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BOUNDING EXPECTATIONS OF FUNCTIONS OF RANDOM VECTORS

WITH GIVEN MARGINALS AND SOME MOMENTS: APPLICATIONS

OF THE MULTIVARIATE DISCRETE MOMENT PROBLEM

GERGELY MÁDI-NAGY AND ANDRÁS PRÉKOPA

(Communicated by Zs. Páles)

Abstract. The paper shows how the bounding technique provided by the multivariate discrete
moment problem can be used for bounding expectations of functions of random variables with
known univariate marginals and some of the mixed moments. Four examples are presented. In
the first one the function is a Monge or related type array, in the second one it is a pseudo-
Boolean function. In the further examples bounds are given for values of multivariate generating
functions and expectations of special utility functions of random vectors. Numerical results are
presented.

1. Introduction

Recently, a number of papers have been published about the univariate and mul-
tivariate discrete moment problem (DMP, MDMP), where bounding formulas as well
as algorithmic bounds for functions of random variables under moment information
are presented (see Prékopa 1990, Prékopa 1998, Mádi-Nagy and Prékopa 2004, Mádi-
Nagy 2009). In the univariate case the moments of order up to m of a random variable
are supposed to be known and lower and upper bounds for various functions of the ran-
dom variable have been proposed in Prékopa (1990). These include bounds for proba-
bilities of the type X � a or X = a . The paper by Prékopa (1998) deals with bounds for
functions of random vectors, where the mixed moments of the components of total or-
der up to m are known. The results are generalized in Mádi-Nagy and Prékopa (2004),
where, in addition to the knowledge of moments of total order up to m , further moments
of the univariate marginals are also known.

Sometimes all univariate marginals are completely known and the stochastic de-
pendencies are characterized by mixed moments, e.g., covariances. This is the case in
the paper by Hou and Prékopa (2007), where a bounding technique, different from the
one in MDMP is used.

The purpose of the present paper is to give four examples for the application of the
MDMP technique, for bounding expectations of functions of random vectors, where
the univariate marginals and some of the mixed moments are known.
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Let X = (X1, . . . ,Xs) be a random vector where the support of Xj is a known finite
set Zj = {z j0, . . . ,z jn j} with distinct elements, j = 1, . . . ,s and introduce the notation:

pi1...is = P(X1 = z1i1 , . . . ,Xs = zsis), 0 � i j � n j, j = 1, . . . ,s. (1.1)

We assume that the probability distribution of X is unknown, but known are the
univariate marginals, i.e., the distributions of the components Xj ’s, j = 1, . . . ,s . For
them we use the following notations:

P(Xj = z ji) = q( j)
i , i = 0, . . . ,n j, j = 1, . . . ,s.

The (α1, . . . ,αs)-order moment of the random vector (X1, . . . ,Xs) is defined as

μα1...αs = E[Xα1
1 · · ·Xαs

s ] =
n1

∑
i1=0
· · ·

ns

∑
is=0

zα1
1i1
· · · zαs

sis pi1...is ,

where α1, . . . ,αs are nonnegative integers. The sum α1 + · · ·+αs is called the total
order of the moment. We assume that the mixed moments of order up to m are known.

Our aim is to give lower and upper bounds for

E[ f (X1, . . . ,Xs)],

where f (z ) , z ∈ Z1× ·· · × Zs is a discrete function about which we will introduce
some assumptions. For simplicity let fi1...is = f (z1i1 , . . . ,zsis) .

The MDMP that we use in this paper is the following:

min(max)
n1

∑
i1=0
· · ·

ns

∑
is=0

fi1...is pi1...is

subject to

n1

∑
i1=0

· · ·
n j−1

∑
i j−1=0

n j+1

∑
i j+1=0

ns

∑
is=0

pi1...i j−1ii j+1...is = q( j)
i

for i = 0, · · · ,n j, j = 1, . . . ,s; and
n1

∑
i1=0

· · ·
ns

∑
is=0

zα1
1i1
· · ·zαs

sis
pi1...is = μα1...αs

for 0 � α j, j = 1, . . . ,s,αuαv �= 0 for some u �= v, α1 + · · ·+αs � m;

pi1...is � 0, all i1, . . . , is,
(1.2)

where (q( j)
0 , . . . ,q( j)

n j ) , j = 1, . . . ,s are known vectors, and the moments μα1...αs , that
appear in (1.2), are known. The decision variables are pi1...is , 0 � i j � n j , j = 1, . . . ,s .

The objective function, the first set of constraints and the nonnegativity restrictions
define an s-dimensional transportation problem (see Hou and Prékopa 2007). Problem
(1.2) will be called extended s-dimensional transportation problem.
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Since the cardinality of the support of Xj is n j +1, it follows that the moments

E[Xk
j ] =

n j

∑
i=0

zk
jiq

( j)
i , k = 0, . . .n j

uniquely determine the probability distribution of Xj . In view of this, problem (1.2) is
equivalent to the following:

min(max)
n1

∑
i1=0

· · ·
ns

∑
is=0

fi1...is pi1...is

subject to
n1

∑
i1=0
· · ·

ns

∑
is=0

zα1
1i1
· · · zαs

sis pi1...is = μα1...αs

for α j = 0, j = 1, . . . ,k−1,k+1, . . . ,s, 0 � αk � nk, k = 1, . . . ,s and

for 0 � α j, j = 1, . . . ,s,αuαv �= 0 for some u �= v, α1 + · · ·+αs � m;

pi1...is � 0, all i1, . . . , is.
(1.3)

The compact matrix form of problem (1.3) will be written as:

min(max) f T p
subject to

Âp = b̂
p � 0.

(1.4)

The paper is organized as follows. In Section 2 we specialize our general theorems
proved in Mádi-Nagy and Prékopa (2004) for the case of problem (1.3), suitable for
our current applications. Sections 3-6 contain the four examples. In Section 3 we
derive further results, by the use of problem (1.3), for the problem studied in Hou
and Prékopa (2007), where the objective function enjoys the Monge or some related
property. In Section 4 we apply the specialized MDMP technique to bounding the
expectations of pseudo-Boolean functions under monotonicity conditions. The next
example, bounding the values of moment generating functions, is presented in Section
5. In Section 6 we show how the MDMP technique applies to bounding expected
utilities. Finally, we summarize the conclusions of our results.

2. Bounds when the univariate marginal distributions and moments of total
order up to m are known

In this section we give lower and upper bounds for the objective function of prob-
lem (1.3). Let Vmin (Vmax) designate the minimum (maximum) value in problem (1.4).
Let further B1 (B2) designate a dual feasible basis (i.e., a basis for which the optimality
condition is satisfied) for the minimization (maximization) problem. Then, by linear
programming theory, we know that

f T
B1

B−1
1 b � Vmin � E [ f (X1, . . . ,Xs)] � Vmax � f T

B2
B−1

2 b . (2.1)
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Hence, if a dual feasible basis is given then (2.1) yields bounds for the objective func-
tion. If B1 (B2) is an optimal basis in the minimization (maximization) problem, then
the first (last) inequality holds with equality sign. We say that Vmin and Vmax are the
sharp lower and upper bounds, respectively, for the expectation of f (X1, . . . ,Xs) . The
theorems in the second part of this section give bounds by constructing dual feasible
bases, using multivariate Lagrange interpolation methodology.

In order to see the relationship between multivariate Lagrange interpolation and
dual feasible bases of problem (1.3), let U = {u1, . . . , uM} be a set of distinct points in
IR s and H = {(α1, . . . ,αs)} a finite set of s-tuples of nonnegative integers (α1, . . . ,αs) .
We say that the set U admits an H -type Lagrange interpolation if for any real function
f (z ) , z ∈U , there exists a polynomial p(z) of the form

p(z) = ∑
(α1,...,αs)∈H

c(α1, . . . ,αs)z
α1
1 · · ·zαs

s , (2.2)

where all c(α1, . . . ,αs) are real, such that

p(ui) = f (u i), i = 1, . . . ,M. (2.3)

Let us define b̂(z1, . . . ,zs) in a similar way as we have defined b̂ but we remove
the expectation and replace z j for Xj , j = 1, . . . ,s . In connection with problem (1.3)
we define H , I and U as follows:

H = {(α1, . . . ,αs)| 0 � α j, α j integer, α1 + · · ·+αs � m, j = 1, . . . ,s;

or α j = 0, j = 1, . . . ,k−1,k+1, . . . ,s, m � αk � nk, k = 1, . . . ,s},

I = {(i1, . . . , is)| âi1···is ∈ B̂},

U = {(z1i1 , . . . ,zsis)| (i1, . . . , is) ∈ I}.
Then

LI(z1, . . . ,zs) = f T

B̂
B̂−1b̂(z1, . . . ,zs))

is the unique H -type Lagrange polynomial corresponding to the set U .
The dual feasibility of the basis B̂ in the minimization (maximization) problem

means that
f (z1, . . . ,zs) � LI(z1, . . . ,zs), all (z1, . . . ,zs) ∈ Z
( f (z1, . . . ,zs) � LI(z1, . . . ,zs), all (z1, . . . ,zs) ∈ Z), (2.4)

where equality holds in case of (z1, . . . ,zs) ∈U . Relation (2.4) is called the condition
of optimality of the minimization (maximization) problem (1.3).

Replacing (X1, . . . ,Xs) for (z1, . . . ,zs) and taking expectations in (2.4) we obtain
bounds for E[ f (X1, . . . ,Xs)] . If the basis is also primal feasible, then it is optimal and
thus, the obtained bound is sharp.

To state the results of this section we need the following definitions.
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DEFINITION 2.1. Let f (z), z∈{z0, . . . ,zn} be a univariate discrete function, where
z0, . . . ,zn are distinct real numbers. We define

[zi; f ] = f (zi), where zi ∈ {z0, . . . ,zn}.
The kth order (univariate) divided differences (k � 1) are defined recursively as:

[zi, . . . ,zi+k; f ] =
[zi+1, . . . ,zi+k; f ]− [zi, . . . ,zi+k−1; f ]

zi+k− zi
,0 � i � n− k.

DEFINITION 2.2. Let f (z ), z ∈ Z = Z1×·· ·×Zs be a multivariate discrete func-
tion and

ZI1 ...Is = {z1i, i ∈ I1}× ·· ·×{zsi, i ∈ Is}
= Z1I1 ×·· ·×ZsIs ,

(2.5)

where |I j|= k j +1, j = 1, . . . ,s . We define the (k1, . . . ,ks)-order (multivariate) divided
difference of f on the set (2.5) in an iterative way. First we take the k1th divided
difference with respect to the first variable, then the k2th divided difference with respect
to the second variable etc. These operations can be executed in any order even in a
mixed manner, the result is always the same. Let

[z1i, i ∈ I1; · · · ;zsi, i ∈ Is; f ] (2.6)

designate the (k1, . . . ,ks)-order divided difference and call the sum k1 + · · ·+ks its total
order. For example,

[z10,z11;z20,z21; f ] = [z20,z21;
f (z11,z2)− f (z10,z2)

z11− z10
]

=
f (z11,z21)− f (z10,z21)

z11−z10
− f (z11,z20)− f (z10,z20)

z11−z10

z21− z20
.

If f (z), z ∈ Z is derived from a function f (z) defined in Z = [z10,z1n1 ]× ·· ·×
[zs0,zsns ] by taking f (z ) = f (z), z ∈ Z and f (z) has continuous, nonnegative deriva-
tives of order (k1, . . . ,ks) in the interior of Z , then all divided differences of f (z ), z ∈ Z
of order (k1, . . . ,ks) are nonnegative. For further results in this respect see Popovi-
ciu (1944).

In what follows we will use the notations

Zji = {z j0, . . . ,z ji}
Z′ji = {z j0, . . . ,z ji,z j},

i = 0, . . . ,n j, j = 1, . . . ,s.

Consider the set of subscripts

I = I0∪
(∪s

j=1I j
)
, (2.7)

where

I0 =
{
(i1, . . . , is)| 0 � i j � m−1, integers, j = 1, . . . ,s, i1 + . . .+ is � m

}
(2.8)
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and
I j = {(i1, . . . , is)| m � i j � n j, il = 0 for every l �= j}, j = 1, . . . ,s. (2.9)

Corresponding to the points

ZI = {(z1i1 , . . . ,zsis)| (i1, . . . , is) ∈ I} (2.10)

we assign the Lagrange polynomial, given by its Newton’s form:

LI (z1, . . . ,zs)

= ∑
i1+...+is�m

0�i j�m−1, j=1,...,s

[Z1i1 ; · · · ;Zsis ; f ]
s

∏
j=1

i j−1

∏
k=0

(
z j− z jk

)
+

s

∑
j=1

n j

∑
i=m

[
Z10; · · · ;Z( j−1)0;Zji;Z( j+1)0; · · · ;Zs0; f

] i−1

∏
k=0

(
z j− z jk

)
,

where, by definition,
i j−1

∏
k=0

(
z j− z jk

)
= 1, for i j = 0.

(2.11)

In (2.11) the function f is not necessarily restricted to the set Z as its domain of defi-
nition; it may be defined on any subset of IR s that contains Z .

Next, we define the residual function:

RI(z1, . . . ,zs) = R1I(z1, . . . ,zs)+R2I(z1, . . . ,zs), (2.12)

where
R1I(z1, . . . ,zs)

=
s

∑
j=1

[
z10; · · · ;z( j−1)0;Z

′
jn j

;z( j+1)0; · · · ;zs0; f
] n j

∏
k=0

(
z j− z jk

) (2.13)

and

R2I(z1, . . . ,zs)

=
s−1

∑
h=1

∑
ih+···+is=m

0�i j�m−1, j=h,...,s

[
z1; · · · ;zh−1;Z

′
hih

;Z(h+1)ih+1
; · · · ;Zsis ; f

] ih

∏
l=0

(zh− zhl)

×
s

∏
h+1

i j−1

∏
k=0

(
z j− z jk

)
+

s

∑
j=h+1

[
z1; · · · ;zh−1;Z

′
h0;Z(h+1)0; · · · ;Z( j−1)0;Z

′
j(m−1);Z( j+1)0; · · · ;Zs0

]
(zh− zh0)

×
m−1

∏
k=0

(
z j− z jk

)
.

(2.14)

THEOREM 2.1. Consider the Lagrange polynomial (2.11), corresponding to the
points in ZI . For any z = (z1, . . . ,zs) for which the function f is defined, we have the
equality

LI(z1, . . . ,zs)+RI(z1, . . . ,zs) = f (z1, . . . ,zs). (2.15)
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Based on this we prove two theorems that provide us with bounds for the expecta-
tions of f (X1, . . . ,Xs) .

THEOREM 2.2. Let z j0 < z j1 < · · ·< z jn j , j = 1, . . . ,s. Suppose that the function
f (z ), z ∈ Z has nonnegative mixed divided differences of total order m+1 .

Under this condition LI(z1, . . . ,zs) , defined by (2.11), is a unique H -type La-
grange polynomial on ZI and satisfies the relation

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (2.16)

i.e., the set of columns B̂ of Â in problem (1.4), with the subscript set I , is a dual
feasible basis in the minimization problem (1.4), and

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (2.17)

If B̂ is also a primal feasible basis in problem (1.4), then the inequality (2.17) is sharp.
If all the above mentioned divided differences are nonpositive, then (2.16) and

(2.17) hold with reversed inequality signs.

Proof. The proof is similar to that of Theorem 4.1 in Mádi-Nagy and Prékopa
(2004).

A sketch of a direct proof is as follows. Both terms in (2.14) are nonnegative
because of the nonnegativity of the divided differences involved and the special struc-
ture of the basis implies the nonnegativity of products of the differences of the values.
Further, the relations

n j

∏
k=0

(z j− z jk) = 0 for z j ∈ Zj, (2.18)

imply that R1I(z1, . . . ,zs) in (2.13) is zero. �

In the next theorem we give both lower and upper bounds for the function f (z1, . . . ,zs),
(z1, . . . ,zs) ∈ Z and the expectation E[ f (X1, . . . ,Xs)] .

THEOREM 2.3. Let z j0 > z j1 > · · ·> z jn j , j = 1, . . . ,s. Suppose that the function
f (z ), z ∈ Z has nonnegative mixed divided differences of total order m + 1 . Under
this condition we have the following assertions:

(a) If m+1 is even, then the Lagrange polynomial LI(z1, . . . ,zs) , defined by (2.11),
satisfies

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (2.19)

i.e., the set of columns B̂ in Â , corresponding to the subscripts I , is a dual
feasible basis in the minimization problem (1.4). We also have the inequality

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (2.20)

If B̂ is also a primal feasible basis in the LP (1.4), then the lower bound (2.20) for
E[ f (X1, . . . ,Xs)] is sharp.



108 G. MÁDI-NAGY AND A. PRÉKOPA

(b) If m+1 is odd, then the Lagrange polynomial, defined by (2.11), satisfies

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (2.21)

i.e., the basis B̂ is dual feasible in the maximization problem (1.4). We also have
the inequality

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (2.22)

If B̂ is also a primal feasible basis in the LP (1.4), then the upper bound (2.22) for
E[ f (X1, . . . ,Xs)] is sharp.

If all the above mentioned divided differences are nonpositive, then (2.19), (2.20),
(2.21) and (2.22) hold with reversed inequality signs.

Proof. The proof is similar to that of Theorem 4.2 in Mádi-Nagy and Prékopa
(2004). A sketch of a direct proof, similar to that of Theorem 2.2, can be given here,
too. �

The dual feasible basis structures mentioned in the above theorems are illustrated
in Figure 1.
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9

10

z2

(a) (b)

Figure 1: Dual feasible bases corresponding to Theorems 2.2 (in (a)) and 2.3 (in (b)) in case of
n1 = n2 = 10, m = 3, Z1 = Z2 = {0,1, . . . ,10} . The elements of I0 are gray, those of I j ’s are
black.

For the case of s = 2 we can create a larger variety of dual feasible bases for
problem (1.4), and produce better bounds than what we can obtain by the use of the
dual feasible basis structures presented in the previous theorems.

All coefficients in the expression of R2I(z1,z2) are mixed divided differences of
order m+1. Assume all of them are nonnegative. Our aim is to combine the elements
of Z1 and Z2 such that the products in R2I(z1,z2) turn out to be nonnegative. This can
be produced by slight modifications of the Min and Max Algorithms of Mádi-Nagy and
Prékopa (2004). This way we can get a variety of dual feasible bases that give tight
bounds on E[ f (X1,X2)] . Below we summarize them for the special case of problem
(1.3), where s = 2.

We may assume, without loss of generality, that the ordered sets Z1 and Z2 are the
following: Z1 = {0,1, . . . ,n1} , Z2 = {0,1, . . . ,n2} . The procedure is presented below.
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Min Algorithm

Algorithm to find z10, . . . ,z1(m−1);z20, . . . ,z2(m−1) .
Step 0. Initialize t = 0, −1 � q1 � m− 1, L = (0,1, . . . ,q1) , U = (n1,n1 −

1, . . . ,n1− (m−q1−2)) , V 0 = {arbitrary merger of the sequences L,U}= (v0,v1, . . . ,
vm−1) . If |U | is even, then h0 = 0, l0 = 1, u0 = n2 , and if |U | is odd, then h0 = n2 ,
l0 = 0, u0 = n2−1. Go to Step 1.

Step 1. If t = m , then go to Step 3. Otherwise go to Step 2.
Step 2. Let Vt = (v0,v1, . . . ,vm−1−t) , Ht = (h0,h1, . . . ,ht) . If vm−1−t ∈ L , then let

ht+1 = lt , lt+1 = lt +1, ut+1 = ut , and if vm−1−t ∈U , then let ht+1 = ut , ut+1 = ut−1,
lt+1 = lt . Set t← t +1 and go to Step 1.

Step 3. Stop. Let

(z10, . . . ,z1(m−1)) = V 0,

(z20, . . . ,z2(m−1)) = Hm−1.

Let 0,1, . . . ,q2,n2, . . . ,n2−(m−q2−2) be the numbers used to construct z20,z21,
. . . ,z2(m−1) . Then let {z jm,z j(m+1), . . . ,z jn j} = {q j +1,q j +2, . . . ,n j− (m−q j−1)} ,
j = 1,2. They can follow each other in any order, because they don’t play role in the
value of RI , and on the other hand their order does not change the dual feasible basis
structure that we finally obtain.

To construct an upper bound, slight modification is needed in Step 0, while the rest
of the algorithm is unchanged. The modified Step 0 is presented below.

Max Algorithm

Step 0 of algorithm to find z10, . . . ,z1(m−1);z20, . . . ,z2(m−1) .
Step 0. Initialize t = 0, −1 � q1 � m− 1, L = (0,1, . . . ,q1) , U = (n1,n1 −

1, . . . ,n1−(m−q1−2)) , V 0 = {arbitrary merger of the sets L,U}= (v0,v1, . . . ,vm−1) .
If |U | is odd, then h0 = 0, l0 = 1, u0 = n2 , and if |U | is even, then h0 = n2 , l0 = 0,
u0 = n2−1. Go to Step 1, etc.

In the general case, where Z1 is not necessarily {0,1, . . . ,n1} and Z2 is not nec-
essarily {0,1, . . . ,n2} , we do the following. First we order the elements in both Z1

and Z2 increasingly. Then, create pairs out of the elements of Z1 and {0,1, . . . ,n1} ,
where the elements of the sets are assumed to be arranged in increasing order. We do
the same to Z2 and {0,1, . . . ,n2} . After that, we carry out the Min or Max Algorithm
to find a dual feasible basis, using the sets {0,1, . . . ,n1} , {0,1, . . . ,n2} , as described
in this section. Finally, we create the ordered sets Z1 and Z2 by the use of the above
mentioned pairings.

Examples of dual feasible bases, obtained by the Min and Max Algorithms, are
illustrated in Figure 2.
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Figure 2: (a): Dual feasible basis of the min problem, where m = 4 and (z10, . . . ,z1(m−1)) =
(10,9,0,1) , (z20, . . . ,z2(m−1)) = (0,1,2,10) . (b): Dual feasible basis of the max problem, where
m = 4 and (z10, . . . ,z1(m−1)) = (10,9,0,1) , (z20, . . . ,z2(m−1)) = (10,0,1,9) . The elements of I0
are gray, those of I j ’s are black.

3. Monge property and bounding multivariate probability distribution functions
with given marginals and covariances

In this chapter we assume that the function f has the Monge or inverse Monge or
some discrete higher order convexity property. First, we need the following

DEFINITION 3.1. An n1× ·· · × ns s-dimensional array f = { f (i1, . . . , is)} has
the Monge property or is a Monge array, if for all entries f (i1, . . . , is) and f ( j1, . . . , js) ,
1 � ik, jk � nk , 1 � k � s , we have

f (l1, . . . , ls)+ f (u1, . . . ,us) � f (i1, . . . , is)+ f ( j1, . . . , js), (3.1)

where lk = min{ik, jk}, uk = max{ik, jk} , 1 � k � s . If the inequality (3.1) holds in
reverse order, then it is called the inverse Monge property and f is called an inverse
Monge array.

REMARK 3.1. If f (z1, . . . ,zs),z ∈ Z = Z1×·· ·×Zs is a (inverse) Monge array on
Z , then its second order mixed divided differences are nonpositive (nonnegative). In
the two-dimensional case, f (z1,z2),z ∈ Z = Z1×Z2 is a (inverse) Monge array on Z if
and only if its (1,1) order divided differences are nonpositive (nonnegative).

If we consider problem (1.2) in case of m = 1, i.e., if only the marginal distribu-
tions are known, then it is an s-dimensional transportation problem. In connection with
that we have

THEOREM 3.1. (Theorem 2.4 in Hou and Prékopa (2007)) In the s-dimensional
transportation problem any ordered sequence forms a dual feasible basis if and only
if f is Monge.

In case of m = 2, where the second order moments (covariances) are also known,
all the dual feasible bases presented in the mentioned paper can be reproduced by our
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theorems and the Min and Max Algorithms in a relatively simple way. In the two
dimensional case our methodology provides us with additional dual feasible bases as it
is shown in the following example.

EXAMPLE 3.1. Consider the minimum problem (1.2), and the equivalent MDMP
(1.3) in case of s = 2 and m = 2. Suppose that the function f (z ), z ∈ Z has nonneg-
ative mixed divided differences of total order 3, i.e., the (1,2)-order and (2,1)-order
divided differences are nonnegative. If we apply the Min Algorithm to the problem,
then we obtain the dual feasible bases:

(a) (z10,z11) = V 0 := (0,1) =⇒ (z20,z21) = Hm−1 = (0,1)

(b) (z10,z11) = V 0 := (0,n1) =⇒ (z20,z21) = Hm−1 = (n2,n2−1)

(c) (z10,z11) = V 0 := (n1,0) =⇒ (z20,z21) = Hm−1 = (n2,0)

(d) (z10,z11) = V 0 := (n1,n1−1) =⇒ (z20,z21) = Hm−1 = (0,n2)

The bases are illustrated in Figure 3. Basis (b) is the same as basis B1 in Figure 4.1 in
Hou and Prékopa (2007) (regarding that the order of z j ’s there are decreasing) which
was the only dual feasible basis there.

n2 • ◦ ◦ · · · ◦ ◦ ◦
n2−1 • ◦ ◦ · · · ◦ ◦ ◦
n2−2 • ◦ ◦ · · · ◦ ◦ ◦
...

...
...

...
. . .

...
...

...
2 • ◦ ◦ · · · ◦ ◦ ◦
1 ∗ ∗ ◦ · · · ◦ ◦ ◦
0 ∗ ∗ • · · · • • •

0 1 2 · · · (n1

−2)

(n1

−1)
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Figure 3: Bases of Example 3.1. The elements of I0 are denoted by asterisks, those of the I j ’s
by bullets.
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4. Bounding the expectations of pseudo-Boolean functions of binary random
variables

Let A1, . . . ,As be arbitrary events in some probability space, and introduce the
notations

P(Ai1 ∩·· ·∩Aik) = pi1...ik , 1 � i1 < · · ·< ik � s. (4.1)

We want to give bounds for P(A1∪·· ·∪As) assuming, that some of the probabilities of
(4.1) are known. The Boolean probability bounding problem is formulated as follows.
Define

aKJ =
{

1 if K ⊂ J,
0 if K �⊂ J,

vJ = P

((⋂
j∈J

A j

)
∩
(⋂

j �∈J

A j

))
, pK = P

(⋂
j∈K

Aj

)
for any K,J ⊂ {1, . . . ,s} . Then we have the equations

∑
J⊂{1,...s}

aKJvJ = pK , K ⊂ {1, . . . ,s}.

We formulate the following LP:

min(max) ∑
/0 �=J⊂{1,...,s}

xJ

subject to

∑
J⊂{1,...s}

aKJxJ = pK , K ⊂ {1, . . . ,s}

for |K|� m,
xJ � 0, J ⊂ {1, . . . ,s}.

(4.2)

Problem (4.2) can be reformulated as an MDMP. Consider the event sequence
A1, . . . ,As and define the random vector X = (X1, . . . ,Xs) such that Xj is the charac-
teristic random variable of the event Aj , j = 1, . . . ,s , i.e.

Xj =
{

1 if Aj occurs,
0 otherwise.

Define the function f (z1, . . . ,zs) , (z1, . . . ,zs) ∈ Z = {0,1}× ·· ·×{0,1} as follows:

f (z1, . . . ,zs) =
{

0 if (z1, . . . ,zs) = (0, . . . ,0),
1 otherwise.

(4.3)

If m+1 is even (odd) then all divided differences of the function (4.16) of total order
m+1 are nonpositive (nonnegative).

The equivalent MDMP is the following:

min(max)
1

∑
i1=0

· · ·
1

∑
is=0

fi1...is pi1...is
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subject to
1

∑
i1=0

· · ·
1

∑
is=0

zα1
1i1
· · · zαs

sis
pi1...is = μα1...αs

for α j = 0,1; j = 1, . . . ,s; α1 + · · ·+αs � m
pi1...is � 0, all i1, . . . , is,

(4.4)

where 00 = 1, by definition. We can see that the objective function is indeed the prob-
ability of the union of the events while the constraints are the same as those in (4.2)

Now, let us consider problem (4.4) with an arbitrary function f (z1, . . . ,zs) , defined
on (z1, . . . ,zs) ∈ {0,1}s . Problem (4.2) can be rewritten in a more compact form:

min(max) f T p
subject to

Ăp = b̆
p � 0.

(4.5)

In this section we consider the following subscript set

I =
{
(i1, . . . , is)| 0 � i j � 1, integers, j = 1, . . . ,s, i1 + . . .+ is � m

}
. (4.6)

Corresponding to the points ZI we assign the Lagrange polynomial, given by its
Newton’s form

LI (z1, . . . ,zs) = ∑
i1+...+is�m

0�i j�1, j=1,...,s

[Z1i1 ; · · · ;Zsis ; f ]
s

∏
j=1

i j−1

∏
k=0

(
z j− z jk

)
,

where, by definition,
i j−1

∏
k=0

(
z j− z jk

)
= 1, for i j = 0.

(4.7)

The residual function is defined as:

RI(z1, . . . ,zs)

=
s

∑
h=1

⎛⎜⎜⎝ ∑
0+ih+1···+is=m

0�i j�1, j=(h+1),...,s

[
z1; · · · ;zh−1;Z

′
h0;Z(h+1)ih+1

; · · · ;Zsis ; f
]
(zh− zh0)

×
s

∏
h+1

i j−1

∏
k=0

(
z j− z jk

)
+ ∑

1+ih+1+···+is�m
0�i j�1, j=(h+1),...,s

[
z1; · · · ;zh−1;Z

′
h1;Z(h+1)ih+1

; · · · ;Zsis ; f
] 1

∏
l=0

(zh− zhl)

×
s

∏
h+1

i j−1

∏
k=0

(
z j− z jk

)⎞⎟⎟⎠ .

(4.8)
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THEOREM 4.1. Consider the Lagrange polynomial (4.7), corresponding to the
points ZI , where I is defined in (4.6). For any z = (z1, . . . ,zs) for which the function f
is defined, we have the equality

LI(z1, . . . ,zs)+RI(z1, . . . ,zs) = f (z1, . . . ,zs). (4.9)

Proof. The assertion can be proved similarly as the proof of Theorem 4.1 in
Prékopa (1998). �

THEOREM 4.2. Let 0 = z j0 < z j1 = 1, j = 1, . . . ,s. Suppose that the function
f (z ), z ∈ Z has nonnegative mixed divided differences of total order m+1 .

Under these conditions LI(z1, . . . ,zs) , defined by (4.7), is a unique suitable H -type
Lagrange polynomial on ZI and satisfies the relations

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (4.10)

i.e., the set of columns B̆ of Ă in problem (4.5), with the subscript set I of (4.6), is a
dual feasible basis in the minimization problem (4.5), and

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (4.11)

If B̆ is also a primal feasible basis in problem (4.5), then the inequality (4.11) is sharp.
If all the above mentioned divided differences are nonpositive, then (4.10) and

(4.11) hold with reversed inequality signs.

Proof. Similar to the proof of Theorem 2.2. �

THEOREM 4.3. Let 1 = z j0 > z j1 = 0, j = 1, . . . ,s. Suppose that the function
f (z ), z ∈ Z has nonnegative mixed divided differences of total order m + 1 . Under
these conditions we have the following assertions:

(a) If m+ 1 is even, then the Lagrange polynomial LI(z1, . . . ,zs) , defined by (4.7),
satisfies

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (4.12)

i.e., the set of columns B̆ in Ă , corresponding to the subscripts I of (4.6), is a
dual feasible basis in the minimization problem (4.5). We also have the inequality

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (4.13)

If B̆ is also a primal feasible basis in the LP (4.5), then the lower bound (4.13) for
E[ f (X1, . . . ,Xs)] is sharp.

(b) If m+1 is odd, then the Lagrange polynomial, defined by (4.7), satisfies

f (z1, . . . ,zs) � LI(z1, . . . ,zs), (z1, . . . ,zs) ∈ Z, (4.14)
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i.e., the basis B̆ is dual feasible in the maximization problem (4.5). We also have
the inequality

E[ f (X1, . . . ,Xs)] � E[LI(X1, . . . ,Xs)]. (4.15)

If B̆ is also a primal feasible basis in the LP (4.5), then the upper bound (4.15) for
E[ f (X1, . . . ,Xs)] is sharp.

If all the above mentioned divided differences are nonpositive, then (4.12), (4.13),
(4.14) and (4.15) hold with reversed inequality signs.

Proof. Similar to the proof of Theorem 2.3. �

The dual feasible bases that appear in Theorems 4.2 and 4.3 are illustrated in Fig-
ure 4, for the three-dimensional case.
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Figure 4: Dual feasible bases of Theorems 4.2 (figure (a)) and 4.3 (figure (b)), where m = 2,
s = 3

Prékopa (1998) observed that the probability bounds, corresponding to some spe-
cial dual feasible bases in MDMP, reproduce the Bonferroni bounds. Since the bound-
ing problem was embedded in an LP, the dual algorithm could be applied, with given
dual feasible basis as initial basis, to obtain the best possible bounds. It was also shown
on a numerical example that the Bonferroni bound may be meaningless but the obtained
algorithmic bound based on the same input data is quite good. Similar phenomenon can
be observed here, too.

If m+ 1 is even (odd) then all divided differences of the function (4.16) of total
order m+1 are nonpositive (nonnegative). It follows from this, that the bases in The-
orems 4.2 and 4.3 are dual feasible in problem (4.4), with the objective function (4.3).
This also means that we have found dual feasible bases to problem (4.2), which can
serve for bounding the probability of the union of events A1, . . . ,An . It can be shown
that those bounds are the same as the Bonferroni-bounds of order m , that are frequently
weak or trivial. However, those dual feasible bases can be used as initial bases carry
out the dual method and find the sharp bounds.
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If we want to create dual feasible bases for the probability of the intersection, i.e.,
for P(A1∩·· ·∩An), then we can work with the same constraints that are in the MDMP
(4.4) and the new objective function is

f (z1, . . . ,zs) =
{

1 if (z1, . . . ,zs) = (1, . . . ,1),
0 otherwise.

(4.16)

It is easy to check that all divided differences of any order of the function (4.3) are
nonnegative. Using this we can construct dual feasible bases for the new MDMP (4.4),
where the objective function is given by (4.16).

EXAMPLE 4.1. The following example is taken from Kuai, Alajaji and Taka-
hara (2000) and Prékopa and Gao (2005). There are 6 events: A1, . . . ,A6 , 15 possible
outcomes with probabilities given in the table below.

Outcomes x p(x) A1 A2 A3 A4 A5 A6

x0 0.012 × × ×
x1 0.022 × ×
x2 0.023 × × ×
x3 0.033 ×
x4 0.034 × × ×
x5 0.044 × × ×
x6 0.045 × × ×
x7 0.055 × × ×
x8 0.056 × ×
x9 0.066 × ×
x10 0.067 × × ×
x11 0.077 ×
x12 0.078 × × ×
x13 0.088 ×
x14 0.089 × × × ×

We give sharp lower and upper bounds for the probability of the union of the
events, using the probabilities of some intersections of the Ai ’s. We solve problem
(4.4) with the objective function (4.3). We use the bases of Theorems 4.2 and 4.3 as
initial bases of the dual method of CPLEX. The results depending on the parameter m
of (4.4) are:

m Minimum Iteration Maximum Iteration
2 0.789 13 0.955 27
3 0.789 11 0.789 20
4 0.789 0 0.789 12
5 0.789 0 0.789 1

Kuai, Alajaji and Takahara (2000) give 0.7222 as a lower bound, using probabil-
ities of the single events and intersections of pairs of events. Prékopa and Gao (2005)
gives 0.73145 as a lower bound and 0.8038333 as an upper bound. They use intersec-
tions of up to three events.
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Other bounding approaches that are based on the Boolean probability bounding
scheme include Bukszár (2003), Bukszár and Prékopa (2001), Bukszár and Szántai (2002),
Prékopa and Gao (2005), Prékopa, Vizvári and Regős (1997), Vizvári (2007).

5. Bounding multivariate moment generating functions

The moment generating function of a random variable X is the function M defined
by the equation

M(t) = E[etX ], t ∈ IR .

If M(t) is finite in an open interval J around 0, then M completely determines the
distribution of X. Also, M has derivatives of all orders in J and M(n)(t) = E[XnetX ], t ∈
J . This implies that M(n)(0) = E[Xn],n = 1,2, . . . .

The joint moment generating function of the random variables X1, . . . ,Xs is de-
fined as

M(t1, . . . ,ts) = E[et1X1+···+tsXs ].

If it is finite in an open neighborhood around the origin, then M completely determines
the distribution of X = (X1, . . . ,Xs) . Other interesting properties are: M(0, . . . ,0,ti,
0, . . . ,0) = Mi(ti), i = 1, . . . ,s and

∂α1+···αsM
∂ t1α1 · · ·∂ tsαs

(0, . . . ,0) = μα1...αs .

More details about (joint) generating function can be found, e.g., in Ross (2002).
If we assume that X has a finite support, then we can use the MDMP for bound-

ing the value of the joint moment generating function for certain values of (t1, . . . ,ts)
in terms of the (mixed) power moments of X . Recently, Ibrahim and Mugdadi (2005)
gave bounds for the values of univariate moment generating functions, based on mo-
ments.

For any fixed (t1, . . . ,ts) � 0 all divided differences of the function et1z1+···+tszs

are nonnegative. It is also true that the m + 1st divided differences are nonnegative
(nonpositive) for (t1, . . . ,ts) � 0 if m+1 is even (odd). In these cases the methods of
Section 2 can be applied as it is shown in the following

EXAMPLE 5.1. We use the Min and Max Algorithms of Section 2 to give lower
and upper bounds for the bivariate moment generating function M(t1,t2) , where t1 =
0.04 and t2 = 0.05. The codes for the calculation are written in Wolfram’s Mathe-
matica. Assume that the random variables X1,X2 have uniform univariate distributions
on the supports Z1 = Z2 = {0, . . . ,14} and let Z = Z1× Z2 . To create the bivariate
moments for our example we have used the uniform distribution on Z .

Using the mentioned univariate marginals and the mixed moments of order up to
m , we have obtained the following results:
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m Lower CPU Upper CPU
2 1.91194 0.28 1.98564 0.28
3 1.94560 0.58 1.95640 0.56
4 1.95009 1.18 1.95108 1.19
5 1.95051 2.59 1.95060 2.59
6 1.95053 6.11 1.95056 6.13

Note that problem (1.3) as an LP is numerically unstable, CPLEX frequently re-
ported infeasibility even though the problems were feasible by construction. The Min
and Max algorithms, however, always provided with us the correct numerical results.

6. Bounding expected utilities

The most general definition of a von Neumann-Morgenstern type utility function
u(z), z � 0 only requires that it should be an increasing function, i.e., u′(z) > 0. It
is called risk averse, if we also have u′′(z) < 0 which means that the function is also
concave.

More generally, we may require:

(−1)n−1u(n)(z) > 0, n = 1,2, . . . . (6.1)

Utility functions satisfying (6.1) are called mixed by Caballe and Pomansky (1996).
For economic justification see Ingersoll (1987). Relation (6.1) means that u(−z) is a
completely monotone function. Examples of mixed utility functions are:

u(z) = a log
(
1+

z
b

)
, u(z) =−ae−bz,

where a > 0, b > 0.
In multiattribute utility theory (MAU) the well-known multiplicative form of Keeney

and Raiffa (1976) is the following:

Ku(z1, . . . ,zs)+1 =
s

∏
i=1

(Kkiui(zi)+1) (6.2)

with K �= 0. (The case K = 0 leads to a weighted additive from.)
The risk averse multiattribute utility function may be defined in such a way that

u(z1, . . . ,zs) is increasing in each variable and concave as an s-variate function.
In addition, we may require

(−1)i1+···+is−1 ∂ i1+···+isu(z1, . . . ,zs)

∂ zi1
1 · · · ∂ zis

s
> 0, 1 � i1 + · · · + is. (6.3)

This is a multivariate counterpart of relations (6.1).
The above properties are usually not true for the functions (6.2). However, it is

easy to see that the following is valid for (6.2) in case of s = 2:

(−1)i1+i2
∂ i1+i2u(z1,z2)

∂ zi1
1 ∂ zi2

2

> 0, 1 � i1 and 1 � i2, (6.4)
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assuming that u1 and u2 are mixed utility functions satisfying (6.1).
A class of multiattribute utility functions that fulfill the concavity as well as prop-

erty (6.3) is defined in Prékopa and Mádi-Nagy (2008).

DEFINITION 6.1. Let k � 1 and D an open convex set. We define the utility
function u as:

u(z1, . . . ,zs) := log
[
k(eg1(z1)−1) · · ·(egs(zs)−1)−1

]
, (6.5)

where for every (z1, . . . ,zn) ∈ D the following conditions hold:

eg j(z j) > 2, j = 1, . . . ,s, (6.6)

g′j(z j) > 0

g(i)
j (z j) � 0, if i > 1 and is odd

g(i)
j (z j) � 0, if i is even

j = 1, . . . ,s.

(6.7)

Let X = (X1, . . . ,Xs) be a random vector where the support of Xj is a known finite
set Zj = {z j0, . . . ,z jn j} . Assume that the marginal distributions and the collection of
mixed moments μα1...αs , α1 + · · ·αs � m are known, and we want to give bounds for
the utility

E[u(X1, . . . ,Xs)], (6.8)

where the utility function u satisfies (6.3) or (6.4). Below we specialize u in three
different ways and use the MDMP to create bounds for (6.8).

EXAMPLE 6.1. Let s = 2. Assume that both random variables have uniform dis-
tribution on the sets Z1 = Z2 = {0,0.1,0.2, . . . ,1} and let Z = Z1× Z2 . Define the
mixed moments of (X1,X2) by the use of the uniform distribution on Z . Let

u1(z1) =
log(1+ z1)

log2
,

u2(z2) =
1− e−z2

1− 1
e

and define the multiattribute utility function:

u(z1,z2) = k1u1(z1)+ k2u2(z2)+Kk1k2u1(z1)u2(z2). (6.9)

We compute bounds for E[u(X1,X2)] in case of k1 = 0.3 and k2 = 0.2 (K = 1− k1−
k2 ), where the univariate marginal distributions and the mixed moments of order up to
m are used. The function u(z1,z2) satisfies (6.4), hence lower and upper bounds can
be given by the use of the Min and Max Algorithms of Section 2. The calculation uses
codes written in Mathematica. The results are:
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m Lower CPU Upper CPU
2 0.405218 0.08 0.467877 0.08
3 0.432214 0.16 0.445082 0.16
4 0.437435 0.36 0.439693 0.36
5 0.438281 0.86 0.438624 0.86
6 0.438418 2.30 0.438473 2.28

EXAMPLE 6.2. Let s = 2, Z1 = Z2 = {0, . . . ,19} . Consider the independent ran-
dom variables X ,Y1,Y2 that have Poisson distributions with parameters 3,4,5, respec-
tively. Define the random vector:

(X1,X2) := (min(X +Y1,19),min(X +Y2,19)).

Take the bivariate utility function

u(z1,z2) = log[(eαz1+a−1)(eβ z2+b−1)−1], (6.10)

defined for z1,z2 , satisfying

eαz1+a > 2, eβ z2+b > 2.

The function (6.10) is a special case of the function in (6.5), hence it satisfies the rela-
tions (6.3). This means that in order to give bounds for the expected utility we can apply
the Min and Max Algorithms of Section 2. Let α = 0.75, β = 1.25, a = 2, b = 3. We
have obtained the following results:

m Lower CPU Upper CPU
2 20.2456980 0.88 20.2458790 0.81
3 20.2456982 1.75 20.2458790 1.70
4 20.2456989 3.45 20.2458790 3.45
5 20.2457012 2.63 20.2458790 7.20
6 20.2457066 15.44 20.2458790 15.47

EXAMPLE 6.3. Let s = 3. We calculate the expected value of u(X1,X2,X3) where
u is the following utility function

u(z1,z2,z3) = log
[
(eα1z1+a1−1)(eα2z2+a2−1)(eα3z3+a3−1)−1

]
(z1,z2,z3) ∈ Z,

(6.11)

and

Z = (0,1,2,3,4,5,6,7,8,9)× (0,1,2,3,4,5,6,7,8,9)× (0,1,2,3,4,5,6,7,8,9).

We choose α1 = α2 = α3 = a1 = a2 = a3 = 1. The function (6.11) is again a special
case of the function (6.5).
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Assume that X1,X2,X3 are independent and each has uniform distribution on
{0,1,2,3,4,5,6,7,8,9} . We have used the joint uniform distribution to generate mixed
moments. The results are summarized below.

m Minimum Iteration Maximum Iteration
2 16.272644221 375 16.294708615 65
3 16.279932313 428 16.294702240 515
4 16.288384112 779 16.294688894 391
5 16.290690088 1121 16.294643748 1326
6 16.292421158 1605 16.294587574 1198

The application of the dual method of CPLEX frequently reported infeasibility
even though the problems are feasible by construction. However, using one of our
dual feasible bases as initial basis in the dual algorithm, we were able to carry out the
algorithm and obtain the correct result.

7. Conclusions

We have presented examples to show that the MDMP technique can efficiently
be used for bounding expectations of functions of random variables. In the examples
the univariate marginals and mixed moments of total order up to m are assumed to
be known. We have obtained results not mentioned in Hou and Prékopa (2007), for
bounding expectations of Monge arrays (as functions) of random variables. We have
presented an efficient method for bounding pseudo-Boolean functions of binary random
variables, where the functions have special monotonicity property. We have also shown
that the technique is useful for bounding the values of multivariate moment generating
functions and the expectation of some multiattribute utility functions. Sometimes the
bounds are given in terms of formulas, sometimes in terms of algorithms. In the latter
case the dual algorithm of linear programming is adapted for the problems at hand. The
application of standard LP packages, e.g., CPLEX, frequently failed to provide us with
the correct numerical answers. However, using one of our dual feasible bases, as initial
basis in the dual algorithm or use the Min and Max algorithms in the bivariate case, the
correct numerical results could be obtained.
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[3] J. BUKSZÁR, Hypermultitrees and sharp Bonferroni inequalities, Math. Inequal. Appl., 6, 4 (2003),

727–743.
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