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WEIGHTED MIXED NORM INEQUALITIES IN MARTINGALE SPACES

WEI CHEN AND PEIDE LIU

(Communicated by B. Opic)

Abstract. For the maximal geometric mean operator G in martingale spaces, we characterize
the weight paries (u,v) for which G is bounded from martingale space Lp(vdμ) to wLq(udμ)
or Lq(udμ),1 � p � q < ∞.

1. Introduction

Let Rn be the n-dimensional real Euclidean space and f a real valued measurable
function, the classical Hardy-Littlewood maximal operator M, the maximal geometric
mean operator G and the minimal operator � are defined by

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy,

G( f )(x) = sup
x∈Q

exp
1
|Q|

∫
Q

log | f (y)|dy

and

� f (x) = inf
x∈Q

1
|Q|

∫
Q
| f (y)|dy.

where Q is a non-degenerate cube with its sides paralleled to the coordinate axes and
|Q| is the Lebesgue measure of Q.

Let u, v be two weights, i.e. positive measurable functions. As well known, if
u = v and p > 1, [1] showed that the inequality∫

Rn
(M f (x))p v(x)dx � C

∫
Rn
| f (x)|pv(x)dx, ∀ f ∈ Lp(v)

holds if and only if ω ∈ Ap, i.e., for any cube Q in Rn with sides parallel to the
coordinates (

1
|Q|

∫
Q

v(x)dx

)(
1
|Q|

∫
Q

v(x)−
1

p−1 dx

)p−1

< C. (1.1)
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Let p → ∞ in (1.1), it follows that(
1
|Q|

∫
Q

v(x)dx

)
exp

(
1
|Q|

∫
Q

log

(
1

v(x)

)
dx

)
< C, (1.2)

which is an alternative definition of A∞ weight (see [3]). It is known that [4] and [2]
used (1.2) to characterize the boundedness of G from L1(v) to L1(v). In the case of
two weights, [5] gave that(

1
|Q|

∫
Q

u(x)dx

)
exp

(
1
|Q|

∫
Q

log

(
1

v(x)

)
dx

)
<C, ∀ Q⇔ sup

‖ f‖Lp(v)=1
‖Gf ‖ωLp(u)<∞

(1.3)
and ∫

Q
G(v−1χQ)(x)u(x)dx � C|Q|, ∀ Q ⇔ sup

‖ f‖Lp(v)=1
‖ Gf ‖Lp(u)< ∞, (1.4)

which generalize the results of [6]. Recently, [7, 8, 9, 10] also studied the minimal op-
erator � and maximal geometric mean operator G. Comparing with these results, [11]
and [12] examined the weighted inequalities of the minimal operator and the maximal
geometric mean operator in martingale spaces.

In this paper, we prove the weighted mixed norm inequalities of the maximal ge-
ometric mean operator in martingale spaces which is a generalization of [12]. Our
approach is similar to that of [13] and [14] but different from that of [12]. The rest of
this section consists of the preliminaries for the second section.

Let (Ω,F ,μ) be a complete probability space and (Fn)n�0 an increasing se-
quence of sub-σ -fields of F with F =

∨
n�0

Fn. A weight ω is a random variable with

ω > 0 and E(ω) < ∞. In this paper, for p � 1, a martingale f = ( fn)n�0 ∈ Lp(ωdμ)
is meant as fn = E( f |Fn), f ∈ Lp(ωdμ). The maximal operator M and the maximal
geometric mean operator G for martingale f = ( fn) are defined by

M f = sup
n�0

| fn| and Gf = sup
n�0

expE(log | f ||Fn),

respectively. For B ∈ F , we always denote
∫
Ω χBdμ and

∫
Ω χBωdμ by |B| and |B|ω ,

respectively. For (Ω,F ,μ) and (Fn)n�0, the family of all stopping times is denoted
by T .

2. Results and Their Proofs

THEOREM 2.1. Let (u,v) be a couple of weights and 1 < p � q < ∞. Suppose

that v−
1

p−1 ∈ L1(Ω) , then the following statements are equivalent:

(1) There exists a positive constant C1 such that

(∫
{τ<∞}

(
G(v−

1
p χ{τ<∞})

)q
udμ

) 1
q � C1|{τ < ∞}| 1

p ,∀τ ∈ T ; (2.1)
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(2) There exists a positive constant C2 such that

(∫
Ω
(Gf )qudμ

) 1
q � C2

(∫
Ω
| f |pvdμ

) 1
p
, ∀ f = ( fn) ∈ Lp(vdμ). (2.2)

Proof. To prove the boundedness of G from (2.1), let f ∈ Lp(vdμ) . For all k∈ Z ,
define stopping times

τk = inf{n : expE(log | f ||Fn) > 2k}.
Set

Ak, j = {τk < ∞}∩{2 j < expE
(
log(v−1)|Fτk

)
� 2 j+1};

Bk, j = {τk <∞,τk+1 = ∞}∩{2 j < expE
(
log(v−1)|Fτk

)
� 2 j+1}, j ∈ Z.

Then Ak, j ∈ Fτk ,Bk, j ⊆ Ak, j . Moreover, {Bk, j}k, j is a family of disjoint sets and

{2k < Gf � 2k+1} = {τk < ∞,τk+1 = ∞} =
⋃
j∈Z

Bk, j,k ∈ Z.

Trivially,

expE
(
log | f ||Fτk

)
= expE

(
log | f v 1

p ||Fτk

)
expE

(
log(v−

1
p )|Fτk

)
.

It follows that

2kq � ess inf
Ak, j

(
expE

(
log | f ||Fτk

))q

� ess inf
Ak, j

(
expE

(
log | f v 1

p ||Fτk

))q
ess sup

Ak, j

(
expE

(
log(v−

1
p )|Fτk

))q

� 2
q
p ess inf

Ak, j

(
expE

(
log | f v 1

p ||Fτk

))q|Bk, j|−1
u ×

×
∫

Bk, j

(
expE

(
log(v−

1
p )|Fτk

))q
udμ .

To estimate
∫
Ω(Gf )qudμ , firstly we have∫
Ω
(Gf )qudμ = ∑

k∈Z

∫
{2k<Gf�2k+1}

(Gf )qudμ

� 2q ∑
k∈Z

∫
{2k<Gf�2k+1}

2kqudμ

= 2q ∑
k∈Z, j∈Z

∫
Bk, j

2kqudμ

� 2q2
q
p ∑

k∈Z, j∈Z

ess inf
Ak, j

(
expE

(
log | f v 1

p ||Fτk

))q

×
∫

Bk, j

(
expE

(
log(v−

1
p )|Fτk

))q
udμ .



64 W. CHEN AND P. LIU

It is clear that ϑ is a measure on X = Z2 with

ϑ(k, j) =
∫

Bk, j

(
expE

(
log(v−

1
p )|Fτk

))q
udμ .

For the above f ∈ Lp(vdμ), define

T f (k, j) = ess inf
Ak, j

(
expE

(
log | f v 1

p ||Fτk

))q

and denote

Eλ =
{
(k, j) : ess inf

Ak, j

(
expE

(
log | f v 1

p ||Fτk

))q
> λ

}
and Gλ =

⋃
(k, j)∈Eλ

Ak, j

for each λ > 0. Then we have

|{T f > λ}|ϑ = ∑
(k, j)∈Eλ

∫
Bk, j

(
expE

(
log(v−

1
p )|Fτk

))q
udμ .

� ∑
(k, j)∈Eλ

∫
Bk, j

(
expE

(
log(v−

1
p χGλ )|Fτk

))q
udμ .

�
∫

Gλ

(
G(v−

1
p χGλ )

)q
udμ .

Let τ = inf
{

n :
(

expE
(
log | f v 1

p ||Fn

))q
> λ

}
, we have

Gλ ⊆
{(

G( f v
1
p )
)q

> λ
}

= {τ < ∞}.

It follows from (2.1) that

|{T f > λ}|ϑ �
∫

Gλ

(
G(v−

1
p χGλ )

)q
udμ

�
∫
{τ<∞}

(
G(v−

1
p χ{τ<∞})

)q
udμ

� Cq
1 |{τ < ∞}| q

p

= Cq
1

∣∣∣{(G( f v
1
p )
)q

> λ
}∣∣∣ q

p
.

Therefore∫
Ω
(Gf )qudμ � 2q2

q
p

∫
X

T f dϑ = 2q2
q
p

∫ ∞

0
|{T f > λ}|ϑdλ (2.3)

= 2q2
q
p ∑

l∈Z

∫ 2l+1

2l
|{T f > λ}|ϑdλ

� 2q2
q
p ∑

l∈Z

2l|{T f > 2l}|ϑ
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� 2q2
q
pCq

1 ∑
l∈Z

2l|{(G( f v
1
p )
)q

> 2l}| q
p

= 2q2
q
pCq

1 ∑
l∈Z

(
2

p
q ·l |{(G( f v

1
p )
)p

> 2
p
q ·l}|

) q
p

� 2q2
q
pCq

1

(
∑
l∈Z

2
p
q ·l |{(G( f v

1
p )
)p

> 2
p
q ·l}|

) q
p

= 2q2
q
p

(
2

p
q

2
p
q −1

) q
p

Cq
1

(
∑
l∈Z

(
2

p
q ·l −2

p
q (l−1)

)
×

×
∣∣∣{(G( f v

1
p )
)p

> 2
p
q ·l
}∣∣∣) q

p

� 2q2
q
p

(
2

p
q

2
p
q −1

) q
p

Cq
1

(
∑
l∈Z

∫ 2
p
q ·l

2
p
q (l−1)

|{(G( f v
1
p )
)p

> λ}|dλ
) q

p

� 2q2
q
p

(
2

p
q

2
p
q −1

) q
p

Cq
1

(∫ ∞

0
|{(G( f v

1
p )
)p

> λ}|dλ
) q

p

= 2q2
q
p

(
2

p
q

2
p
q −1

) q
p

Cq
1

(∫
Ω

(
G( f v

1
p )
)p

dμ
) q

p
,

where we have used p � q. Note that p > 1, in virtue of Jensen’s inequality and Doob’s
inequality, we have

∫
Ω
(Gf )qdμ � 2q2

q
p

(
2

p
q

2
p
q −1

) q
p

Cq
1

(∫
Ω

(
M( f v

1
p )
)p

dμ
) q

p
(2.4)

� 2q2
q
p (p′)q

(
2

p
q

2
p
q −1

) q
p

Cq
1

(∫
Ω
| f |pvdμ

) q
p
.

Whence (2.2) is valid with C2 = 2 ·2 1
p p′
(

2
p
q

2
p
q −1

) 1
p

C1.

For the converse, fix τ ∈ T and substitute f = v−
1
p χ{τ<∞} into inequality (2.2),

we have

(∫
{τ<∞}

(
G(v−

1
p χ{τ<∞})

)q
udμ

) 1
q �

(∫
Ω

(
G(v−

1
p χ{τ<∞})

)q
udμ

) 1
q �C2|{τ <∞}| 1

p ,

thus (2.1) is valid with C1 = C2.

COROLLARY 2.2. Let (u,v) be a couple of weights and 1 < p <∞. Suppose that

v−
1

p−1 ∈ L1(Ω) , then the following statements are equivalent:



66 W. CHEN AND P. LIU

(1) There exists a positive constant C11 such that∫
{τ<∞}

G(v−1χ{τ<∞})udμ � C11|{τ < ∞}|,∀τ ∈ T ; (2.5)

(2) There exists a positive constant C21 such that∫
Ω
(Gf )pudμ � C21

∫
Ω
| f |pvdμ , ∀ f = ( fn) ∈ Lp(vdμ). (2.6)

The Corollary 2.2 is a special case of the Theorem 2.1. Using it, we have the
following corollary.

COROLLARY 2.3. Let (u,v) be a couple of weights. Suppose that v−1 ∈ L∞(Ω) ,
then the following statements are equivalent:

(1) There exists a positive constant C12 such that∫
{τ<∞}

G(v−1χ{τ<∞})udμ � C12|{τ < ∞}|,∀τ ∈ T ; (2.7)

(2) There exists a positive constant C22 such that∫
Ω
(Gf )udμ � C22

∫
Ω
| f |vdμ , ∀ f = ( fn) ∈ L1(vdμ). (2.8)

Proof. Fix p = 2, then v−
1

p−1 ∈ L1(Ω).
(1)⇒ (2). Suppose that f = ( fn)∈ L1(vdμ). Let g = f

1
2 , then g = (gn) ∈ L2(Ω)

and Gf = (Gg)2. It follows from Corollary 2.2 that∫
Ω
(Gg)2udμ � C21

∫
Ω
|g|2vdμ ,

that is ∫
Ω
(Gf )udμ � C21

∫
Ω
| f |vdμ .

(2)⇒ (1). Suppose that f = ( fn) ∈ L2(vdμ). Let g = f 2, then g = (gn) ∈ L1(Ω)
and Gg = (Gf )2. Thus ∫

Ω
(Gg)udμ � C22

∫
Ω
|g|vdμ ,

that is ∫
Ω
(Gf )2udμ � C22

∫
Ω
| f |2vdμ .

Combing with Corollary 2.2, we have (2.7). �

THEOREM 2.4. Let (u,v) be a couple of weights and 1 < p � q < ∞. Suppose

that v−
1

p−1 ∈ L1(Ω) , then the following statements are equivalent:



WEIGHTED MIXED NORM INEQUALITIES IN MARTINGALE SPACES 67

(1) There exists a positive constant C3 such that

(∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ
) 1

q � C3

(∫
Ω
| f |pvdμ

) 1
p
, ∀τ ∈ T ,

f = ( fn) ∈ Lp(vdμ); (2.9)

(2) There exists a positive constant C4 such that

λ |{Gf > λ}|
1
q
u � C4

(∫
Ω
| f |pvdμ

) 1
p
, ∀λ > 0, f = ( fn) ∈ Lp(vdμ); (2.10)

(3) There exists a positive constant C5 such that

(∫
B
expE

(
log(v−

q
p )|Fn

)
undμ

) 1
q � C5|B|

1
p , ∀B ∈ Fn, n ∈ N. (2.11)

Proof. We shall follow the scheme: (2) ⇔ (1) ⇔ (3).
(1) ⇒ (2). Let f = ( fn)n�0 ∈ Lp(v). For λ > 0, define

τ = inf{n : expE(log | f ||Fn) > λ}.

It follows from (2.9) that

λ |{Gf > λ}|
1
q
u = (

∫
{Gf>λ}

λ qudμ)
1
q

� (
∫
{τ<∞}

expE(log(| f |q)|Fτ)udμ)
1
q

� Cq
3

(∫
Ω
| f |pvdμ

) q
p
.

Thus (2.10) is valid with C4 =C3.
(2) ⇒ (1). Fix n ∈ N and B ∈ Fn. For f = ( fn) ∈ Lp(vdμ), let g = f χB, then

E (log |g||Fn) = E (log(| f |χB)|Fn) . Moreover

Gg � expE (log(| f |χB)|Fn).

Combing with (2.10), we have

λ q
∫

B∩{expE(log | f ||Fn)>λ}
udμ � λ q

∫
{Gg>λ}

udμ

� Cq
4

(∫
Ω
|g|pvdμ

) q
p

= Cq
4

(∫
B
| f |pvdμ

) q
p
.

For k ∈ Z , let
Bk = {2k < expE (log | f ||Fn) � 2k+1}.
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Note that

{2k < expE (log | f ||Fn) � 2k+1} ⊆ {expE (log | f ||Fn) > 2k},

then ∫
Ω

(
expE (log | f ||Fn)

)q
udμ = ∑

k∈Z

∫
Bk

(
expE (log | f ||Fn)

)q
udμ

� 2q ∑
k∈Z

∫
Bk∩{expE(log | f ||Fn)>2k}

2kqudμ

� 2qCq
4 ∑

k∈Z

(∫
Bk

| f |pvdμ
) q

p

� 2qCq
4

(
∑
k∈Z

∫
Bk

| f |pvdμ
) q

p

� 2qCq
4

(∫
Ω
| f |pvdμ

) q
p

,

where we have used 1 � q
p . As for τ ∈ T , it is easy to see that

∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ = ∑
k∈Z

∫
{τ=n}

expE
(
log(| f χ{τ=n}|q)|Fn

)
udμ

� 2qCq
4 ∑

k∈Z

(∫
Ω
| f χ{τ=n}|pvdμ

) q
p

� 2qCq
4

(
∑
k∈Z

∫
Ω
| f χ{τ=n}|pvdμ

) q
p

� 2qCq
4

(∫
Ω
| f |pvdμ

) q
p
.

Therefore,

(∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ
) 1

q � C3

(∫
Ω
| f |pvdμ

) 1
p

with C3 = 2C4.

(1) ⇒ (3). Fix n ∈ N and B ∈ Fn. Substituting f = v−
1
p χB and τ ≡ n ∈ T into

inequality (2.9), we have

(∫
B
expE

(
log(v−

q
p )|Fn

)
udμ

) 1
q � C5|B|

1
p ,

where C5 = C3.
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(3) ⇒ (1). If τ ≡ n for some n ∈ N, we shall show that (2.9) is valid. Fix f ∈
Lp(v). For each k ∈ Z and j ∈ Z, let

Bk, j = {2k < expE (log | f ||Fn) � 2k+1}∩{2 j < expE
(
log(v−1)|Fn

)
� 2 j+1}.

Then Bk, j ∈ Fn . Moreover, {Bk, j}k, j is a family of disjoint sets and

{2k < expE (log | f ||Fn) � 2k+1} =
⋃
j∈Z

Bk, j.

Trivially,

expE (log | f ||Fn) = expE
(
log | f v 1

p ||Fn

)
expE

(
log(v−

1
p )|Fn

)
.

It follows that

2kq � ess inf
Bk, j

| fn|q

� ess inf
Bk, j

(
expE

(
log | f v 1

p ||Fn

))q
ess sup

Bk, j

(
expE

(
log(v−1)|Fn

)) q
p

� 2
q
p ess inf

Bk, j

(
expE

(
log | f v 1

p ||Fn

))q|Bk, j|−1
u

∫
Bk, j

(
expE

(
log(v−1)|Fn

)) q
p
udμ .

For the above τ, we estimate
∫
{τ<∞} expE (log(| f |q)|Fτ )udμ . Note that

∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ

=
∫
Ω

expE (log(| f |q)|Fn)udμ � 2q ∑
k∈Z, j∈Z

∫
Bk, j

2kqudμ

� 2q2
q
p ∑

k∈Z, j∈Z

ess inf
Bk, j

(
expE

(
log | f v 1

p ||Fn

))q ∫
Bk, j

(
expE

(
log(v−1)|Fn

)) q
p
udμ .

Following (2.11), we have

∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ

� 2q2
q
pCq

5 ∑
k∈Z, j∈Z

ess inf
Bk, j

(
expE

(
log | f v 1

p ||Fn

))q|Bk, j|
q
p .

It is obvious that ϑ(k, j) = |Bk, j|
q
p is a measure on X = Z2. For the above f ∈ Lp(vdμ) ,

denote

T f (k, j) = ess inf
Bk, j

(
expE

(
log | f v 1

p ||Fn

))q
,

Eλ = {(k, j) : ess inf
Bk, j

(
expE

(
log | f v 1

p ||Fn

))q
> λ}
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and

Gλ =
⋃

(k, j)∈Eλ

Bk, j for each λ > 0.

Thus

|{T f > λ}|ϑ = ∑
(k, j)∈Eλ

|Bk, j|
q
p � ( ∑

(k, j)∈Eλ

|Bk, j|)
q
p = |Gλ |

q
p �

∣∣∣{(G( f v
1
p )
)q

> λ
}∣∣∣ q

p
.

In the same way of (2.3) and (2.4), we get(∫
{τ<∞}

expE (log(| f |q)|Fτ )udμ
) 1

q � C3

(∫
Ω
| f |pvdμ

) 1
p

with C3 = 2 ·2 1
p p′2

1
q (2

p
q −1)−

1
pC5.

If τ ∈ T is arbitrary, as we have done in the process of (2) ⇒ (1), (2.9) is still
valid. �

COROLLARY 2.5. Let (u,v) be a couple of weights and 1 < p <∞. Suppose that

v−
1

p−1 ∈ L1(Ω) , then the following statements are equivalent:

(1) There exists a positive constant C31 such that∫
{τ<∞}

expE (log(| f |p)|Fτ )udμ � C31

∫
Ω
| f |pvdμ , ∀τ ∈ T , f = ( fn) ∈ Lp(vdμ);

(2.12)

(2) There exists a positive constant C41 such that

λ |{(Gf )p > λ}|u � C41

∫
Ω
| f |pvdμ , ∀λ > 0, f = ( fn) ∈ Lp(vdμ); (2.13)

(3) There exists a positive constant C51 such that

expE
(
log(v−1)|Fn

)
un � C51, ∀n ∈ N. (2.14)

COROLLARY 2.6. Let (u,v) be a couple of weights. Suppose that v−1 ∈ L∞(Ω) ,
then the following statements are equivalent:

(1) There exists a positive constant C32 such that∫
{τ<∞}

expE (log | f ||Fτ )udμ �C32
(∫

Ω
| f |vdμ), ∀τ ∈ T , f = ( fn) ∈ L1(vdμ);

(2.15)

(2) There exists a positive constant C42 such that

λ |{Gf > λ}|u � C42

∫
Ω
| f |vdμ , ∀λ > 0, f = ( fn) ∈ L1(vdμ); (2.16)

(3) There exists a positive constant C52 such that

expE
(
log(v−1)|Fn

)
un � C52, ∀n ∈ N. (2.17)

Proofs of Corollary 2.5 and Corollary 2.6 are evident and we omit them.
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