)
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4. Examples

Hermite-Hadamard type inequalities have been studied for ICAR functions [2],
InR functions [12] and IPH functions [1] on the special domains of R++ and R2

++ .
Let’s derive (4), (6), (9) inequalities and the sets Qk(D) for ICR functions.

EXAMPLE 10. Let D = [a,b] ⊂ R++. Since

b∫
a

ψu(x)dx =
u∫

a

x
u
dx+

b∫
u

dx =
2bu−u2−a2

2u

the formula (4) is as follows:

f (u) � 2u
2bu−u2−a2

b∫
u

f (x)dx (11)

which are sharp in the class of all ICR functions f ∈ L1[a,b], and holds for any u ∈
[a,b].

By definition, the set Qk(D) consists of all points x ∈ [a,b], for which,

k
A(D)

∫
D

ψx(x)dx =
k

b−a

b∫
a

ψx(x)dx =
k(bx − x2 −a2)

2x(b−a)
= 1

So, a point x ∈ [a,b] belongs to Qk(D) if and only if

kx2 +2[b−a− kb]x+a2k = 0 (12)

We get

x = b− b−a
k

±
√(

b−a
k

−b

)2

−a2

If k = 1, then x = a. If k < 1, it is easily shown that discriminant is negative, i.e.,(
b−a
k −b

)2 − a2 � 0, so there is no real root of (12). If k > 1, then one of the roots

is x = b− b−a
k −

√(
b−a

k −b
)2 −a2 < a and it is not in [a,b]. It is easily seen that if

k � 2b
b−a , then second root is in [a,b]. If k ∈ [1, 2b

b−a ], Qk(D) is not empty and is as
follows:

Qk(D) =

⎧⎨
⎩b− b−a

k
+

√(
b−a

k
−b

)2

−a2

⎫⎬
⎭

Now let’s derive the inequality (9).

b∫
a

f (x)dx � f (u)
b∫

a

ψ+
u (x)dx = f (u)

⎛
⎝ u∫

a

dx+
b∫

u

x
u
dx

⎞
⎠= f (u)

b2 +u2−2au
2u

(13)
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By combining the inequalities (11) and (13), for all u ∈ [a,b], the following inequality
is derived:

f (u)
2bu−u2−a2

2u(b−a)
� 1

b−a

b∫
a

f (x)dx � f (u)
b2 +u2−2au

2u(b−a)
(14)

In order to examine Hermite-Hadamard type inequalities on the domains D ⊂
R2

++, let’s derive the formula to compute the integrals
∫
D
ψu(x)dx and

∫
D
ψ+

u (x)dx on

these domains. Let D ⊂ R2
++ and u ∈ D. In order to calculate integral, we represent

the set D as D1(u)∪D2(u)∪D3(u), where

D1(u) =
{

x ∈ D : x2
u2

� x1
u1

, x2 � u2

}
,

D2(u) =
{

x ∈ D : x2
u2

� x1
u1

, x1 � u1

}
,

D3(u) = {x ∈ D : x1 � u1, x2 � u2} .

Then∫
D

ψu(x)dx =
∫

D1(u)

〈u,x〉dx+
∫

D2(u)

〈u,x〉dx+
∫

D3(u)

dx

=
1
u2

∫
D1(u)

x2dx1dx2 +
1
u1

∫
D2(u)

x1dx1dx2 +
∫

D3(u)

dx1dx2 (15)

In a similar way,
∫
D
ψ+

u (x)dx can be computed. For this case, D+
1 (u)∪D+

2 (u)∪
D+

3 (u), where

D+
1 (u) =

{
(x1,x2) ∈ D : x2

u2
� x1

u1
, u1 � x1

}
,

D+
2 (u) =

{
(x1,x2) ∈ D : x2

u2
� x1

u1
, u2 � x2

}
,

D+
3 (u) = {(x1,x2) ∈ D : x1 � u1, x2 � u2}

and we have∫
D

ψ+
u (x)dx =

∫
D+

1 (u)

〈u,x〉+ dx+
∫

D+
2 (u)

〈u,x〉+ dx+
∫

D+
3 (u)

dx

=
1
u1

∫
D+

1 (u)

x1dx1dx2 +
1
u2

∫
D+

2 (u)

x2dx1dx2 +
∫

D+
3 (u)

dx1dx2 (16)

EXAMPLE 11. Let D ⊂ R2
++ be the triangle, that is

D =
{
(x1,x2) ∈ R2

++ : 0 < x1 � a, 0 < x2 � vx1
}
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If u ∈ D, then we have

D1(u) =
{
(x1,x2) ∈ R2

++ : 0 < x2 � u2,
u1
u2

x2 < x1 � a
}

,

D2(u) =
{
(x1,x2) ∈ R2

++ : 0 < x1 < u1,
u2
u1

x1 � x2 � vx1

}
,

D3(u) =
{
(x1,x2) ∈ R2

++ : u1 � x1 � a, u2 � x2 � vx1
}

By (15) we get∫
D

ψu(x)dx =
∫

D1(u)

〈u,x〉dx+
∫

D2(u)

〈u,x〉dx+
∫

D3(u)

dx

=
1
u2

u2∫
0

a∫
u1x2
u2

x2dx1dx2 +
1
u1

u1∫
0

vx1∫
u2x1
u1

x1dx2dx1 +
a∫

u1

vx1∫
u2

dx2dx1

=
1
6

(
2u1u2 +3a2v− vu2

1−3au2
)

Thus the inequality (4) will be as follows:

f (u1,u2) � 6

2u1u2 +3a2v− vu2
1−3au2

∫
D

f (x1,x2)dx1dx2 (17)

A point x ∈ D belongs to Qk(D) if and only if

2k
va2

3va2 +2x1x2 −3ax2− vx2
1

6
= 1 ⇔ 2x1x2−3ax2− vx2

1 = 3va2k−1

Consider now inequality (9) for domain D. Let’s calculate the integral of the func-
tion ψ+

u (x) on D. In this case, D+
1 (u),D+

2 (u) and D+
3 (u) are as follows:

D+
1 (u) =

{
(x1,x2) ∈ D : u1 � x1 � a, 0 < x2 � u2

u1
x1

}
,

D+
2 (u) =

{
(x1,x2) ∈ D : u2

v � x1 � u1, u2 � x2 � vx1
}∪{

(x1,x2) ∈ D : u1 � x1 � a, u2
u1

x1 � x2 � vx1

}
,

D+
3 (u) =

{
(x1,x2) ∈ D : 0 < x2 � u2,

x2
v � x1 � u1

}
.

By (16) we get

∫
D

ψ+
u (x)dx =

1
u1

a∫
u1

u2x1
u1∫

0

x1dx2dx1+
1
u2

u1∫
u2
v

vx1∫
u2

x2dx2dx1+
1
u2

a∫
u1

vx1∫
u2x1
u1

x2dx2dx1+
u2∫
0

u1∫
x2
v

dx1dx2

=
a3vu2

2−u2
1u

3
2 +2vu3

1u
2
2 +a3v3u2

1

6u2u2
1v

thus ∫
D

f (x1,x2)dx1dx2 � 6u2u2
1v

a3vu2
2−u2

1u
3
2 +2vu3

1u
2
2 +a3v3u2

1

f (u1,u2) (18)
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EXAMPLE 12. Consider the triangle D ⊂ Rn
++ defined as

D =
{
(x1,x2) ∈ R2

++ :
x1

a
+

x2

b
� 1

}
Let u ∈ D. Then we get

D1(u) =
{
(x1,x2) ∈ R2

++ : 0 < x2 � u2,
u1
u2

x2 � x1 � a− a
b x2

}
,

D2(u) =
{
(x1,x2) ∈ R2

++ : 0 < x1 < u1,
u2
u1

x1 � x2 � b− b
a x1

}
,

D3(u) =
{
(x1,x2) ∈ R2

++ : u1 � x1 � a− a
bu2, u2 � x2 � b− b

a x1
}

By (15) we have

∫
D

ψu(x)dx =
1
u2

u2∫
0

a− ax2
b∫

u1x2
u2

x2dx1dx2 +
1
u1

u1∫
0

b− bx1
a∫

x1u2
u1

x1dx2dx1 +

a− au2
b∫

u1

b− bx1
a∫

u2

dx2dx1

=
ab
6

[(u1

a
+

u2

b

)2 −3
(u1

a
+

u2

b

)
+3

]

In this domain, the inequality (4) is as follows:

f (u1,u2) � 6

ab
[( u1

a + u2
b

)2 −3
(u1

a + u2
b

)
+3

] ∫
D

f (x1,x2)dx1dx2 (19)

or

f (u1,u2) � 6ab

(u1b+u2a)2 −3ab(u1b+u2a)+3a2b2

∫
D

f (x1,x2)dx1dx2

Let’s derive the set Qk(D) for the given triangular domain D. Since A(D) = ab
2 ,

then for x ∈ D

x ∈ Qk(D) ⇔ k
3

[(
x1

a
+

x2

b

)2

−3

(
x1

a
+

x2

b

)
+3

]
= 1

⇔
(

x1

a
+

x2

b

)2

−3

(
x1

a
+

x2

b

)
+3− 3

k
= 0

whence

x ∈ Qk(D) ⇔ x1

a
+

x2

b
=

3
2
−
√

3
k
− 3

4
.

If 0 � 3
2 −

√
3
k − 3

4 � 1, Qk(D) is not empty. Hence, k∈ [1,3]. Thus for k∈ [1,3],

Qk(D) =

{
(x1, x2) ∈ D :

x1

a
+

x2

b
=

3
2
−
√

3
k
− 3

4

}
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and for k ∈ R+\[1,3], Qk(D) is empty set.
For the same domain D, let’s compute

∫
D
ψ+

u (x)dx in order to derive the inequality

(9). To do this, let’s express the sets D+
1 (u),D+

2 (u) and D+
3 (u) first:

D+
1 (u) =

{
(x1,x2) ∈ R2

++ : u1 � x1 � abu1
au2+bu1

, 0 < x2 � u2
u1

x1

}
∪{

(x1,x2) ∈ R2
++ : abu1

au2+bu1
� x1 � a, 0 < x2 � b− b

a x1

}
,

D+
2 (u) =

{
(x1,x2) ∈ R2

++ : u2 � x2 � abu2
au2+bu1

, 0 < x1 � u1
u2

x2

}
∪{

(x1,x2) ∈ R2
++ : abu2

au2+bu1
� x2 � b, 0 < x1 � a− a

b x2

}
,

D+
3 (u) = {(x1,x2) ∈ D : 0 < x1 � u1, 0 � x2 � u2} .

Hence

∫
D

ψ+
u (x)dx =

1
u1

abu1
au2+bu1∫
u1

u2x1
u1∫

0

x1dx2dx1 +
1
u1

a∫
abu1

au2+bu1

b− bx1
a∫

0

x1dx2dx1

+
1
u2

abu2
au2+bu1∫
u2

u1x2
u2∫

0

x2dx1dx2 +
1
u2

b∫
abu2

au2+bu1

a− ax2
b∫

0

x2dx1dx2 +
u1∫
0

u2∫
0

dx2dx1

=
u1u2

3
+

ab(au2 +bu1)
6u1u2

− a2b2

6(au2 +bu1)
.

Therefore∫
D

f (x1,x2)dx1dx2 � ab
6

(
2u1u2

ab
+

au2 +bu1

u1u2
− ab

au2 +bu1

)
f (u1,u2) (20)

By combining (19) and (20), for all u ∈ D, the following inequality holds:

f (u1,u2)
3

[( u1
a + u2

b

)2−3
(u1

a + u2
b

)
+3

]
� 1

A(D)
∫
D

f (x1,x2)dx1dx2

� f (u1,u2)
3

(
2u1u2

ab + au2+bu1
u1u2

− ab
au2+bu1

) (21)

EXAMPLE 13. Let D ⊂ R2
++ be the rectangle defined as

D =
{
(x1,x2) ∈ R2

++ : x1 � a, x2 � b
}

If u ∈ D, then

D1(u) =
{
(x1,x2) ∈ R2

++ : 0 < x2 � u2,
u1
u2

x2 � x1 � a
}

,

D2(u) =
{
(x1,x2) ∈ R2

++ : 0 < x1 < u1,
u2
u1

x1 � x2 � b
}

,

D3(u) =
{
(x1,x2) ∈ R2

++ : u1 � x1 � a, u2 � x2 � b
}
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By (15),

∫
D

ψu(x)dx =
1
u2

u2∫
0

a∫
u1x2
u2

x2dx1dx2 +
1
u1

u1∫
0

b∫
x1u2
u1

x1dx2dx1 +
a∫

u1

b∫
u2

dx2dx1

= ab− 1
2
(au2 +bu1)+

1
3
u1u2

In this rectangular domain D the inequality (4) is as follows:

f (u1,u2) � 1

ab− 1
2 (au2 +bu1)+ 1

3u1u2

∫
D

f (x1,x2)dx1dx2 (22)

Since A(D) = ab, then we get the equation for x ∈ Qk(D)

k
ab

(ab− 1
2

(ax2 +bx1)+
1
3

x1x2) = 1 ⇔ 2x1 x2 −3(ax2 +bx1) = (1− k)ab

whence

Qk(D) = {(x1, x2) ∈ D : 2x1 x2 −3(ax2 +bx1) = (1− k)ab}
Consider now inequality (9). Let’s study two cases:
a) If u2

u1
� b

a then D+
1 (u), D+

2 (u) and D+
3 (u) will be as follows:

D+
1 (u) =

{
(x1,x2) ∈ R2

++ : u1 � x1 � a, 0 < x2 � u2
u1

x1

}
,

D+
2 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x1 � u1, u2 � x2 � b
}∪{

(x1,x2) ∈ R2
++ : u1 � x1 � a, u2

u1
x1 � x2 � b

}
,

D+
3 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x1 � u1, 0 < x2 � u2
}

.

By (16) we have

∫
D

ψ+
u (x)dx =

1
u1

a∫
0

u2x1
u1∫

0

x1dx2dx1+
1
u2

u1∫
0

b∫
u2

x2dx2dx1+
1
u2

a∫
u1

b∫
u2
u1

x1

x2dx2dx1+
u1∫
0

u2∫
0

dx2dx1

=
2
3
u1u2 +

a3u2

6u2
1

+
b2a
2u2

b) If u2
u1

� b
a , then D+

1 (u), D+
2 (u) and D+

3 (u) are follows:

D+
1 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x2 � u2, u1 � x1 � a
}∪{

(x1,x2) ∈ R2
++ : x2 � u2 � b, u1

u2
x2 � x1 � a

}
,

D+
2 (u) =

{
(x1,x2) ∈ R2

++ : u2 � x2 � b, 0 � x1 � u1
u2

x2

}
,

D+
3 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x2 � u2, 0 � x1 � u1
}
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and after necessary computations, the following inequality is derived:

∫
D

ψ+
u (x)dx =

2
3
u1u2 +

b3u1

6u2
2

+
ba2

2u1
.

By combining two cases, for u ∈ D, the following equality is derived:

∫
D

ψ+
u (x)dx = Φ(u1,u2) =

⎧⎨
⎩

2
3u1u2 + a3u2

6u2
1

+ b2a
2u2

, if u2
u1

� b
a

2
3u1u2 + b3u1

6u2
2

+ ba2

2u1
, if u2

u1
� b

a .

Hence, for the rectangular region D, (9) inequality is as follows:∫
D

f (x1,x2)dx � Φ(u1,u2) f (u1,u2) (23)

EXAMPLE 14. We shall now consider the case where the set D is part of the disk
defined as

D =
{
(x1,x2) ∈ R2

++ : x2
1 + x2

2 � r2}
If u ∈ D, we get

D1(u) =
{
(x1,x2) ∈ R2

++ : 0 < x2 � u2,
u1
u2

x2 � x1 �
√

r2 − x2
2

}
,

D2(u) =
{
(x1,x2) ∈ R2

++ : 0 < x1 � u1,
u2
u1

x1 � x2 �
√

r2 − x2
1

}
,

D3(u) =
{
(x1,x2) ∈ R2

++ : u1 � x2 � r, u2 � x2 �
√

r2− x2
1

}
.

By (15) we have

∫
D

ψu(x)dx =
1
u2

u2∫
0

√
r2−x2

2∫
u1x2
u2

x2dx1dx2 +
1
u1

u1∫
0

√
r2−x2

1∫
u2x1
u1

x1dx2dx1 +
r∫

u1

√
r2−x2

1∫
u2

dx2dx1

=
πr2

4
− r2

2
arcsin

u1

r
− u1(r2 −u2

1)
1
2

2
− (r2−u2

2)
3
2

3u2

− (r2 −u2
1)

3
2

3u1
+

u1u2

3
+

r3

3u2
+

r3

3u1
−u2r ≡ ϕ(u1,u2).

By using the equality above, the inequality (4) will be as follows:

f (u1,u2) � 1
ϕ(u1,u2)

∫
D

f (x1,x2)dx1dx2. (24)

Since A(D) = πr2
4 , then we get

Qk(D) =
{

(x1, x2) ∈ D : ϕ(x1, x2) =
πr2

4k

}
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For the same domain D, let’s compute
∫
D
ψ+

u (x)dx in order to derive the inequality

(9). Let’s determine the sets D+
1 (u), D+

2 (u) and D+
3 (u) . Let u ∈ D. Then

D+
1 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x2 � u2, u1 � x1 �
√

r2− x2
2

}
∪⎧⎨

⎩(x1,x2) ∈ R2
++ : u2 � x2 � r√

1+
(

u1
u2

)2
, u1

u2
x2 � x1 �

√
r2 − x2

2

⎫⎬
⎭ ,

D+
2 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x1 � u1, u2 � x2 �
√

r2− x2
1

}
∪⎧⎨

⎩(x1,x2) ∈ R2
++ : u1 � x1 � r√

1+
(

u2
u1

)2
, u2

u1
x1 � x2 �

√
r2 − x2

1

⎫⎬
⎭ ,

D+
3 (u) =

{
(x1,x2) ∈ R2

++ : 0 < x1 � u1, 0 < x2 � u2
}

.

By (16) we get

∫
D

ψ+
u (x)dx =

1
u1

u2∫
0

√
r2−x2

2∫
u1

x1dx1dx2 +
1
u1

r√
1+(

u1
u2

)2∫
u2

√
r2−x2

2∫
u1x2
u2

x1dx1dx2

+
1
u2

u1∫
0

√
r2−x2

1∫
u2

x2dx2dx1 +
1
u2

r√
1+(

u2
u1

)2∫
u1

√
r2−x2

1∫
u2x1
u1

x2dx2dx1 +
u1∫
0

u2∫
0

dx2dx1

=
r3(

√
u2

1 +u2
2 +u2

1u
2
2)

3u1u2
.

Hence ∫
D

f (x1,x2)dx1dx2 �
r3(

√
u2

1 +u2
2 +u1u2)

3u1u2
f (u1,u2) (25)

for all (u1,u2) ∈ D.

5. Conclusion

Hermite-Hadamard inequality, which is derived for convex functions and denoted
by (1) is generalized by some authors (see [1], [2] and [12]) for some certain classes of
abstract convex functions (for IPH, ICAR and InR functions)

In this article, same inequalities are studied for ICR functions, a class of abstract
convex functions and considerable results are derived. Q(D) which presented in the
previous works is defined for more general cases and the inequality (6) which is more
general is derived. In order to derive the similar inequality of the right hand side of
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(1) for ICR functions, some studies are done and the inequalities like (9) and (10)
are derived. Special domains which are studied for IPH, ICAR and InR functions are
taken into consideration for ICR functions (in some examples, more general domains
are studied) and some inequalities like (14), (17), (18), (21), (22), (23), (24) and (25)
changing with respect to domain are derived.
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