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Lp –ANALOGUES OF BERNSTEIN AND MARKOV INEQUALITIES

G. A. MUÑOZ-FERNÁNDEZ, V. M. SÁNCHEZ

AND J. B. SEOANE-SEPÚLVEDA

(Communicated by T. Erdély)

Abstract. Let ‖ ·‖∞ denote the sup norm on [−1,1] . If x ∈ [−1,1] is fixed and Mm,n(x) is the
best constant in

|p′(x)| � Mm,n(x)‖p‖∞,

for all trinomials p of the form p(x) = axm + bxn + c with a,b,c ∈ R , then the exact value of
Mm,n(x) is known for large families of pairs (m,n) ∈ N

2 . Here we consider the same problem
for Lp -norms.

1. Introduction

If n ∈ N let Pn(R) denote the set of all algebraic polynomials of degree at most
n with real coefficients endowed with the norm defined by ‖p‖∞ := max{|p(x)| :−1 �
x � 1} for all p ∈ Pn(R) . According to a well known result due to A. Markov [7, 8],

‖p′‖∞ � n2‖p‖∞, (1)

for all p ∈ Pn(R) . The constant n2 appearing in (1) is sharp and equality is attained
for the n th Chebyshev polynomial of the first kind defined by Tn(x) := cos(narccosx)
on [−1,1] .

A number of results appeared in the following years (see, e.g., [4, 9]) trying to ob-
tain generalizations of A. Markov’s inequality (1) for higher derivatives and pointwise
S. Bernstein’s type estimates on the derivatives of a polynomial (see, e.g., [1, 4]). As
far as the latter question is concerned, inequality (1) may be refined for specific values
of x in the interior of [−1,1] . In particular, S. Bernstein [1] proved that

|p′(x)| � n√
1− x2

‖p‖∞, (2)

for all x ∈ (−1,1) and for all p ∈ Pn(R) , which improves (1) for every

x ∈
(
−
√

n2−1
n ,

√
n2−1
n

)
. It is interesting to notice that inequality (2) is only sharp
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for the n roots of Tn . Actually the estimate provided by (2) is not even good for the
values of x close to the endpoints of [−1,1] .

S. Bernstein and A. Markov’s original papers are not readily accessible, so for a
modern exposition on this and other related topics we refer to [2] and the references
therein.

Since the middle seventies a considerable volume of research has been done in
order to obtain generalizations of the classical S. Bernstein and A. Markov theorems
mentioned above for polynomials on a general real Banach space. In this sense we
recommend the references [5, 10, 17, 18, 19, 21] and the more recent [6, 20]. The
study of the Lp -analogues of the classical S. Bernstein and A. Markov inequalities for
polynomials on the real line has gained some relevance in the last years. If we consider
the space (Pn(R),‖ · ‖p) , where 1 � p < ∞ ,

‖P‖p :=
(∫ 1

−1
|P(x)|pdx

) 1
p

,

for every P ∈ Pn(R) and Mp
n is the best constant in

‖P′‖p � Mp
n ‖P‖p,

then it is known that

lim
n→∞

Mp
n

n2 < ∞,

see, e.g., [16, Theorem 15.6.2]. For more background on Bernstein-Markov inequalities
and other polynomial inequalities consult [3].

In this paper we provide sharp Bernstein and Markov estimates for some spaces
of real trinomials with the norm ‖ · ‖2 . The same problem for the sup norm has been
studied in [12] using a characterization of the unit ball of the space of real trinomials
on [−1,1] that appeared in [11]. Spaces of complex trinomials were considered by S.
Neuwirth in [14]. In order to discuss trinomials on the real line, for every m,n ∈ N

with m > n , let Pm,n(R) denote the space of trinomials P(x) = axm + bxn + c with
a,b,c ∈ R .

2. Inequalities in the space (Pm,n(R),‖ · ‖2): Bernstein and Markov estimates

We would like to begin this section by looking at a couple of the simplest cases
that one can find when studying polynomial spaces with the norms ‖ · ‖p , 1 � p < ∞ .

To start with, we consider the space (P1(R),‖ · ‖p) or, in other words, the space
R

2 endowed with the norm given by

‖(a,b)‖p =
(∫ 1

−1
|ax+b|p dx

) 1
p

,

for all (a,b) ∈ R
2 .

It can be seen that the unit ball of this norm is symmetric with respect to both
axes, x and y . Indeed, since it is symmetric with respect to the origin, it suffices to
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show that ‖(a,b)‖p = ‖(−a,b)‖p for all (a,b) ∈ R
2 , which can be seen by means of

the substitution t = −x .
Now, let p ∈ R with p � 1. If a �= 0 then, performing the change of variable

t = ax+b and some simple calculations, one can obtain that

‖(a,b)‖p
p =

(a+b)|a+b|p+(a−b)|a−b|p
a(p+1)

.

On the other hand ‖(0,b)‖p
p = 2|b|p .

It can also be seen that

max{a : ‖(a,b)‖p = 1} = p
√

p+1,

from which it follows that Mp
1 = p

√
p+1.

The plot thickens when studying polynomials of higher degree. Now consider the
space (P2(R),‖ · ‖p) or, in other words, the space R

3 endowed with the norm given
by

‖(a,b,c)‖p =
(∫ 1

−1

∣∣ax2 +bx+ c
∣∣p dx

) 1
p

,

for all (a,b,c) ∈ R
3 . A formula for ‖ · ‖1 on P2(R) is obtained below.

THEOREM 2.1. If (a,b,c) ∈ R
3 , Δ = b2 − 4ac and, when Δ > 0 , r1 = −b−√

Δ
2a

and r2 = −b+
√
Δ

2a , we have

‖(a,b,c)‖1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣ 2a+6c
3

∣∣ if a = 0 or Δ� 0 or min{|r1|, |r2|} � 1,

sign(a)(2a3+6a2c)+Δ
3
2

3a2 if a �= 0, Δ> 0 and max{|r1|, |r2|} < 1,

sign(b)(−b3+6a2b+6abc)+Δ
3
2

6a2 otherwise.

Proof. If a = 0 the problem is trivial. Otherwise, since

‖(a,b,c)‖1 = |a| ·
∥∥∥∥
(

1,
b
a
,
c
a

)∥∥∥∥
1
,

we can assume without loss of generality that a = 1. Thus, we will calculate the value
of ‖(1,β ,γ)‖1 . In this situation one has that Δ = β 2 − 4γ and the roots of p(x) =
x2 +βx+ γ are

r1 =
−β −√

Δ
2

and r2 =
−β +

√
Δ

2

and, of course, if Δ> 0, then r1 < r2 .
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The value of ‖(1,β ,γ)‖1 will strongly depend on the location of r1 and r2 , i.e.,
we will have the following cases:

1. If Δ� 0 or min{|r1|, |r2|} � 1, then

‖(1,β ,γ)‖1 =
∣∣∣∣
∫ 1

−1
(x2 +βx+ γ)dx

∣∣∣∣ = 2

∣∣∣∣γ+
1
3

∣∣∣∣ .
2. If Δ> 0 and r1,r2 ∈ (−1,1) , then

‖(1,β ,γ)‖1 =
∫ r1

−1
(x2 +βx+ γ)dx−

∫ r2

r1
(x2 +βx+ γ)dx+

∫ 1

r2
(x2 +βx+ γ)dx

=
1
3

(
2+6γ+Δ

3
2

)
.

3. If Δ> 0, r1 � −1 and r2 ∈ (−1,1) , then

‖(1,β ,γ)‖1 = −
∫ r2

−1
(x2 +βx+ γ)dx+

∫ 1

r2
(x2 +βx+ γ)dx

=
1
6

(
−β 3 +6β (1+ γ)+Δ

3
2

)
,

and since β > 0, we obtain

‖(1,β ,γ)‖1 =
1
6

(
sign(β )(−β 3 +6β (1+ γ))+Δ

3
2

)
.

4. Finally, if Δ> 0, r1 ∈ (−1,1) and r2 � 1, then

‖(1,β ,γ)‖1 =
∫ r1

−1
(x2 +βx+ γ)dx−

∫ 1

r1
(x2 +βx+ γ)dx

=
1
6

(
β 3 −6β (1+ γ)+Δ

3
2

)
.

Since now β < 0, it follows

‖(1,β ,γ)‖1 =
1
6

(
sign(β )(−β 3 +6β (1+ γ))+Δ

3
2

)
.

A simple substitution and some calculations lead to the conclusion of the theorem.
The complexity of the previous formula gives an idea of the difficulties involved in

the study of the spaces of polynomials with the norms ‖·‖p , p � 1. However a number
of interesting results can be obtained dealing with the norm ‖ · ‖2 as we will see right
now.

If n ∈ N and a0,a1, . . . ,an ∈ R then one can obtain by direct integration that

‖a0 +a1x+ . . .+anx
n‖2

2 = 2
n

∑
i=0

a2
i

2i+1
+2 ∑

0�i< j�n

[1+(−1)i+ j]
aia j

i+ j +1
. (3)

If we restrict attention to the spaces of trinomials Pm,n(R) , then:
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THEOREM 2.2. For every m,n ∈ N with m > n and every a,b,c ∈ R we have
that ‖axm +bxn + c‖2

2 is given by

2a2

2m+1
+

2b2

2n+1
+2c2 +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4ab
m+n+1 if m,n are odd,
4ac
m+1 if m is even and n is odd,
4bc
n+1 if m is odd and n is even,

4ab
m+n+1 + 4ac

m+1 + 4bc
n+1 if m,n are even.

(4)

In the special case where m and n have different parity, the above result provides
a very simple parametrization of the unit sphere Sm,n of (Pn(R),‖ · ‖2) . In particular,
if we set

fk,l(ζ ,η) =

√
2l +1

2

(
1− 2ζ 2

2k+1
−2η2− 4ζη

k+1

)

and

Ek =
{

(ζ ,η) ∈ R
2 : 1− 2ζ 2

2k+1
−2η2− 4ζη

k+1
� 0

}
,

for k, l ∈ N , then Em = πac(Sm,n) if m is even and n is odd, and En = πbc(Sm,n)
if m is odd and n is even, where πac and πbc denote the linear projections given
by πac(a,b,c) = (a,c) and πbc(a,b,c) = (b,c) respectively, for every (a,b,c) ∈ R

3 .
Therefore

Sm,n =

{
{axm± fm,n(a,c)xn + c : (a,c) ∈ Em} if m is even and n is odd,

{± fn,m(b,c)xm +bxn + c : (b,c) ∈ En} if m is odd and n is even.

2.1. Markov constants in (Pm,n(R),‖ · ‖2)

Using the parametrization of Sm,n found just above, we can obtain the following
sharp Markov estimate for the space Pm,n(R) whenever m,n have different parity.

THEOREM 2.3. Let m,n ∈ N with m > n have different parity. Also, let Mm,n be
the best constant in the inequality

‖p′‖2 � Mm,n‖p‖2,

for every p ∈ Pm,n(R) . Then

Mm,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+1)

√
2m+1
2m−1

if m is even and n is odd,

m

√
2m+1
2m−1

if m is odd, n is even and m > n+1,

m

√
2m−1
2m−3

if m is odd and n = m−1.
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Proof. First, when m is even and n is odd, using the parametrization of Sm,n

obtained above, we have

M2
m,n = sup{‖amxm−1±n fm,n(a,c)xn−1‖2

2 : (a,c) ∈ Em}

= sup

{
2m2a2

2m−1
+

2n2 fm,n(a,c)2

2n−1
: (a,c) ∈ Em

}
.

Now, since P(a,c) := 2m2a2

2m−1 + 2n2 fm,n(a,c)2

2n−1 is a 2-homogeneous polynomial plus a con-
stant and Em is the unit ball of a Banach space (a Hilbert space actually), then P attains
its maximum at either (0,0) or on ∂Em . Notice that fm,n ≡ 0 on ∂Em . Hence

M2
m,n = max

{
|P(0,0)|,sup

{
|P(a,c)| : 2a2

2m+1
+2c2 +

4ac
m+1

= 1

}}

= max

{
n2 2n+1

2n−1
,

2m2

2m−1
sup

{
a :

2a2

2m+1
+2c2 +

4ac
m+1

= 1

}2
}

.

Some technical (but simple) calculations, lead to

Mm,n = max

{
(m+1)

√
2m+1
2m−1

,n

√
2n+1
2n−1

}
.

Similarly, for m odd and n even we have

Mm,n = max

{
m

√
2m+1
2m−1

,(n+1)

√
2n+1
2n−1

}
.

Now, if m is even and n is odd, then m
√

2m+1
2m−1 > n

√
2n+1
2n−1 , and if m is odd and n is

even, then m
√

2m+1
2m−1 < (n+1)

√
2n+1
2n−1 if and only if n = m−1. This proves the result.

REMARK 2.4. Notice that in the previous theorem we have used that

sup

{
a :

2a2

2m+1
+2c2 +

4ac
m+1

= 1

}

is attained at the values

a = (m+1)

√
m+1/2

m
and c = −

√
m+1/2

m
.

This fact will be again used in Theorem 2.6.

REMARK 2.5. If m,n ∈ N have the same parity, the idea used to prove Theorem
2.3 yields an extraordinary long, complicated and not-easy-to-handle formula for Mm,n .
In the authors’ opinion, neither the description of that proof nor the inclusion of an
explicit formula for Mm,n whenever m,n ∈ N have the same parity, would improve the
present paper, for which reason the details are spared to the interested reader.
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2.2. Bernstein functions in (Pm,n(R),‖ · ‖2)

Given a fixed x ∈ [−1,1] , in this section we determine the maximum of p′(x)
when p ranges through all the elements of Bm,n . This maximum is the solution to the
L2 -version of the classical Bernstein problem for polynomials in Pm,n(R) .

THEOREM 2.6. If for every m,n ∈ N with different parity and every x ∈ [−1,1]
we define

Mm,n(x) =

⎧⎪⎨
⎪⎩

√
n2(2n+1)x2(n−1)+(m+1)2(2m+1)x2(m−1)

2 if m is even and n is odd,√
m2(2m+1)x2(m−1)+(n+1)2(2n+1)x2(n−1)

2 if m is odd and n is even,

then

|p′(x)| � Mm,n(x)‖p‖2,

for all p∈Pm,n(R) . Moreover, the estimate Mm,n(x) is sharp in the previous inequal-
ity.

Proof. For a fixed x ∈ [−1,1] , notice that if Mm,n(x) represents the best constant
in

|p′(x)| � Mm,n(x)‖p‖2,

for every p ∈ Pm,n(R) , then

Mm,n(x) = sup{|p′(x)| : p ∈ Sm,n}.

Recall that Sm,n is the unit sphere of (Pn(R),‖ · ‖2) . From now on we will assume
that m is even and n is odd. The other case is similar. Then using the parametrization
of Sm,n obtained as a consequence of Theorem 2.2, we have

Mm,n(x) = sup{|amxm−1±n fm,n(a,c)xn−1| : (a,c) ∈ Em}
= sup{m|a||x|m−1 +n fm,n(a,c)|x|n−1 : (a,c) ∈ Em},

where

fm,n(a,c) =

√
2n+1

2

(
1− 2a2

2m+1
−2c2− 4ac

m+1

)
,

and

Em =
{

(a,c) ∈ R
2 : 1− 2a2

2m+1
−2c2− 4ac

m+1
� 0

}
.
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Let us define
Fx,m,n(a,c) := m|a||x|m−1 +n fm,n(a,c)|x|n−1,

for every (a,c) ∈ Em . Then Fx,m,n attains its maximum either at an interior point of
Em or at a point in ∂Em . In order to maximize Fx,m,n over ∂Em , just notice that
Fx,m,n(a,c) = m|a||x|m−1 for every (a,c) ∈ ∂Em and that the maximum value of |a|
for the points (a,c) in ∂Em can be easily proved to be amax = m+1

m

√
2m+1

2 . On the
other hand, if Fx,m,n attains it maximum over Em at an interior point of Em , it has to
be either at a critical point of Fx,m,n or at a point where Fx,m,n is not differentiable,

namely the points (0,c) . The reader can check that ∂Fx,m,n
∂c (a,c) = 0 is equivalent to

a = −(m+ 1)c . Now, if we assume that a is positive, replacing the previous value of

a in the equation ∂Fx,m,n
∂a (a,c) = 0, after some algebraic calculations we arrive at the

following value for c :

c0 = − (2m+1)(m+1)|x|m−n

m
√

2(2n+1)n2 +2(m+1)2(2m+1)x2(m−n)
. (5)

A similar conclusion is derived if a is negative. Thus we have proved that Fx,m,n has
a pair of symmetrical critical points, namely (−(m + 1)c0,c0) and ((m + 1)c0,−c0) ,
with c0 given by (5) and that these critical points turn out to be in the interior of Em as
the reader can easily check. Moreover, at those critical points we have that

Fx,m,n(−(m+1)c0,c0) = Fx,m,n((m+1)c0,−c0)

=

√
n2(2n+1)x2(n−1) + (m+1)2(2m+1)x2(m−1)

2
,

and that, clearly,

(m+1)

√
2m+1

2
|x|m−1 �

√
n2(2n+1)x2(n−1) + (m+1)2(2m+1)x2(m−1)

2
,

for every x ∈ [−1,1] . Also, notice that if a = 0,

max{Fx,m,n(0,c) : (0,c) ∈ Em} = n

√
2n+1

2
|x|n−1,

and that, clearly,

n

√
2n+1

2
|x|n−1 �

√
n2(2n+1)x2(n−1) + (m+1)2(2m+1)x2(m−1)

2
.

This concludes the proof.
To finish we will consider another interesting question related to the study of poly-

nomial inequalities when considering constraint families of polynomials. Given a map-
ping φ : [−1,1] → [0,+∞) (a majorant in the sequel), the set Pφ

n (R) stands for the
set of polynomials of degree at most n on the real line satisfying |p(x)| � φ(x) for all
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x ∈ [−1,1] . The Markov problem for polynomials with a curved majorant φ consists
of finding the best constant Mφ

n in the inequality

‖p′‖ � Mφ
n ‖p‖,

for p ∈ Pφ
n (R) . The cases where φ(x) = c(x) =

√
1− x2 (circular majorant) and

φ(x) = |x| (linear majorant) were studied by Rahman in [15], where sharp Markov
constants are given, and in [13] where the authors provide sharp Markov constants
and Bernstein estimates in both cases. In the following remark we give the Markov
constants in Pc

3(R) (polynomials with circular majorant) for the L1 and L2 norms.
Notice that those constants are the same as the Markov constants of the polynomials in
P3(R) with roots at ±1 with the L1 and L2 norms.

REMARK 2.7. If pa,b(x) = (1− x2)(ax+b) then

‖pa,b‖1 =

⎧⎪⎪⎨
⎪⎪⎩

4|b|
3

if a = 0 or (a �= 0 and

∣∣∣∣ba
∣∣∣∣ � 1),∣∣∣∣b4−6a2b2−3a4

6a3

∣∣∣∣ if a �= 0 and

∣∣∣∣ba
∣∣∣∣ � 1.

This, together with Theorem 2.1, let us obtain

‖p′a,b‖1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2|b| if a = 0,

(12a2 +4b2)
3
2

27a2 if a �= 0 and

∣∣∣∣ba
∣∣∣∣ � 1,

sign(a)4|b|(9a2−b2)+4(3a2 +b2)
3
2

27a2 if a �= 0 and

∣∣∣∣ba
∣∣∣∣ � 1.

Thus, if we call α = b
a , one has

‖p′a,b‖1

‖pa,b‖1
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3/2 if a = 0,

16(α2 +3)
3
2

9|α4−6α2−3| if |α| � 1,

9|α|− |α|3 +(α2 +3)
3
2

9|α| if |α| � 1.

Now, since the maximum of the previous mapping is equal to 16
√

3
9 , which is

attained at α = 0, we have that

‖p′a,b‖1 � 16
√

3
9

‖pa,b‖1,

and equality is attained for the polynomials pa,0 , with a �= 0.
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Similarly, if we now work with the L2 norm, one arrives at

‖p′a,b‖2

‖pa,b‖2
=

⎧⎪⎪⎨
⎪⎪⎩

√
5/2 if a = 0,√
21+35α2

2+14α2 otherwise.

Using the latter we obtain

‖p′a,b‖2 �
√

21
2
‖pa,b‖2,

and equality is attained for the polynomials pa,0 , with a �= 0. We spare the details of
the technical calculations to the interested reader.
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[3] P. BORWEIN AND T. ERDÉLYI, Polynomials and polynomial inequalities, Graduate Texts in Mathe-

matics, 161, Springer-Verlag, New York, 1995.
[4] R. J. DUFFIN AND A. C. SCHAEFFER, On some inequalities of S. Bernstein and W. Markoff, Bull.

Amer. Math. Soc., 44 (1938), 289–297.
[5] L. A. HARRIS, Bounds on the derivatives of holomorphic functions of vectors, Colloque D’Analyse

(Rio de Janeiro, 1972), 145–163, ed. L. Nachbin, Act. Sc. et Ind., 1367, Herman, Paris, 1975.
[6] L. A. HARRIS, Multivariate Markov polynomial inequalities and Chebyshev nodes, J. Math. Anal.

Appl., 338 (2008), 350–357.
[7] A. A. MARKOV, On a problem of D. I. Mendeleev (Russian), Zap. Im. Akad. Nauk., 62 (1889), 1–24.
[8] A. A. MARKOV, On a question by D. I. Mendeleev, Electronic article to be downloaded from

http://www.math.technion.ac.il/hat/papers.html.
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Universidad Complutense de Madrid

Plaza de Ciencias 3
28040 Madrid

Spain
e-mail: gustavo fernandez@mat.ucm.es

V. M. Sánchez
Departamento de Análisis Matemático
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