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WEIGHTED MIXED NORM INEQUALITIES IN MARTINGALE SPACES

WEI CHEN AND PEIDE L1U

(Communicated by B. Opic)

Abstract. For the maximal geometric mean operator G in martingale spaces, we characterize
the weight paries (u,v) for which G is bounded from martingale space L?(vdu) to wL?(ud)
or LI(udp),1 < p < q<eo.

1. Introduction

Let R" be the n-dimensional real Euclidean space and f a real valued measurable
function, the classical Hardy-Littlewood maximal operator M, the maximal geometric
mean operator G and the minimal operator m are defined by

M
&) §§5|Q|/|f i

1
G(f)(x) = EESCXP 9] /Q log|f(v)|dy

and

o1
m(x) = inf o [ 170)

where Q is a non-degenerate cube with its sides paralleled to the coordinate axes and
|Q| is the Lebesgue measure of Q.

Let u, v be two weights, i.e. positive measurable functions. As well known, if
u=v and p > 1, [1] showed that the inequality

[ M) vwdr <€ [ 170, 7 € /()

holds if and only if @ € Ap, i.e., for any cube Q in R" with sides parallel to the

coordinates |
1 1 _1 N\
<@/Qv(x)dx) (a/Qv(x) I’ldx) <C. (1.1)
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Let p — oo in (1.1), it follows that

(121 o) e (g o () ) < -

which is an alternative definition of A.. weight (see [3]). It is known that [4] and [2]
used (1.2) to characterize the boundedness of G from L'(v) to L'(v). In the case of
two weights, [5] gave that

1 1
— d d C. v G »
<Q| /Qu(X) x) exp <|Q / ( (x)) x) <C, V0« Hinll’I(Lp’):1 | Gf e <

(1.3)
and

/Q GO o) <CI0L YO sup (16 < (1
flleppy=1

which generalize the results of [6]. Recently, [7, 8, 9, 10] also studied the minimal op-
erator m and maximal geometric mean operator G. Comparing with these results, [11]
and [12] examined the weighted inequalities of the minimal operator and the maximal
geometric mean operator in martingale spaces.

In this paper, we prove the weighted mixed norm inequalities of the maximal ge-
ometric mean operator in martingale spaces which is a generalization of [12]. Our
approach is similar to that of [13] and [14] but different from that of [12]. The rest of
this section consists of the preliminaries for the second section.

Let (Q,.%#,u) be a complete probability space and (.#,),>0 an increasing se-
quence of sub-o-fields of .% with .% = \/ .%,. A weight @ is a random variable with

n=0
® >0 and E(w) < co. In this paper, for p > 1, a martingale f = (f,)s>0 € L? (wdu)
is meant as f, = E(f|-%,), f € L?(wdu). The maximal operator M and the maximal
geometric mean operator G for martingale f = (f,) are defined by

Mf =sup|fy| and Gf = supexpE(log|f|\J,,)

n=0

respectively. For B € .%, we always denote [, xgdu and [o xpowdu by |B| and |B|y,
respectively. For (Q,.%#,u) and (%,),>0, the family of all stopping times is denoted
by J.

2. Results and Their Proofs

THEOREM 2.1. Let (u,v) be a couple of weights and 1 < p < g < e. Suppose
1
that v~ 71 € L(Q), then the following statements are equivalent:

(1) There exists a positive constant Cy such that

_1 q . 1
</{T<w} <G(v ”X{r<oo})> udu) SCi{r <eo}|? VT E T, 2.1
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(2) There exists a positive constant Cy such that
1 1
([(@rman)" <ca( [ 1nrvau) ve=(h) eban). @2

Proof. To prove the boundedness of G from (2.1), let f € LP(vdu). Forall k€ Z,
define stopping times

T = inf{n : expE(log | f||.%,) > 2¢}.

Set
A= {m <} N{2 <expE (log(v ") F,) <27t}

By = {1 <o, Ti1 =} N{2/ <expE (log(v )| Fy) <2/}, jez

Then Ay j € Fy,, By j C Ay, j. Moreover, {By j}1,; is a family of disjoint sets and

{2 < GF <2} = {5 < o0, Ty =0} = | J B k€ Z.
jez

Trivially,
1 1
expE (log|f]|F,) = expE <log|fv5\|frk> expE (log(v75)|ﬂ}k> :
It follows that

2k ess 1nf(expE (log|f|\ffk)>
< ess inf(expE (log |va|\ﬂ}k> )qess sup (expE (log(v_%)|ﬂ}k> )q
k.j Ak.j
g 1 q 71
<20 ess 1nf<expE (10g\fv1’ Hﬂ}k> ) Bl
koj

X /Bk.j (expE (log(v7%)|ﬁ}k> )qud,u.

To estimate [o(Gf)7udp, firstly we have

(Gf)Iudu — / Yd
/ S uy = ke% [2k<GF<ok+1} (G fudp

< 24 / My
keZ {2"<Gf<2k+l}

=2y 2Mudu
kez.jez” Brj

<2927 Y, ess inf(expE (log\f\’%ngk) )q
keZjez Aki

X /Bk,j (expE <log(v7%)|ﬁfk> )qud,u.
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It is clear that ¥ is a measure on X = Z? with
9 (k, j) :/B (expE <log(v7%)\ﬁfk> )qudu.
k.j
For the above f € LP(vdu), define
Tf(k,j)= esAskf/_nf (eXpE (log \fv%\lﬁrk) )q

and denote

E), = {(k,j) sess inf(eXpE (log\fv%Hka) )q > )L} and G, = U Ay j
A (k.j)eE

for each 4 > 0. Then we have

>3 = 3 /B expE (log(v 7)| 7%, ) ) udp.

i q
< / expE (log(v™ 7 xg, )|Z udu.
(k7j)2€E/1 By j ( ( G)L Tk) )

< /G <G(v7éxcl)>qudu.
A
Let r:inf{n: (eXpE (log\fv%an) )q > /1}, we have

G, C { (G(fv%))q>x} — {1 <o)

It follows from (2.1) that

{Tf > Mo < [ (607 725,)) ud

A
1 q
_ 1
\/{Kw} <G(V "X{r<oo})> udp

< CY|{z < oo}|?

- cl{ o) )

q
P

Therefore

/Q(Gf)qudu gzqu”/dezszzqu’)/m\{wal}\ﬁd/l
0
2/+l

_ 42} Z/ {Tf > A}|pdh

lezZ

<2725 3 2T f > 2}
lez

(2.3)
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<2925 Y 2 [{(G(fvP))T > 2}

4q
14 LA

ct( [ (Gt an)”

lezZ
=23l Y, (27 (G(rv)" > 281})”
lez
<2028c]( 3201 (G())" > 201})”
lez
_ a 25 ’ P 2(1-1)
=227 [ — c! 24" — 24 X
(375) @z )
<|{(G(rvr)” =251 ])
<242p< ,;25 )Fcf(z 23,4]1 {(G (fvv))p>)t}|d/l>’z’
24 —1 iz /29"y
AR o
a9 p q P
<292 (25_1) ci( [ K(Guvn)” > ayian)

where we have used p < g. Note that p > 1, in virtue of Jensen’s inequality and Doob’s
inequality, we have

ot () alfum'w e

P
<zqzﬁ<p’>q< > ) / A1 vau) ’.
2q—

L AN
Whence (2.2) is valid with Cy = 227 p/ (;q,q 1) cr

1
For the converse, fix T € 7 and substitute f =V 7 x{;..) into inequality (2.2),
we have

(/{K“‘} (G(v_%x{m’})) ”d“ﬁ (/g (G(V_%X{Kw}))qudu)% <Cl{r<e}|?,
thus (2.1) is valid with C, =

COROLLARY 2.2. Let (u, V) bea couple Ofweights and 1 < p < oo Suppose that
1
-4

v 7T € LY(Q), then the following statements are equivalent:
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(1) There exists a positive constant Cyy such that

/{ ) GO eyt < Cul{z <=} Yo € 7 2.5)
T<oo

(2) There exists a positive constant Cyy such that
L (Gpruau<cn [ 1fvdu, vr =) eoan). @)

The Corollary 2.2 is a special case of the Theorem 2.1. Using it, we have the
following corollary.

COROLLARY 2.3. Let (u,v) be a couple of weights. Suppose that v=' € L*(Q),
then the following statements are equivalent:

(1) There exists a positive constant Cy, such that

/{ ) }G(v‘l izeoyudit < Ciol {7 < 00}, V7 € T; @.7)
T<oo

(2) There exists a positive constant Cyy such that
| (@rudn < [ Iflvan. ¥ = (1) € L' (van). 2.8)

1

Proof. Fix p=2, then v 71 € L}(Q).
(1) = (2). Suppose that f = (f,) € L' (vdu). Let g:f%, then g = (gn) € L*(Q)
and Gf = (Gg)?. It follows from Corollary 2.2 that

[ (GPudu < [ lgPrdu.
Q Q
that is
[(Grudu <ca [ Irvan.
Q Q

(2) = (1). Suppose that f = (f,,) € L*>(vdu). Let g = f2, then g = (g,) € L1(Q)
and Gg = (Gf)?. Thus

/(Gg)udu <C22/ |glvdu,
Q Q

that is

[(Grruan <cx [ \Pvan.
Q Q
Combing with Corollary 2.2, we have (2.7). O

THEOREM 2.4. Let (u,v) be a couple of weights and 1 < p < g < e. Suppose

1 . .
that v~ 71 € L(Q), then the following statements are equivalent:
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(1) There exists a positive constant C3 such that

1 1
(| exoEQog(f10Fuan) <cs( [ 1f1rvau)”, vee 7.
{T<eo} Q

f=(fn) €LP(vdp); (2.9)

(2) There exists a positive constant C4 such that
1 1
MG > 231 <G [ 1fvan)" V2 >0, = () € LP(van); - (210)
Q
(3) There exists a positive constant Cs such that
_q i 1
(/ expE <log(v p)L%) u,,d,u) <Gs|B|P,VBe Fp,neN.  (2.11)
B

Proof. We shall follow the scheme: (2) < (1) < (3).
(1) = (2). Let f = (fu)nz0 € LP(v). For A > 0, define

T=inf{n: expE(log|f||-%.) > A}.
It follows from (2.9) that
1
AGr =AY = ([ Atudy
{Gf>A}
1
< ([ expE(tog(|f9)]Foudp)
{r<eo}
q
<! P "
<ci( [ 1rrvan)
Thus (2.10) is valid with C; = C;.
(2)=(1). Fix n€ N and B € .%,. For f = (fy) € LP(vdu), let g = fxp, then
E (log|g||-%n) = E (log(| f|xB)|-%n) - Moreover

Gg > expE (log(|f|x8)|-Fn)-

Combing with (2.10), we have

udu < )Lq/ udu
(Gg>A}

<< /Q \gl”vdu)% —ci( /B |f|”vdu)%.

By = {2F < expE (log|f]|-7) < 2871},

w |
Bn{expE(log|f||-Fn)>A}

For k € Z, let
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Note that

{2 < expE (log 1| 7,) < 24} C {expE (log|f]|7,) > 24},

then

[, (exoE ozl 117)) wan = 3, [ (expE (tog 111 7,)) uan

kez

<vy | 24y
tez ) BiN{expE (log | f||#n)>2K}

<21c) ) (/ f”vdu)

keZ

< 24cd Pyd
(kezz [, u)
< 214 ( A |f|”vdu) ,

where we have used 1 < Z. As for 7 € 7, it is easy to see that

Sl

/{Kw} expE (log(|f|7)|F¢) udu = 2/ expE (10g(|fx{r n}“l)L/n) udu

kez

4q

<21c Y, (/ | X ey | vdu)
keZ

q

<2ch<2/ \f%{r n}\ vdu) '
keZ
<cq( [ v

Therefore,

1 1

(/... expE Goa(ly19)] 7 udus)’

& [ o)’
with C3 = 2Cy.

(1)= (3). Fix n € N and B € .%,. Substituting f = vféxg and T=n€ J into
inequality (2.9), we have

(/BeXpE (log(v_%)|yn> udu)é <C5\B|Tl’,

where Cs5 = C;.
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(3) = (1). If 7 =nforsomen € N, we shall show that (2.9) is valid. Fix f €
LP(v). Foreach k€ Zand j € Z, let

By = {2" <expE (log|f||Fn) < 2"} n {27 < expE (log(v1)|Z,) <27t}
Then By j € .%,. Moreover, {By ;}1 ; is a family of disjoint sets and

{2F < expE (log|f||.%,) < 2K} = U By .
jez

Trivially,
1
expE (log|f||-#n) = expE (log \fv%Hﬁn) expE <log(v_F)|9’n> .
It follows that

2kt ess inf|f, |9
B

1 q 3
< ess inf(expE (log | fve an) ) ess sup (eXpE (log(v"1)[.#) ) !
k,j Bk‘j

q

q 1 q ;
<20 ess inf(expE <log|fvp an) ) \Bk7j|;1/ (eXpE (10g(v71)|ﬁn)> "udu.
k.j B

k.j

For the above 7, we estimate [i,_..j expE (log(|f|?)[-#¢) udu. Note that
| expE (1og(|f1)].F2) udu
{r<ee}

=/CXPE(log(Iflq)I%)udu@q Y / 2 udp
Q kez,jez’Bri

q
<2925 Y ess inf(expE (log\fv%H(%,) )q/ <expE (log(v_1)|9’n)>"udu.
kezjez Bri By

Following (2.11), we have

/ expE (log(|f|*)|F¢) udu
{r<}

q 1 q q
<2‘12ZC§1 Y, ess inf(expE (log\waﬁn)) \Bk’j|z.
kezZjez Bri

It is obvious that 9 (k, j) = |Bk7j|% is a measure on X = Z2. For the above f € L (vdu),
denote

Tf(kj) = esginf (expE (log el 7))

_ N . 1o\ \¢
E, ={(k,j): esg;fnf(expE (log\fvp HJn)) > A}
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and
G,= |J By, foreach >0.
(k.Jj)EE,,
Thus
g 4 g 1\4 4
HTf>A}s = 2 |Bk,j\1’ < ( 2 |Bk,j|)” =|Gy|7 < H(G(fvp)> >)L} ’
(k,j)EE)L (k.,j)EE)L

In the same way of (2.3) and (2.4), we get

L

(/... expE GoalrlFuan)” <cs( [, 1717 )’

with C3 =227 p'23 (24 — 1) 7Cs.
If T € 7 is arbitrary, as we have done in the process of (2) = (1), (2.9) is still
valid. [

COROLLARY 2.5. Let (u, V) be a couple of weights and 1 < p < oo. Suppose that
1
“p1

v € LY(Q), then the following statements are equivalent:

(1) There exists a positive constant C31 such that
/{ expE (log(|19)| 7 ud < cgl/Q f1Pvdp, VT € T, f=(f,) € LP(vdp);
T<00
(2.12)

(2) There exists a positive constant C4y such that
(G > A} < Cur [ IfPvdu, ¥2> 0, f = (f) €L7(vap): @.13)

(3) There exists a positive constant Csy such that
expE (log(v™")|-%) un < Cs1, Vn € N. (2.14)

COROLLARY 2.6. Let (u,v) be a couple of weights. Suppose that v=' € L*(Q),
then the following statements are equivalent:

(1) There exists a positive constant C3y such that

/{T@} expE (log|/[|.F) udp < C32(/Q [flvdu), YT € T, = (fa) € L' (vdp);
2.15)

(2) There exists a positive constant Cyy such that
ANGS > 2} < Cox [ I7lvdp, ¥2 >0, f = (f) €L'(vwdpr): 216)

(3) There exists a positive constant Csy such that

expE (log(v™")|-%) un < Cs2, Yn € N. (2.17)

Proofs of Corollary 2.5 and Corollary 2.6 are evident and we omit them.
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