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Abstract. In this paper, an alternative proof is supplied for monotonicity and convexity of the

function zs,t(x) =
[
Γ(x+ t)/Γ(x+ s)

]1/(t−s) − x with zs,s(x) = eψ(x+s) − x , where Γ is the clas-
sical Euler’s gamma function, s and t are real numbers with t − s �= ±1 , α = min{s,t} and
x ∈ (−α ,∞) .

1. Introduction

Let s and t be real numbers with t− s �= ±1 and define

zs,t(x) =

⎧⎪⎨
⎪⎩

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

− x, s �= t

eψ(x+s)− x, s = t
(1)

for x ∈ (−α,∞) with α = min{s,t} , where

Γ(x) =
∫ ∞

0
e−ttx−1dt (2)

for x > 0 stands for the classical Euler’s gamma function, and ψ(x) denotes the psi or
digamma function, the logarithmic derivative of Γ(x) .

The implicit or explicit origins and backgrounds of the function zs,t(x) defined
by (1) may be traced back to [3, 6, 18, 20], especially [7, Theorem 2]. The monotonicity
and convexity of the function zs,t(x) and its special cases have been proved several
times by different approaches in, for example, [1, 7, 13, 15, 17, 18]. We observe that a
complete solution to monotonicity and convexity of the function zs,t (x) was first given
in [2, Theorem 1]. For detailed information on the history, please refer to the survey
and expository papers [9, 10] and plenty of references therein.

We recite the monotonicity and convexity of the function zs,t(x) as follows.
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THEOREM 1. The function zs,t(x) is

1. convex and decreasing for |t− s| < 1 ,

2. concave and increasing for |t − s|> 1 .

The purpose of this paper is to present an alternative proof of Theorem 1.

2. Lemmas

In order to prove Theorem 1 alternatively, the following lemmas are necessary.

LEMMA 1. ([8, p. 16]) The polygamma functions ψ(n)(x) can be expressed for
x > 0 and n ∈ N as

ψ(n)(x) = (−1)n+1
∫ ∞

0

tn

1− e−t e
−xtdt. (3)

LEMMA 2. ([19]) Let fi(t) for i = 1,2 be piecewise continuous in arbitrary finite
intervals included on (0,∞) , suppose there exist some constants Mi > 0 and ci � 0
such that | fi(t)| � Miecit for i = 1,2 . Then

∫ ∞

0

[∫ t

0
f1(u) f2(t−u)du

]
e−stdt =

∫ ∞

0
f1(u)e−sudu

∫ ∞

0
f2(v)e−svdv. (4)

LEMMA 3. For x ∈ (0,∞) ,

lnx− 1
x

< ψ(x) < lnx− 1
2x

(5)

and
1
x

+
1

2x2 < ψ ′(x) <
1
x

+
1
x2 . (6)

Proof. This may be derived easily from the fact [16, p. 82] that a completely
monotonic function which is non-identically zero cannot vanish at any point on (0,∞)
and the complete monotonicity obtained in [11, Theorem 2]: The function ψ(x)−
lnx+ α

x is completely monotonic on (0,∞) if and only if α � 1 and so is the function
lnx− α

x −ψ(x) if and only if α � 1
2 .

LEMMA 4. For u ∈ R and β > α � 0 with (α,β ) �= (0,1) , let

qα ,β (u) =

⎧⎨
⎩

e−αu− e−βu

1− e−u , u �= 0;

β −α, u = 0.
(7)

1. The function qα ,β (u) is logarithmically convex for β −α > 1 and logarithmi-
cally concave for 0 < β −α < 1 on (−∞,∞) .
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2. For β −α > 1 , the function

Qs,t;λ (u) = qα ,β (u)qα ,β (λ −u) (8)

is increasing on
(λ

2 ,∞
)

and decreasing on
(−∞, λ2

)
, where λ is any real con-

stant; For 0 < β−α < 1 , it is decreasing on
(λ

2 ,∞
)

and increasing on
(−∞, λ2

)
.

Proof. It is clear that the function qα ,β (u) can be rewritten as

qα ,β (u) =
sinh((β −α)u/2)

sinh(u/2)
exp

(1−α−β )u
2

� pα ,β

(
u
2

)
.

Since the functions qα ,β (u) and pα ,β (u) are positive for β > α , taking the logarithm
of pα ,β (u) and differentiating yield

ln pα ,β (u) = lnsinh((β −α)u)− lnsinhu+(1−α−β )u,

[ln pα ,β (u)]′ = (β −α)coth((β −α)u)− cothu−α−β +1,

[ln pα ,β (u)]′′ =
1
u2

{(
u

sinhu

)2

−
[

(β −α)u
sinh((β −α)u)

]2}

� [h(u)]2− [h((β −α)u)]2

u2 .

It is clear that the functions h(u) and [ln pα ,β (u)]′′ are even and the former is positive
on (−∞,∞) , increasing on (−∞,0) , and decreasing on (0,∞) . As a result,

1. for β −α > 1, if u > 0, then (β −α)u > u > 0 and h((β −α)u) < h(u) , and
so [ln pα ,β (u)]′′ > 0 on (0,∞) ;

2. for β −α > 1, if u < 0, then (β −α)u < u < 0 and h((β −α)u) < h(u) , and
so [ln pα ,β (u)]′′ > 0 on (−∞,0) ;

3. for 0 < β −α < 1, if u > 0, then 0 < (β −α)u < u and h((β −α)u) > h(u) ,
and so [ln pα ,β (u)]′′ < 0 on (0,∞) ;

4. for 0 < β −α < 1, if u < 0, then 0 > (β −α)u > u and h((β −α)u) > h(u) ,
and so [ln pα ,β (u)]′′ < 0 on (−∞,0) .

From the obvious relationship pα ,β (u) = qα ,β (2u) on (−∞,∞) , the logarithmically
convex properties in Lemma 4 follows readily.

Taking the logarithm of Qs,t;λ (u) and differentiating give

[lnQs,t;λ (u)]′ =
q′α ,β (u)

qα ,β (u)
−

q′α ,β (λ −u)

qα ,β (λ −u)
.

For β −α > 1, by the logarithmic convexities of qα ,β (u) , it follows that the function
q′α,β (u)
qα,β (u) is increasing and

q′α,β (λ−u)
qα,β (λ−u) is decreasing on (−∞,∞) ; From the obvious fact that
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[lnQs,t;λ (u)]′|u=λ/2 = 0, it follows that [lnQs,t;λ (u)]′ > 0 for u > λ
2 and [lnQs,t;λ (u)]′ <

0 for u < λ
2 ; Hence, the function Qs,t;λ (u) is increasing for u > λ

2 and decreasing for

u < λ
2 . Similarly, for 0 < β −α < 1, the function Qs,t;λ (u) is decreasing for u > λ

2

and increasing for u < λ
2 . The proof of Lemma 4 is proved.

3. An alternative proof of Theorem 1

Since zs,t(x) = zt,s(x) , without loss of generality, we can assume t > s � 0 and
t− s �= 1 in what follows.

Differentiation of zs,t(x) , utilization of (3) and application of Lemma 2 yield

z′s,t(x) =
[zs,t(x)+ x][ψ(x+ t)−ψ(x+ s)]

t− s
−1 (9)

and

z′′s,t(x)
zs,t(x)+ x

=
[
ψ(x+ t)−ψ(x+ s)

t− s

]2

+
ψ ′(x+ t)−ψ ′(x+ s)

t− s

=
[

1
t− s

∫ t

s
ψ ′(x+u)du

]2

+
1

t− s

∫ t

s
ψ ′′(x+u)du

=
[

1
t− s

∫ t

s

∫ ∞

0

ve−(x+u)v

1− e−v dvdu

]2

− 1
t− s

∫ t

s

∫ ∞

0

v2e−(x+u)v

1− e−v dvdu

=
(∫ ∞

0

ve−xv

1− e−v ·
1

t − s

∫ t

s
e−uvdudv

)2

−
∫ ∞

0

v2e−xv

1− e−v ·
1

t − s

∫ t

s
e−uvdudv

=
(∫ ∞

0

e−xv

1− e−v ·
e−sv − e−tv

t− s
dv

)2

−
∫ ∞

0

ve−xv

1− e−v ·
e−sv − e−tv

t− s
dv

=
∫ ∞

0

[
1

(t− s)u

∫ u

0
qs,t(r)qs,t(u− r)dr−qs,t(u)

]
ue−xudu

=
∫ ∞

0

[
1

(t− s)u

∫ u

0
Qs,t;u(r)dr−qs,t(u)

]
ue−xudu. (10)

If t− s > 1, by the monotonicity of Qs,t;λ (u) in Lemma 4, it follows easily that

Qs,t;u(r) � Qs,t;u(0) = Qs,t;u(u) = qs,t(0)qs,t(u) = (t− s)qs,t(u),

consequently, the bracketed term in the line (10) is negative on (0,∞) , and so z′′s,t(x) <
0. If 0 < t− s < 1, the similar argument leads to z′′s,t(x) > 0. The convex and concave
properties of zs,t(x) are proved.



AN ALTERNATIVE PROOF OF ELEZOVIĆ-GIORDANO-PEČARIĆ’S THEOREM 77

By the mean value theorem, it is immediate that

z′s,t (x)+1 =
[(

Γ(x+ t)
Γ(x+ s)

)1/(t−s)ψ(x+ t)−ψ(x+ s)
t − s

]

=
ψ(x+ t)−ψ(x+ s)

t − s
exp

lnΓ(x+ t)− lnΓ(x+ s)
t− s

= ψ ′(x+ ξ1)eψ(x+ξ2)

for ξi ∈ (s, t) and i = 1,2. By inequalities in (5) and (6), it is ready to obtain[
x+ ξ2

x+ ξ1
+

x+ ξ2

2(x+ ξ1)2

]
1

e1/(x+ξ2)
< z′s,t (x)+1 <

[
x+ ξ2

x+ ξ1
+

x+ ξ2

(x+ ξ1)2

]
1

e1/2(x+ξ2)

which means limx→∞ z′s,t(x) = 0. For t−s > 1, the conclusion that z′′s,t(x) � 0 obtained
above implies z′s,t(x) is decreasing, and so z′s,t(x) > 0 and zs,t(x) is increasing. For
0 < t − s < 1, the result that z′′s,t(x) � 0 obtained above implies z′s,t(x) is increasing,
and so z′s,t(x) < 0 and zs,t(x) is decreasing. The proof of Theorem 1 is complete.

4. Some remarks

REMARK 1. The logarithmically convex properties of qα ,β (u) on (−∞,0) in Le-
mma 4 of this paper corrects some mistakes appeared in [17, Lemma 1]. However, these
mistakes did not affect the correctness of the proof provided in [17] for Theorem1, since
properties of qα ,β (u) on (−∞,0) are idle there.

REMARK 2. The logarithmically convex properties in Lemma 4 of this paper were
also proved in [4] and related references therein by using different techniques.

REMARK 3. It is well-known that a positive and k -times differentiable function
f (x) is said to be k -log-convex (or k -log-concave, respectively) on an interval I with
k � 2 if and only if [ln f (x)](k) exists and [ln f (x)](k) � 0 (or [ln f (x)](k) � 0, respec-
tively) on I . The 3-log-convex properties of qα ,β (u) were already obtained in [12,
Theorem 1.1]: For 1 > β −α > 0, the function qα ,β (u) is 3-log-convex on (0,∞) and
3-log-concave on (−∞,0) ; For β −α > 1, it is 3-log-concave on (0,∞) and 3-log-
convex on (−∞,0) .

REMARK 4. Some double inequalities of polygamma functions ψ(i)(x) for i ∈ N

were proved in [5, p. 107, Lemma 3] by the similar approach to that in Lemma 3 above.

REMARK 5. This is a modified version of the preprint [14].
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