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Abstract. In this paper, we consider the value distribution of the differential polynomials f 2 f (k)−
1 where k is a positive integer, and obtain some estimates only by the reduced counting function.
Our result answers a question in (Some inequalities of differential polynomials, Mathematical
Inequalities and Applications, 12, 1(2009), 99–113) completely.

1. Introduction and results

Let C be the open complex plane and D ∈ C be a domain. Let f be a mero-
morphic function in the complex plane, we assumed that the reader is familiar with the
notations of Nevanlinna theory (see, e.g., [4, 9, 10]).

DEFINITION 1.1. Let k be a positive integer, for any constant a in the complex
plane. We denote by Nk)(r,1/( f −a)) the counting function of a -points of f with mul-
tiplicity � k , by N(k(r,1/( f − a)) the counting function of a -points of f with multi-
plicity � k , by Nk(r,1/( f −a)) the counting function of a -points of f with multiplicity
of k . and denote the reduced counting function by Nk)(r,1/( f −a)) , N(k(r,1/( f −a))
and Nk(r,1/( f −a)) , respectively.

Recently, Huang and Gu ([5]) have obtained a quantitative result about a differen-
tial polynomials f 2 f (k) −1. They proved the following theorem.

THEOREM A. Let f be transcendental meromorphic in the complex plane and k
be a positive integer, then

T (r, f ) � 6N

(
r,

1

f 2 f (k) −1

)
+S(r, f ). (1.1)

REMARK 1.2. In fact, Q. Zhang [11] proved the case of k = 1. X. Huang and Y.
Gu proved the case of k � 2.
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As we all known, the second fundamental theorem in Nevanlinna’s theory of value
distribution uses the reduced counting function to estimate the Nevanlinna characteristic
function(cf. [8]). Naturally, we can pose the following important question.

Whether one can give some quantitative estimates on the generally differential
polynomials by the reduced counting function?

In [7], the authors give some affirmative answers.

THEOREM B. Let f be a transcendental meromorphic function, L[ f ] = ak f (k) +
ak−2 f (k−2) + · · ·+a0 f , where a0,a1, · · · ,ak(�≡ 0) are small functions, for c(�= 0,∞) , let
F = f 2L[ f ]− c, then there exists a constant M > 0 , which does not depend on f , such
that

T (r, f ) � MN

(
r,

1
F

)
+S(r, f ).

REMARK 1.3. We know F has infinitely many zeros, and the constant M is at
least 6 from Theorem A. But the method of Theorem B can’t give the certain coefficient.
Hence, we want to get the more precise estimate of the coefficient. In fact, we proved
the following result in [7] by giving some restriction on the zeros of f .

THEOREM C. Let f be a transcendental meromorphic function, and let k be a
positive integer. If N1

(
r, 1

F

)
= S(r, f ) , then

T (r, f ) � 2N

(
r,

1

f 2 f (k) −1

)
+S(r, f ). (1.2)

In the paper, we continue to investigate the problem in this direction. Though
Theorem C has the smaller coefficient 2, we know the condition of the simple zero is
not necessary from Theorem B. Hence it is an important question how to remove the
condition and get a precise estimation. We prove the following theorem.

THEOREM 1.4. Let f be a transcendental meromorphic function, and let k be a
positive integer. Then

T (r, f ) � MN

(
r,

1

f 2 f (k) −1

)
+S(r, f ). (1.3)

where M is 6 if k = 1 or k � 3 , M is 10 if k = 2 .

2. Proof of the theorem

In order to prove our result, we need to the following lemmas.

LEMMA 2.1. Let f be transcendental meromorphic function, and let k be a pos-
itive integer. Then

3T (r, f ) � N(r, f )+N

(
r,

1
F

)
+Nk)

(
r,

1
F

)
+ kN(k+1

(
r,

1
F

)

+N

(
r,

1

f 2 f (k) −1

)
−N0

(
r,

1

( f 2 f (k))′

)
+S(r, f ).

(2.1)
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where N0(r, 1
( f 2 f (k))′ ) denotes the counting function of the zeros of ( f 2 f (k))′ , not of

f ( f 2 f (k) −1) . Especially, if k = 1 , we get

3T (r, f ) � N(r, f )+2N

(
r,

1
F

)
+N

(
r,

1
f 2 f ′ −1

)
−N0

(
r,

1
( f 2 f ′)′

)
+S(r, f ). (2.2)

Proof. We claim first that f 2 f (k) �≡ constant. If f 2 f (k) ≡C , where C is a constant.

Obviously, C �= 0. Hence f has no zero and 1
f 3 = 1

C
f (k)

f . Therefore,

3T (r, f ) = m

(
r,

1
f 3

)
+N

(
r,

1
f 3

)
+O(1) = m

(
r,

f (k)

f

)
+O(1) = S(r, f ).

a contradiction. Hence f 2 f (k) is not equivalent to a constant.
Let

1
f 3 ≡ f 2 f (k)

f 3 − ( f 2 f (k))′

f 3

f 2 f (k) −1

( f 2 f (k))′
,

we have

3m

(
r,

1
F

)
= m

(
r,

1
f 3

)

� m

(
r,

f 2 f (k) −1

( f 2 f (k))′

)
+m

(
r,

f (k)

f

)
+m

(
r,

( f 2 f (k))′

f 3

)
+O(1)

� N

(
r,

( f 2 f (k))′

f 2 f (k) −1

)
−N

(
r,

f 2 f (k) −1

( f 2 f (k))′

)
+S(r, f )

= N(r,( f 2 f (k))′)+N

(
r,

1

f 2 f (k) −1

)
−N

(
r,

1

( f 2 f (k))′

)

−N(r, f 2 f (k) −1)+S(r, f )

= N(r, f )+N

(
r,

1

f 2 f (k) −1

)
−N

(
r,

1

( f 2 f (k))′

)
+S(r, f ).

Hence

3T (r, f ) = 3m

(
r,

1
F

)
+3N

(
r,

1
F

)
+O(1)

= N(r, f )+3N

(
r,

1
F

)
+N

(
r,

1

f 2 f (k) −1

)
−N

(
r,

1

( f 2 f (k))′

)
+S(r, f ).

(2.3)
Let

N

(
r,

1

( f 2 f (k))′

)
= N000

(
r,

1

( f 2 f (k))′

)
+N00

(
r,

1

( f 2 f (k))′

)
+N0

(
r,

1

( f 2 f (k))′

)
(2.4)
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where N000(r, 1
( f 2 f (k))′ ) denotes the counting function of the zeros of ( f 2 f (k) − 1)′ ,

which come from the zeros of f 2 f (k)−1, N00(r, 1
( f 2 f (k))′ ) denotes the counting function

of the zeros of ( f 2 f (k) −1)′ , which come from the zeros of f . Hence we have

N

(
r,

1

f 2 f (k) −1

)
−N000

(
r,

1

( f 2 f (k))′

)
= N

(
r,

1

f 2 f (k) −1

)
. (2.5)

Supposed that z0 is a zero of f with multiplicity q , if q � k , then z0 is a zero of
( f 2 f (k))′ with multiplicity at least 2q− 1; if q � k + 1, then z0 is a zero of ( f 2 f (k))′
with multiplicity at least 3q− (k+1) . Hence we have

3N

(
r,

1
F

)
−N00

(
r,

1

( f 2 f (k))′

)
� Nk)

(
r,

1
F

)
+Nk)

(
r,

1
F

)
+(k+1)N(k+1

(
r,

1
F

)

= Nk)

(
r,

1
F

)
+N

(
r,

1
F

)
+ kN(k+1

(
r,

1
F

)
.

(2.6)
Combining (2.3)–(2.6), we have

3T (r, f ) � N(r, f )+N

(
r,

1
F

)
+Nk)

(
r,

1
F

)
+ kN(k+1

(
r,

1
F

)

+N

(
r,

1

f 2 f (k) −1

)
−N0

(
r,

1

( f 2 f (k))′

)
+S(r, f ).

This completes the proof of the lemma.

LEMMA 2.2. [11] Let f be a transcendental meromorphic function, and let k be
a positive integer. Let

G(z) = 13

(
F ′

F

)2

+20

(
F ′

F

)′
−24

F ′

F
l′

l
+8

(
l′

l

)2

−88

(
l′

l

)′
, (2.7)

then we have (1) G(z) �≡ 0 ; (2) The simple poles of f (z) are the zeros of G(z) .

Now we begin to prove Theorem 1.4.
(I) If k = 1, Q. D. Zhang proved the inequality (1.1) by using the auxiliary

function. Here we use his method to construct the function G(z) , and can obtain a
better result if k = 1.

Let F(z) = f 2 f ′ −1 and l(z) = F ′
f = 2( f ′)2 + f f ′′ . Obviously l(z) �≡ 0. Also let

G(z) = 13

(
F ′

F

)2

+20

(
F ′

F

)′
−24

F ′

F
l′

l
+8

(
l′

l

)2

−88

(
l′

l

)′
. (2.8)

By Lemma 2.2, we know G(z) �≡ 0, and the simple poles of f are the zeros of
G(z) . Note that the poles of G(z) whose multiplicity is at most two come from the
multiple poles of f , F or the zeros of l . But it is still difficult to deal with the zeros of
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l . We consider the poles of β 2G(z) . By differentiating the equation F(z) = f 2 f ′ −1,
we get

fβ = −F ′

F
, (2.9)

where

β = 2( f ′)2 + f f ′′ − f f ′
F ′

F
, l = −βF. (2.10)

We can see the zeros of l either is the zeros of F , or the zeros of β . From the
above we know that the multiple poles of f with the multiplicity q(� 2) is the zeros of
β with the multiplicity of q−1. Hence the poles of β 2G(z) only come from the zeros
of F , and the multiplicity is at most 4. Hence,

N(r,β 2G) � 4N(r,1/F).

Note that m(r,G) = S(r, f ) , therefore m(r,β 2G) = S(r, f ) . Hence

T (r,β 2G) � 4N(r,1/F).

Since the multiple zeros of f with the multiplicity p(� 2) are the multiple zeros
of β with multiplicity at least 2p−2, therefore, are at least the zeros of β 2G with the
multiplicity 2(2p−2)−2 = 4p−6. Also note that the simple poles of f are the zeros
of β 2G . Hence we have

N1)(r, f )+2N

(
r,

1
F

)
−2N

(
r,

1
F

)
� N

(
r,

1
β 2G

)
� T (r,β 2G) � 4N

(
r,

1
F

)
.

(2.11)
Combining (2.2) and (2.15), we have

T (r, f )+N(2(r, f )−2N(2(r, f )+m(r, f )+4m

(
r,

1
F

)
+6N

(
r,

1
F

)
−6N

(
r,

1
F

)

� 6N

(
r,

1
f 2 f ′ −1

)
+S(r, f ),

Hence we have

T (r, f ) < 6N

(
r,

1
f 2 f ′ −1

)
+S(r, f ). (2.12)

Obviously, our result improves the conclusion of Q.D. Zhang greatly.

(II) If k � 2, X. J. Huang and Y. X. Gu constructed the similar function G1(z) .

Let F1(z) = f 2 f (k) −1 and l1(z) = F ′
1
f = 2( f ′)2 + f f ′′ . Obviously l1(z) �≡ 0. Let

G1(z) = a1

(
F ′

1

F1

)2

+a2

(
F ′

1

F1

)′
+a3

F ′
1

F1

l′1
l1

+a4

(
l′1
l1

)2

+a5

(
l′1
l1

)′
. (2.13)
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Where

a1 = 2(k+1)2− (3k+7)(k2−4k−29)
(k+3)

a2 = −(k+5)(k2−4k−29);
a3 = 4(k2−4k−29);
a4 = −4(k+3)(k+1)
a5 = 2(k+2)(k+3)(k+5).

By Lemma 3 in [5], we know G1(z) �≡ 0, and Lemma 4 of [5], we know the simple
poles of f are the zeros of G1(z) . Note the poles of G1(z) come from the multiple poles
of f , F1 or the zeros of l1 , whose multiple is at most two. But it is also difficult to deal
with the zeros of l1 .

We consider the poles of the function β 2G1(z) . Similar with the proof of the (2.9),

β = 2( f ′)2 + f f ′′ − f f ′
F ′

1

F1
, l1 = −βF1.

Then we can see the zero of l1 either is the zero of F1 , or the zero of β . From the
above, we know the multiple zeros of f with the multiplicity q(� 2) are the zeros of
β with the multiplicity q− 1. Hence the poles of β 2G1(z) only come from the zeros
of F , and the multiplicity are at most four. Therefore,

N(r,β 2G) � 4N(r,1/F).

Note that m(r,G) = S(r, f ) , therefore m(r,β 2G) = S(r, f ) . Hence

T (r,β 2G) � 4N(r,1/F).

Then by the zeros of f with multiplicity p(� k) are at least the zeros of β with
the multiplicity 2p− 2, therefore are at least the zeros of β 2G with the multiplicity
2(2p− 2)− 2 = 4p− 6. Note that the simple poles of f are also the zeros of β 2G .
Hence we have

N1)(r, f )+4N(k

(
r,

1
F

)
−6N(k

(
r,

1
F

)
� N

(
r,

1
β 2G

)
� T (r,β 2G) � 4N

(
r,

1
F

)
.

(2.14)
Next we divide two cases:

Case (1). If k � 3, the we have

N1)(r, f )+2N(k

(
r,

1
F

)
� 4N(r,

1
F

). (2.15)

Combining the doubled (2.1) and (2.15), we have

6T (r, f )+N1)(r, f )+2N(k

(
r,

1
F

)
−2N(r, f )−2N

(
r,

1
F

)
−2Nk)

(
r,

1
F

)
−2kN(k+1

(
r,

1
F

)

� 6N

(
r,

1

f 2 f (k) −1

)
−N0

(
r,

1

( f 2 f (k))′

)
+S(r, f ).

(2.16)
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Then

6T (r, f )+N1)(r, f )+2N(k

(
r,

1
F

)
−2N(r, f )−2N

(
r,

1
F

)

−2Nk)

(
r,

1
F

)
−2kN(k+1

(
r,

1
F

)

� T (r, f )+m(r, f )+N(r, f )+N1)(r, f )−2N(r, f )+4m

(
r,

1
F

)
+4N

(
r,

1
F

)

+2N(k

(
r,

1
F

)
−2N

(
r,

1
F

)
−2Nk)

(
r,

1
F

)
−2kN(k+1

(
r,

1
F

)
.

(2.17)
In (2.17), we first consider the case of the pole

N(r, f )+N1)(r, f )−2N(r, f ) � N(r, f )+N1)(r, f )−2N1)(r, f )−2N(2(r, f )

� N(r, f )−N1)(r, f )−2N(2(r, f )

= N1)(r, f )+N(2(r, f )−N1)(r, f )−2N(2(r, f )

> 0.

(2.18)

In (2.17), we consider the case of the zero

4N

(
r,

1
F

)
+2N(k

(
r,

1
F

)
−2N

(
r,

1
F

)
−2Nk)

(
r,

1
F

)
−2kN(k+1

(
r,

1
F

)

� 4N

(
r,

1
F

)
+2Nk

(
r,

1
F

)
+N(k+1

(
r,

1
F

)
−2N

(
r,

1
F

)

−2Nk)

(
r,

1
F

)
− 2k

k+1
N(k+1

(
r,

1
F

)

� 4N

(
r,

1
F

)
+Nk

(
r,

1
F

)
+

2
k+1

N(k+1

(
r,

1
F

)
−2N

(
r,

1
F

)
−2Nk)

(
r,

1
F

)
> 0.

(2.19)
From (2.16)–(2.19), we have

T (r, f ) < 6N

(
r,

1

f 2 f (k) −1

)
+S(r, f ). (2.20)

Case (2). If k = 2, by (2.14), we have

N1)(r, f )+N(k

(
r,

1
F

)
� 4N

(
r,

1
F

)
.

Similar with the above discussion, we have

T (r, f ) < 10N

(
r,

1

f 2 f ′′ −1

)
+S(r, f ). (2.21)
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This completes the proof of Theorem 1.4.
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