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Abstract. Let Ω ∈ L(logL+)2(Sn−1 × Sm−1) (n, m � 2) satisfy some cancellation conditions.
We prove the Lp boundedness (1 < p < ∞ ) of the singular integral

T f (x1,x2) = p. v.
∫ ∫

Rn×Rm

Ω(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

f (x1 − y1,x2 − y2)dy1 dy2,

where ρ1 , ρ2 are some metrics which are homogeneous with respect to certain non-isotropic
dilations. We also study the above singular integral along some surfaces.

1. Introduction

Consider the elliptic differential operator with constant coefficients

D =
n

∑
i, j=1

ai, j
∂ 2

∂xi∂x j
.

As noted by E. Stein and S. Wainger [14], in order to study the existence and regularity
results of D , one needs to consider singular integral operators with convolution kernels
K satisfying the following conditions

a) K is homogeneous of degree −n : K(tx1, ...,txn) = t−nK(x1, ...,xn) , t > 0,
b) K is C∞ away from the origin,

c)
∫

Sn−1
K(x)dx = 0.

Similarly, to study the existence and regularity results of the heat equation

L(u) =
∂u
∂x1

−
n

∑
j=2

∂ 2u

∂x2
j

,

one considers singular integral operators with the corresponding kernels K that satisfy
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ã ) K(t2x1, ...,txn) = t−n−1K(x1, ...,xn) , t > 0,

b̃ ) K is C∞ away from the origin,

c̃)
∫

Sn−1
K(x)(2x′21 + x′22 + · · ·+ x′2n)dx = 0.

For a more general parabolic differential operator with constant coefficients, E.
Fabes and N. Rivière [9] studied singular integrals with kernels K which satisfy (among
some other conditions)

a ) K(tα1x1, ...,tαnxn) = tαK(x1, ...,xn) , t > 0, α = ∑n
i=1αi ,

b )
∫

Sn−1
K(x)J(x′)dx = 0, where J(x′) ∈ C∞((0,2π)n−2 × (0,π)) and without

loss of generality, 1 � α1 � α2 � · · · � αn.

Note that the property (a ) above can be expressed as K(Atx) = |det(At)|−1K(x),
where At = diag[tα1 , · · ·,tαn ] is a diagonal matrix. Note also that for each nonzero

x ∈ Rn , the function F(x,t) =
n

∑
i=1

t−2αix2
i is a strictly decreasing function of t > 0.

Therefore, there exists a unique value of t which satisfies the equation F(x,t) = 1. If
we define ρ(x) = t and ρ(0) = 0, then it follows from [9, 14] that ρ is a metric on
Rn . It is well known that (Rn,ρ) is a homogeneous group which admits a family of
dilations δt = exp(A log t) such that ρ(δt x) = tρ(x), t > 0. Here A is a diagonalizable
linear operator with positive eigenvalues α1,α2, ...,αn. By a change of variables to
polar coordinates, each nonzero x ∈ R

n can be written as x = δρ(x′), (x′ = x/|x|).
Thus, there is a unique Radon measure (see [9], [10, p. 14]) dσ̃(x′) = J(x′)dσ(x′),
where J(x′) = α1x′21 + ...+αnx′2n is a C∞ function on Sn−1 which is bounded below
and above by α1 and αn respectively.

Now let T f (x) = p. v.K ∗ f (x) , where the kernel K(x) = Ω(x′)ρ−α(x), and

α =
n

∑
i=1

αi . The following result has been obtained by E. Fabes and N. Rivière.

THEOREM 1.1. [9] If Ω ∈C1(Sn−1) satisfies the cancellation condition

∫
Sn−1

Ω(x′)J(x′)dσ(x′) = 0,

then the singular integral operator T is bounded on Lp(Rn) for 1 < p < ∞.

Subsequently, A. Nagel, N. Rivière, and S. Wainger [12] improved the above the-
orem by weakening the regularity condition on Ω as follows

THEOREM 1.2. [12] If Ω ∈ L log+ L(Sn−1) satisfies the cancellation condition
above, then

||T f ||p � C || f ||p for 1 < p < ∞.

Recently, the above result has been extended further by Y. Chen, Y. Ding, and D.
Fan:
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THEOREM 1.3. [4] If Ω ∈ H1(Sn−1) (the Hardy space on the unit sphere Sn−1 )
satisfies the cancellation condition above, then

||T f ||p � C || f ||p for 1 < p < ∞.

By the above Theorems 1.2 [12] and 1.3 [4], the Lp boundedness of singular
integrals with mixed homogeneity in Rn has been obtained. The extension of this
result to product spaces is not simple, since the singularity now becomes two lower
dimensional surfaces, instead of a singular point as in the previous case. The purpose
of this paper is to extend the result in [12] to product spaces (see section 2.3). In
classical harmonic analysis, it is well-known that singular integrals are dominated by
Hardy-Littlewood maximal functions and square functions. We will show in section
3.2 that a singular integral along surfaces in the product domain is controlled by Hardy-
Littlewood maximal functions acting on each variable along surfaces. We state our
theorems in sections 2.3 and 3.2, and their proofs are given in sections 2.4 and 3.3
respectively. For recent works on the topic of singular integrals, the reader may view
[1-9] among many other good references that are not listed in this paper.

2. Singular integral with rough kernels

2.1. Definitions and Notations

Most recent works dealing with singular integrals follow the ideas in [7]. In this
section, we will extend two lemmas in [7]. For notational convenience, throughout the
rest of this paper the dimesions n1 and n are the same, and similarly the dimensions n2

and m are equal to each other. Let ρ1 be the metric on R
n1 obtained from the unique so-

lution of the equation
n1

∑
i=1

t−2αix2
i = 1, where t > 0 , x = (x1,x2, ...,xn1) ∈ R

n1 , and 0 <

α1 � α2 � · · · � αn1 . Similarly, let ρ2 be the metric on Rn2 obtained from the unique

solution of the equation
n2

∑
i=1

t−2βiy2
i = 1, t > 0, y = (y1,y2, ...,yn2) ∈ Rn2 , and 0 <

β1 � β2 � · · · � βn2 . Denote A(1)
ρ1 = diag[ρα1

1 , ...,ραn1
1 ] and A(2)

ρ2 = diag[ρβ1
2 , ...,ρβn2

2 ] ,
ρ1,ρ2 > 0. Denote α = α1 +α2 + · · ·+αn1 , and β = β1 + β2 + · · ·+ βn2 . Denote
J1(u) = α1u2

1 + ...+αn1u
2
n1

and J2(v) = β1v2
1 + ...+βn2v

2
n2

, where u = (u1, ...,un1) ∈
Sn1−1 and v = (v1, ...,vn2) ∈ Sn2−1 .

If f is a function defined on Rn1 ×Rn2 ×Rn3 and hi ∈ Rni (i = 1,2) , xi ∈ Rni ,
we define (following the notations in [5])

Δ1
h1

f (x1,x2,x3) = f (x1 +h1,x2,x3)− f (x1,x2,x3)

Δ2
h2

f (x1,x2,x3) = f (x1,x2 +h2,x3)− f (x1,x2,x3)

Δ1,2
h1,h2

f (x1,x2,x3) = Δ1
h1

(
Δ2

h2
f (x1,x2,x3)

)
.

Given a measure μ ∈ Rn1+n2+n3 , we define the measures μ (1) ∈ Rn2+n3 , μ (2) ∈
R

n1+n3 , μ (1,2) ∈ R
n3 by μ (1)(E) = μ(Rn1 ×E), μ (2)(F) = μ(Rn2 ×F), μ (1,2)(G) =
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μ(Rn1 ×Rn2 ×G) , where E, F, G are Borel sets in Rn2+n3 , Rn1+n3 , Rn3 respectively.
Finally, we write |σ | for the total variation of the measure σ .

2.2. Preliminary Results

LEMMA 1. [10] Let Φ(i) be a function in S (Rni) (i = 1,2) such that suppΦ̂(i) ⊂
{ζi ∈ Rni : 1/2 � ρi(ζi) � 2} . Define Ψ(i) by Ψ̂(i)(ζi) = Φ̂(i)(ρi(ζi)). For j,k ∈ Z,

x = (x1,x2, ...,xn1)∈Rn1 , y = (y1,y2, ...,yn2)∈Rn2 , define Ψ(1)
j (x) = 2− jαΨ(1)(A(1)

2− j x)

and Ψ(2)
k (y) = 2−kβΨ(2)(A(2)

2−k y) . Set Ψ(x,y) = Ψ(1)(x)Ψ(2)(y) and let Ψ j,k(x,y) =

Ψ(1)
j (x)Ψ(2)

k (y). Let δ be the Dirac distribution on R
n3 . Then for f ∈ Lp(Rn1+n2),

g ∈ Lp(Rn1+n2+n3), we have∥∥∥∥∥∥
(
∑
j,k

|Ψ j,k ∗ f |2
)1/2

∥∥∥∥∥∥
p

� C || f ||p,

and ∥∥∥∥∥∥
(
∑
j,k

|(Ψ j,k ⊗ δ )∗ g|2
)1/2

∥∥∥∥∥∥
p

� C ||g||p for 1 < p < ∞.

REMARK 1. Lemma 1 is a discrete version of Theorem 7.7 [10, p. 223] which can
be extended to the product setting (see [8], [13, pp. 28–47]).

LEMMA 2. [5] Let σ j,k be Borel measures in Rn1+n2+n3 such that ||σ j,k|| � C
for all j,k ∈ Z. If σ∗( f ) = sup j,k ||σ j,k| ∗ f | is bounded in Lq(Rn1+n2+n3) for some
q > 1, then the following vector value inquality holds∥∥∥∥∥∥

(
∑
j,k

|σ j,k ∗ g j,k|2
)1/2

∥∥∥∥∥∥
po

� C

∥∥∥∥∥∥
(
∑
j,k

|g j,k|2
)1/2

∥∥∥∥∥∥
po

for

∣∣∣∣ 1
po

− 1
2

∣∣∣∣= 1
2q

.

LEMMA 3. Let Ω ∈ L(logL+)2(Sn−1×Sm−1), (n,m � 2) satisfy

a)
∫

Sn−1
Ω(u,v)J1(u)dμ1(u) = 0 ∀ v ∈ Sm−1, and

b)
∫

Sm−1
Ω(u,v)J2(v)dμ2(v) = 0 ∀ u ∈ Sn−1, where J1(u) = α1u2

1 + · · ·+αnu2
n

and J2(v) = β1v2
1 + · · ·+ βmv2

m , u = (u1, ...,un) ∈ Sn−1 , and v = (v1, ...,vm) ∈ Sm−1 .
Here μ1 , μ2 are normalized measures on Sn−1 and Sm−1 respectively.

Let Eo =
{
(u,v) ∈ Sn−1×Sm−1 : |Ω(u,v)| � 2

}
, and for l ∈N, let El = {(u,v) ∈

Sn−1×Sm−1 : 2l < |Ω(u,v)| � 2l+1
}

. Let A(Ω) =
{
l ∈ N : μ(El) > 2−4l

}
, where

μ = μ1× μ2 is the product measure on Sn−1×Sm−1. Then Ω has a decomposition

Ω = Ωo + ∑
l∈A(Ω)

Ωl,
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where Ωo, Ωl (l ∈ A(Ω)) all satisfy the cancellation conditions above and

||Ωo||L2(Sn−1×Sm−1) � C, ||Ωo||L1(Sn−1×Sm−1) � C,

||Ωl||L2(Sn−1×Sm−1) �C22l||Ω||L1(El), ||Ωl||L1(Sn−1×Sm−1) �C ||Ω||L1(El) for all l ∈A(Ω).

REMARK 2. The proof of this Lemma 3 will be given in section 2.5.

THEOREM A. [5] Let μ j,k be uniformly bounded positive measures in Rn1+n2+n3 .
Suppose that

|μ̂ j,k(ζ )| � C |A(1)
2l j ζ1|−a/l|A(2)

2lkζ2|−b/l (1)

|Δ1
ζ1
μ̂ j,k(0,ζ2,ζ3)| � C |A(1)

2l( j+1)ζ1|a/l|A(2)
2lkζ2|−b/l (2)

|Δ2
ζ2
μ̂ j,k(ζ1,0,ζ3)| � C |A(1)

2l j ζ1|−a/l|A(2)
2l(k+1)ζ2|b/l (3)

|Δ1,2
ζ1,ζ2

μ̂ j,k(0,0,ζ3)| � C |A(1)
2l( j+1)ζ1|a/l|A(2)

2l(k+1)ζ2|b/l (4)

for some a,b > 0 and some arbitrary positive integer l � 1, and for all j,k ∈ Z. Sup-
pose also that the maximal functions

M̃(i)gi = sup
j,k

|μ (i)
j,k ∗ gi| (i = 1,2), M̃(1,2)g = sup

j,k
|μ (1,2)

j,k ∗ g|

are bounded in Lp for all p > 1. Then M f (x) = sup
j,k

|μ j,k ∗ f (x)| is bounded in Lp for

all p > 1, and the bound is independent of l .

THEOREM B. [5] Let σ j,k be Borel measures in Rn1+n2+n3 such that ||σ j,k||�C,
and

|σ̂ j,k(ζ1,ζ2,ζ3)| � C |A(1)
2l( j+1)ζ1|a/l|A(2)

2l(k+1)ζ2|b/l (5)

� C |A(1)
2l( j+1)ζ1|a/l|A(2)

2lk ζ2|−b/l (6)

� C |A(1)
2l j ζ1|−a/l|A(2)

2l(k+1)ζ2|b/l (7)

� C |A(1)
2l j ζ1|−a/l|A(2)

2lk ζ2|−b/l (8)

for some a,b > 0 and some arbitrary positive integer l � 1, and for all j,k ∈ Z. If
σ∗( f ) = sup j,k ||σ j,k| ∗ f | is bounded in Lq(Rn1+n2+n3) for some q > 1 , then

T f (x) =∑
j,k

σ j,k ∗ f (x) and g( f )(x) =

(
∑
j,k

|σ j,k ∗ f (x)|2
)1/2

are bounded in

Lq(Rn1+n2+n3) for

∣∣∣∣ 1p − 1
2

∣∣∣∣= 1
2q

and the bound does not depend on l .

REMARK 3. Theorems A and B are the modified versions of Theorems 1 and 2 [5]
respectively. Note that when l = 1, α1 =α2 = · · ·=αn = 1 and β1 = β2 = · · ·= βn = 1,
Theorems A and B recover Theorems 1 and 2 [5]. The proofs of these theorems will be
given in section 2.6. Also for the rest of this paper, we denote the letter C as a constant
which may vary at different occurences. However, it does not depend on any essential
variable.



160 LARRY CHEN AND HUNG VIET LE

2.3. Main Theorem

Let h ∈ L∞(R+ ×R
+) , where R

+ = [0,∞). Let Ω ∈ L(logL+)2(Sn−1 × Sm−1),
(n,m � 2) satisfy

a)
∫

Sn−1
Ω(u,v)J1(u)dμ1(u) = 0 ∀ v ∈ Sm−1, and

b)
∫

Sm−1
Ω(u,v)J2(v)dμ2(v) = 0 ∀ u ∈ Sn−1, where J1(u) = α1u2

1 + · · ·+αnu2
n

and J2(v) = β1v2
1 + · · ·+βmv2

m , u = (u1, ...,un) ∈ Sn−1 , and v = (v1, ...,vm) ∈ Sm−1 .
For f ∈ S (Rn×Rm) (n,m � 2), define the singular integral T f by

T f (x1,x2) = p. v. K ∗ f (x1,x2)

= p. v.
∫ ∫

Rn×Rm

Ω(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

f (x1 − y1,x2− y2)dy1 dy2

Recall that α = α1 + · · ·+αn and β = β1 + · · ·+βm .

THEOREM 1. Let h ∈ L∞(R+ ×R+) and let Ω ∈ L(logL+)2(Sn−1 × Sm−1) ,
(n,m � 2) satisfy the cancellation conditions above. Then the singular integral T f
initially defined on the Schwartz space S (Rn ×Rm) has a bounded extension from
Lp(Rn ×Rm) to Lp(Rn ×Rm) for 1 < p < ∞, provided that 0 < α1 < α2 < · · · < αn

and 0 < β1 < β2 < · · ·< βm . The above results also hold when 0 <α1 =α2 = · · ·=αn ,
or 0 < β1 = β2 = · · · = βm .

It should be remarked that Ω ∈ L(logL+)2(Sn−1× Sm−1) (n, m � 2) is best pos-
sible, since it has been shown in [3] that ∀ε > 0, there is an Ω ∈ L(logL+)2−ε(Sn−1×
Sm−1) (satisfying certain cancellation conditions) such that the singular integral

TΩ f (x1,x2) = p. v.
∫ ∫

Rn×Rm

Ω(y′1,y′2) f (x1 − y1,x2− y2)
|y1|n|y2|m dy1 dy2

is not bounded on Lp(Rn ×Rm) for any p ∈ (1,∞) .

2.4. Proof of Theorem 1

The decomposition of Ω in Lemma 3 induces the decomposition of the corre-
sponding operators

T = To + ∑
l∈A(Ω)

Tl , (9)

where To f = p. v.Ko ∗ f and Tl f = p. v.Kl ∗ f . Here Ko and Kl are defined the same
way as the kernel K with Ω being replaced by Ωo and Ωl respectively. We will show
that for 1 < p < ∞,

||To f ||p � C || f ||p and (10)

||Tl f ||p � Cl2||Ω||L1(El)|| f ||p , l ∈ A(Ω). (11)
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Therefore we will obtain

||T f ||p � ||To f ||p + ∑
l∈A(Ω)

||Tl f ||p

� C

(
1+ ∑

l∈A(Ω)
l2 ||Ω||L1(El)

)
|| f ||p

� C
(
1+ ||Ω||L(logL+)2(Sn−1×Sm−1)

)
|| f ||p for 1 < p < ∞.

Since the proofs of inequalities (10) and (11) are basically the same, we will only prove
(11). We will apply Theorems A and B (without the third variable) to prove (11). For
(x1,x2), (y1,y2), (ξ1,ξ2) ∈ R

n×R
m, we write

Tl f (x1,x2) = p. v.
∫ ∫

Rn×Rm

Ωl(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

f (x1 − y1,x2 − y2)dy1 dy2

= ∑
j,k

∫
ρ1(y1)∼=2l j

∫
ρ2(y2)∼=2lk

Ωl(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

f (x1−y1,x2−y2)dy2dy1

≡∑
j,k

(σ j,k ∗ f )(x1,x2). (12)

(Here ρ1(y1) ∼= 2l j means 2l j � ρ1(y1) � 2l( j+1) and similar definition for ρ2(y2) ∼=
2lk ).

The Fourier transform of σ j,k is

σ̂ j,k(ξ1,ξ2) =
∫
ρ1(y1)∼=2l j

∫
ρ2(y2)∼=2lk

ei(ξ1·y1+ξ2·y2)Ωl(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

dy2 dy1.

(13)
Let μ j,k denote the total variations of σ j,k for all j,k ∈ Z. In order to apply Theorems
A and B, we must show that

||σ j,k||, ||μ j,k|| � Cl2||Ω||L1(El), and

σ̂ j,k (resp. μ̂ j,k ) satisfy the estimates (5)–(8) (resp. (1)–(4)) for all j,k ∈ Z , l ∈ A(Ω)
(with the bound Cl2||Ω||L1(El) instead of C ). Moreover, we need to show that the
partial maximal functions

M̃(i)gi = sup
j,k

|μ (i)
j,k ∗ gi| (i = 1,2)

are bounded in Lp for all p > 1. By a change of variables to polar coordinates,

σ̂ j,k(ξ1,ξ2) =
2l( j+1)∫
2l j

2l(k+1)∫
2lk

∫ ∫
Sn−1×Sm−1

ei(A(1)
ρ1 ξ1·u+A(2)

ρ2 ξ2·v)

×Ωl(u,v)h(ρ1,ρ2)J1(u)J2(v)dσ(u)dσ(v)
dρ2

ρ2

dρ1

ρ1
(14)
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and note that

μ̂ j,k(ξ1,ξ2) =
∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∫ ∫
Sn−1×Sm−1

ei(A(1)
ρ1 ξ1·u+A(2)

ρ2 ξ2·v)

×|Ωl(u,v)h(ρ1,ρ2)|J1(u)J2(v)dσ(u)dσ(v)
dρ2

ρ2

dρ1

ρ1
. (15)

It is clear that ||σ j,k|| = ||μ j,k|| = μ̂ j,k(0,0) � Cl2||h||∞||Ω||L1(El) for all j,k ∈ Z. By
the cancellation conditions of Ωl, we have

|σ̂ j,k(ξ1,ξ2)| = |Δ1,2
ξ1,ξ2

σ̂ j,k(0,0)|

�
∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∫ ∫
Sn−1×Sm−1

|Ωl(u,v)h(ρ1,ρ2)|

×|(eiA
(1)
ρ1 ξ1·u −1)(eiA

(2)
ρ2 ξ2·v −1)|J1(u)J2(v)dσ(u)dσ(v)

dρ2

ρ2

dρ1

ρ1

� Cl2||Ω||L1(El) |A
(1)
2l( j+1)ξ1| |A(2)

2l(k+1)ξ2|.
Also,

|σ̂ j,k(ξ1,ξ2)| = |Δ1
ξ1
σ̂ j,k(0,ξ2)|

�
∫ 2l( j+1)

2l j

∫
Sn−1

|I(ρ1,u)||eiA
(1)
ρ1 ξ1·u−1|J1(u)dσ(u)

dρ1

ρ1
, (16)

where I(ρ1,u) =
∫ 2l(k+1)

2lk

∫
Sm−1

Ωl(u,v)h(ρ1,ρ2)e
iA

(2)
ρ2 ξ2·vJ2(v)dσ(v)

dρ2

ρ2
. Note that

|I(ρ1,u)|2 � Cl||h||2∞
∫ ∫

Sm−1×Sm−1

Ωl(u,v)Ωl(u, ṽ)|K(ξ2;v, ṽ)|J2(v)J2(ṽ)dσ(v)dσ(ṽ),

where

K(ξ2;v, ṽ) =
∫ 2l(k+1)

2lk
eiA(2)

ρ2 ξ2·(v−ṽ) dρ2

ρ2
. (17)

It is clear that |K(ξ2;v, ṽ)| � Cl. On the other hand,

|K(ξ2;v, ṽ)| �
l−1

∑
j=0

∣∣∣∣∣
∫ 2lk+ j+1

2lk+ j
eiA

(2)
ρ2 ξ2·(v−ṽ) dρ2

ρ2

∣∣∣∣∣
=

l−1

∑
j=0

∣∣∣∣
∫ 2

1
e
iA(2)

2lk+ jt
ξ2·(v−ṽ) dt

t

∣∣∣∣
� C

l−1

∑
j=0

2− jβ1/m|A(2)
2lkξ2|−1/m|η · (v− ṽ)|−1/m

� Cl|A(2)
2lkξ2|−1/m|η · (v− ṽ)|−1/m
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where η =
A(2)

2lkξ2

|A(2)
2lkξ2|

, and the next to last inequality follows from Theorem 1 [12]. Thus

|K(ξ2;v, ṽ)| � Clmin
{

1, |A(2)
2lk ξ2|−1/m|η·(v− ṽ)|−1/m

}
� Cl|A(2)

2lk ξ2|−1/2m|η · (v− ṽ)|−1/2m,

and therefore by Hölder’s inequality,

|I(ρ1,u)|2 � Cl2|A(2)
2lkξ2|−1/2m

∫
Sm−1

|Ωl(u,v)|2dσ(v).

An application of Hölder’s inequality to (16) produces

|σ̂ j,k(ξ1,ξ2)|2 � Cl|A(1)
2l( j+1)ξ1|2

∫ 2l( j+1)

2l j

∫
Sn−1

|I(ρ1,u)|2dσ(u)
dρ1

ρ1

� Cl4|A(1)
2l( j+1)ξ1|2|A(2)

2lkξ2|−1/2m||Ωl||22.

Thus |σ̂ j,k(ξ1,ξ2)| � Cl2 |A(1)
2l( j+1)ξ1||A(2)

2lk ξ2|−1/4m22l||Ω||L1(El). On the other hand, a

direct integration of inequality (16) yields |σ̂ j,k(ξ1,ξ2)| � Cl2|A(1)
2l( j+1)ξ1|||Ω||L1(El),

which together with the above inequality implies that

|σ̂ j,k(ξ1,ξ2)| � Cl2||Ω||L1(El)|A
(1)
2l( j+1)ξ1||A(2)

2lkξ2|−1/4ml.

By symmetry, we also obtain

|σ̂ j,k(ξ1,ξ2)| = |Δ2
ξ2
σ̂ j,k(ξ1,0)| � Cl2||Ω||L1(El)|A

(1)
2l j ξ1|−1/4nl|A(2)

2l(k+1)ξ2|.

An application of Hölder’s inequality to (14) yields

|σ̂ j,k(ξ1,ξ2)|2 � Cl2||h||2∞
∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∣∣∣∣∣∣
∫ ∫

Sn−1×Sm−1

Ωl(u,v)J1(u)J2(v)

×ei(A(1)
ρ1 ξ1·u+A

(2)
ρ2 ξ2·v)dσ(u)dσ(v)

∣∣∣∣∣
2
dρ2

ρ2

dρ1

ρ1

� Cl2
∫ ∫

(Sn−1×Sm−1)2

Ωl(u,v)Ωl(ũ, ṽ)

∣∣∣∣∣
(∫ 2l( j+1)

2l j
eiA

(1)
ρ1 ξ1·(u−ũ) dρ1

ρ1

)

×
(∫ 2l(k+1)

2lk
eiA(2)

ρ2 ξ2·(v−ṽ) dρ2

ρ2

)∣∣∣∣∣dσ(u)dσ(v)dσ(ũ)dσ(ṽ)

� Cl4|A(1)
2l j ξ1|−1/2n|A(2)

2lkξ2|−1/2m||Ωl ||22.
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Thus |σ̂ j,k(ξ1,ξ2)|�Cl2|A(1)
2l j ξ1|−1/4n|A(2)

2lkξ2|−1/4m22l||Ω||L1(El). Also a direct integra-

tion of (14) leads to |σ̂ j,k(ξ1,ξ2)| � Cl2||Ω||L1(El), which together with the above in-
equality yields

|σ̂ j,k(ξ1,ξ2)| � Cl2||Ω||L1(El)|A
(1)
2l j ξ1|−1/4nl|A(2)

2lk ξ2|−1/4ml .

Consequently, σ̂ j,k satisfy the estimates (5)–(8) in Theorem B for all j,k ∈ Z. By
inspecting equations (14) and (15), we infer that μ̂ j,k also satisfy the estimates (1)–(4)
in Theorem A for all j,k ∈ Z.

It remains to prove the Lp boundedness of the partial maximal functions M̃(i)gi =
sup
j,k

|μ (i)
j,k ∗ gi| (i = 1,2) for all p > 1. By symmetry it is enough to consider the case

i = 1. We may assume g1 � 0. For x ∈ Rn, we have

M̃(1)g1(x) = sup
j,k

|μ (1)
j,k ∗ g1(x)|

� sup
j,k

∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∫ ∫
Sn−1×Sm−1

|Ωl(u,v)h(ρ1,ρ2)|g1(x−A(1)
ρ1 u)

×J1(u)J2(v)dσ(u)dσ(v)
dρ2

ρ2

dρ1

ρ1

� Cl||h||∞
∫ ∫

Sn−1×Sm−1

|Ωl(u,v)|
{

sup
j

∫ 2l( j+1)

2l j
g1(x−A(1)

ρ1 u)
dρ1

ρ1

}
dσ(u)dσ(v).

Note that

sup
j

∫ 2l( j+1)

2l j
g1(x−A(1)

ρ1 u)
dρ1

ρ1
� 2

l−1

∑
i=0

sup
j

{
1

2l j+i+1

∫ 2l j+i+1

2l j+i
g1(x−A(1)

t u)dt

}
,

where each summand in the sum above is bounded in Lp(Rn) for all p > 1 and the
bound is independent of the direction vector u∈ Sn−1 (see [7, Corollary 5.1]). It follows
from Minskowski’s inequality that ||M̃(1)g1||p � Cl2||Ω||L1(El)||g1||p for 1 < p � ∞.
Consequently, we have proved that

||Tl f ||p � Cl2||Ω||L1(El)|| f ||p, l ∈ A(Ω).

Finally observe that the estimate of the function K(ξ2;v, ṽ) in equation (17) and
Corollary 5.1 [7] both rely on Theorem 1 [14], which in turn require all coefficients αi

(and similarly all β j ) to be distinct. However, the estimate of the function K(ξ2;v, ṽ)
and Corollary 5.1 [7] still hold in case 0 < α1 = α2 = · · ·= αn , or 0 < β1 = β2 = · · ·=
βm . The proof of Theorem 1 is complete.

2.5. Proof of Lemma 3

The decomposition of Ω ∈ L(logL+)(Sn−1) can be found in [2]. We generalize
this idea to the product setting. Let μ1 and μ2 be the normalized measures on Sn−1
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and Sm−1 respectively. Let μ = μ1 × μ2 be defined on Sn−1 × Sm−1. For l ∈ A(Ω),
define

Ω(1)
l (u) =

∫
Sm−1

Ω(u,v)χEl(u,v)J2(v)dμ2(v)

and

Ω(2)
l (v) =

∫
Sn−1

Ω(u,v)χEl(u,v)J1(u)dμ1(u).

Now define al ( l ∈ A(Ω)) on Sn−1×Sm−1 by

al(u,v) =
1

||J1||∞||J2||∞||Ω||L1(El)

{
||J1||1||J2||1Ω(u,v)χEl (u,v)−||J1||1Ω(1)

l (u)

−||J2||1Ω(2)
l (v)

}
+

1
||J1||∞||J2||∞||Ω||L1(El)

∫ ∫
Sn−1×Sm−1

Ω(u,v)χEl (u,v)

×J1(u)J2(v)dμ1(u)dμ2(v).

Then each al satisfies the cancellation conditions as Ω does. Moreover, ||al||L1(Sn−1×Sm−1)

� 4 and ||al||L2(Sn−1×Sm−1) � 22l+3.

Define Ω̃o as

Ω̃o = ||J1||1||J2||1Ω− ∑
l∈A(Ω)

||J1||∞||J2||∞||Ω||L1(El)al

≡ ||J1||1||J2||1Ω− ∑
l∈A(Ω)

Ω̃l, where Ω̃l = ||J1||∞||J2||∞||Ω||L1(El)al.

Observe that Ω̃o also satisfies the cancellation conditions. Moreover, by the cancella-
tion condtions of Ω , we have

Ω̃o(u,v) = ||J1||1||J2||1Ω(u,v)−||J1||1
∫

Sm−1
Ω(u,v)J2(v)dσ(v)

−||J2||1
∫

Sn−1
Ω(u,v)J1(u)dσ(u)

+
∫ ∫

Sn−1×Sm−1

Ω(u,v)J1(u)J2(v)dσ(u)dσ(v)− ∑
l∈A(Ω)

Ω̃l(u,v)

= ||J1||1||J2||1Ω(u,v)−
∞

∑
l=0

||J1||1Ω(1)
l (u)−

∞

∑
l=0

||J2||1Ω(2)
l (v)

+
∞

∑
l=0

∫ ∫
Sn−1×Sm−1

Ω(u,v)χEl (u,v)J1(u)J2(v)dσ(u)dσ(v)− ∑
l∈A(Ω)

Ω̃l(u,v)

= ||J1||1||J2||1Ω(u,v) ∑
l /∈A(Ω)

χEl(u,v)− ∑
l /∈A(Ω)

||J1||1Ω(1)
l (u)− ∑

l /∈A(Ω)
||J2||1Ω(2)

l (v)

+ ∑
l /∈A(Ω)

∫ ∫
Sn−1×Sm−1

Ω(u,v)χEl (u,v)J1(u)J2(v)dσ(u)dσ(v).
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Now if l = 0, then |Ω(u,v)χEo(u,v)|� 2, and
∫ ∫

Sn−1×Sm−1

|Ω(u,v)|2χEo(u,v)dσ(u)dσ(v)

� C .

If l ∈ N\A(Ω) , then |Ω(u,v)χEl (u,v)| � 2l+1 , μ(El) � 2−4l, and thus∫ ∫
Sn−1×Sm−1

|Ω(u,v)|2χEl (u,v)dσ(u)dσ(v) � 2−2l+2 . It follows that ||Ω̃o||L2(Sn−1×Sm−1) �

C, which implies ||Ω̃o||L1(Sn−1×Sm−1) � C.

Now let Ωo = ||J1||−1
1 ||J2||−1

1 Ω̃o and Ωl = ||J1||−1
1 ||J2||−1

1 Ω̃l. We then have the
decomposition

Ω = Ωo + ∑
l∈A(Ω)

Ωl,

where Ωo and Ωl (l ∈ A(Ω)) satisfy the desired conclusions stated in the lemma.
Lemma 3 is proved.

2.6. Proofs of Theorems A and B

The proofs of these theorems are essentially similar to the proofs of Theorems
1 and 2 [5] respectively, except for some modifications. However for clarity, we will
prove Theorem B in detail, and omit the proof of Theorem A since the proof of this
Theorem A (unlike the proof of Theorem B) only requires some minor adjustments
(see Remark 4 at the end of this section). We now proceed to prove Theorem B.

Let φ (i) be a function in S (Rni) (i = 1,2) such that suppφ̂ (i) ⊂{ζi ∈ Rni : 1/2 �
ρi(ζi) � 2} , 0 � φ̂ (i) � 1. Moreover, we require

∞

∑
j=−∞

{
φ̂ (i)(2l jρi(ζi))

}2
= 1 for all

ζi 
= 0. For i = 1,2 and j ∈ Z , define ψ(i) and ψ(i)
j by ψ̂(i)(ζi) = φ̂ (i)(ρi(ζi)) and

ψ̂(i)
j (ζi) = φ̂ (i)(2l jρi(ζi)) respectively. Now set ψ(x1,x2) = ψ(1)(x1)ψ(2)(x2) (xi ∈

R
ni , i = 1,2) and let ψ j,k(x1,x2) =ψ(1)

j (x1)ψ
(2)
k (x2) for j,k ∈Z. Note that ψ̂ j,k(ζ1,ζ2)

= ψ̂(1)
j (ζ1)ψ̂

(2)
k (ζ2) and ∑

j,k

ψ̂2
j,k(ζ1,ζ2) = 1 for all (ζ1,ζ2) 
= 0 ∈ Rn1 ×Rn2 . We write

T f = ∑
j,k

σ j,k ∗ f =∑
j,k

σ j,k ∗
(
∑
m,n

(ψ j+m,k+n ⊗ δ )∗ (ψ j+m,k+n⊗ δ )∗ f

)

= ∑
m,n
∑
j,k

(ψ j+m,k+n ⊗ δ )∗ (σ j,k ∗ (ψ j+m,k+n⊗ δ )∗ f ) ≡∑
m,n

Tm,n f .

Then ||T f ||p � ∑m,n ||Tm,n f ||p. We estimate each of the terms of this sum by interpo-
lating between the L2 norm and the Lpo norm (where po is as in Lemma 2). Observe
that
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||Tm,n f ||po � C‖
(
∑
j,k

|σ j,k ∗ (ψ j+m,k+n⊗ δ )∗ f |2
)1/2

‖po

� C‖
(
∑
j,k

|(ψ j+m,k+n ⊗ δ )∗ f |2
)1/2

‖po � C || f ||po ,

where the first and the last inequalities follow from Lemma 1, and the second inequality
follows from Lemma 2. We now calculate the L2 estimates of Tm,n f . Notice that

||Tm,n f ||22 �∑
j,k

∫
R

n3

∫ ∫
Rm,n

j,k

|σ̂ j,k(ζ1,ζ2,ζ3) f̂ (ζ1,ζ2,ζ3)|2dζ1dζ2dζ3,

where

Rm,n
j,k =

{
(ζ1,ζ2) ∈ R

n1 ×R
n2 : 1/2 � 2l( j+m)ρ1(ζ1) � 2, 1/2 � 2l(k+n)ρ2(ζ2) � 2

}
.

By a change of the first two variables to polar coordinates, we obtain

||Tm,n f ||22 � ∑
j,k

∫
R

n3

∫ ∫
Sn1−1×Sn2−1

∫ ∫
Dm,n

j,k

|σ̂ j,k(A
(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3) f̂ (A(1)

ρ1 ζ
′
1,A

(2)
ρ2 ζ

′
2,ζ3)|2

×ρα−1
1 ρβ−1

2 J1(ζ ′
1)J2(ζ ′

2)dρ1dρ2dσ(ζ ′
1)dσ(ζ ′

2)dζ3,

where Dm,n
j,k =

{
(ρ1,ρ2) ∈ R+×R+ : 1/2 � 2l( j+m)ρ1 � 2, 1/2 � 2l(k+n)ρ2 � 2

}
. For

(ρ1,ρ2) ∈Dm,n
j,k , we consider four cases: m,n > 0, m > 0 and n � 0, m � 0 and n > 0,

and finally m,n � 0.

Case 1. m,n > 0. By inequality (5) we have

|σ̂ j,k(A
(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3)| � C |A(1)

2l( j+1)A
(1)
ρ1 ζ

′
1|a/l|A(2)

2l(k+1)A
(2)
ρ2 ζ

′
2|b/l

� C2−(m−1)α1a2−(n−1)β1b.

Thus

||Tm,n f ||22 � C2−2(m−1)α1a2−2(n−1)β1b∑
j,k

∫
R

n3

∫ ∫
Sn1−1×Sn2−1

∫ ∫
Dm,n

j,k

| f̂ (A(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3)|2

×ρα−1
1 ρβ−1

2 J1(ζ ′
1)J2(ζ ′

2)dρ1dρ2dσ(ζ ′
1)dσ(ζ ′

2)dζ3,

and hence ||Tm,n f ||2 � C2−(m−1)α1a2−(n−1)β1b|| f ||2, m,n > 0.

Case 2. m > 0 and n � 0. It follows from (6) that

|σ̂ j,k(A
(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3)| � C |A(1)

2l( j+1)A
(1)
ρ1 ζ

′
1|a/l|A(2)

2lk A
(2)
ρ2 ζ

′
2|−b/l � C2−(m−1)α1a2nβ1b,
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which leads to the inquality ||Tm,n f ||2 � C2−(m−1)α1a2nβ1b|| f ||2, m > 0 and n � 0.

Case 3. m � 0 and n > 0. By using inequality (7) we obtain

|σ̂ j,k(A
(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3)| � C |A(1)

2l j A
(1)
ρ1 ζ

′
1|−a/l|A(2)

2l(k+1)A
(2)
ρ2 ζ

′
2|b/l � C2mα1a2−(n−1)β1b,

so that ||Tm,n f ||2 � C2mα1a2−(n−1)β1b|| f ||2, m � 0 and n > 0.

Case 4. m,n � 0. From (8) we have

|σ̂ j,k(A
(1)
ρ1 ζ

′
1,A

(2)
ρ2 ζ

′
2,ζ3)| � C |A(1)

2l j A
(1)
ρ1 ζ

′
1|−a/l|A(2)

2lk A
(2)
ρ2 ζ

′
2|−b/l � C2mα1a2nβ1b,

and thus ||Tm,n f ||2 � C2mα1a2nβ1b|| f ||2, m,n � 0.

Consequently, ||Tm,n f ||2 � C2−ε1|m|2−ε2|n||| f ||2 for some ε1,ε2 > 0 and for all
m,n ∈ Z.

Now if

∣∣∣∣1p − 1
2

∣∣∣∣ < 1
2q

, then by interpolation we have
1
p

=
θ
2

+
1−θ

po
for some

0 < θ � 1. Therefore, ||T f ||p �∑
m,n

||Tm,n f ||p � C ∑
m,n

2−θε1|m|2−θε2|n||| f ||p � C || f ||p.
The proof of the Lp bounds of g( f ) is similar. Theorem B is proved.

REMARK 4. To prove Theorem A, we choose positive Schwartz functions φ (i) in

S (Rni) (i = 1,2) such that φ̂ (1)(0)= 1 = φ̂ (2)(0), and define φ̂ (1)
j (ζ1)= φ̂ (1)(A(1)

2l( j+1)ζ1)

and φ̂ (2)
k (ζ2) = φ̂ (2)(A(2)

2l(k+1)ζ2) for all j,k ∈ Z . Observe that for each fi ∈ Lp(Rni)

(i = 1,2) , sup
j∈Z

|φ (i)
j ∗ fi(xi)| � CM1 ◦ · · · ◦Mni fi(xi), where each Mj ( j = 1, ....,ni) is

the Hardy-Littlewood maximal operator acting on the j -th component of the variable
xi . The rest of the proof of this theorem is identical to the proof of Theorem 1 [5].

3. Singular integrals along surfaces

3.1. Notations, Definitions and Background

Let R+ stand for [0,∞). A function φ : R+ −→ R is called a type I function if φ
is strictly increasing on [0,∞) and φ ′ is increasing on (0,∞).

A function φ : R+ −→ R or φ : (0,∞) −→ R is a type II function if φ is strictly
decreasing on its domain and φ ′ is increasing on (0,∞).

A function φ : R
+ −→ R is a type III function if

i) φ(0) = 0 and φ is strictly increasing on [0,∞),
ii) φ ′ is decreasing on (0,∞) and
iii) t φ ′(t) � cφ(t) for all t ∈ (0,∞) and for some fixed c > 0.

For f ∈ S (Rn ×Rm ×R) (n,m � 2), consider the following singular integral
along surface

ℑ f (x1,x2,x3) = p. v.
∫ ∫

Rn×Rm

Ω(y′1,y
′
2)h(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

× f (x1 − y1,x2 − y2,x3−Γ(ρ1(y1),ρ2(y2)))dy1 dy2,
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where x1,y1 ∈ Rn, x2,y2 ∈ Rm, x3 ∈ R, y′i = yi/|yi| (i = 1,2), and h and Γ are mea-
surable real-valued functions defined on R+ ×R+.

Denote γt(s) = Γ(s,t) for every fixed t � 0. Similarly, denote γs(t) = Γ(s,t) for
every fixed s � 0.

THEOREM 2. [11] Suppose Γ(s,t) has continuous first order partial derivatives
for all s, t > 0. If γt(s) and γs(t) are either type I, type II or type III functions (with the
constant c in the definition of type III function independent of both variables s and t )
for each fixed t > 0 and for each fixed s > 0 respectively, then the maximal functions

M1,2g(x3) = sup
r1,r2 >0

{
1

r1 r2

∫ r2

0

∫ r1

0
|g(x3−Γ(s,t))|dsdt

}
,

M1g1(x1,x3) = sup
r1,r2 >0

{
1

r1 r2

∫ r2

0

∫ r1

0
|g1(x1 − s,x3−Γ(s,t))|dsdt

}

and

M2g2(x2,x3) = sup
r1,r2 >0

{
1

r1 r2

∫ r2

0

∫ r1

0
|g2(x2 − t,x3−Γ(s,t))|dsdt

}

(x1,x2,x3 ∈ R, g ∈ Lp(R), and g1, g2 ∈ Lp(R2)) are bounded in Lp for all p > 1.

3.2. Theorem 2

Let Ω and h be given as in Theorem 1. Suppose Γ(s, t) has continuous first order
partial derivatives for all s, t > 0. If γt(s) and γs(t) are either type I, type II or type
III functions (with the constant c in the definition of type III function independent of
both variables s and t ) for each fixed t > 0 and for each fixed s > 0 respectively, then
the singular integral along surface ℑ f initially defined on the Schwartz space S (Rn×
Rm ×R) has a bounded extension from Lp((Rn ×Rm ×R) to Lp((Rn ×Rm ×R) for
1 < p < ∞.

EXAMPLES.
1) Consider the surface Γ(s,t) = satb, a,b 
= 0 and s, t � 0 (s > 0 if a < 0 and

similarly t > 0 if b < 0). For each fixed t > 0, the function γt(s) = Γ(s,t) is a type
I function if a � 1, a type III function if 0 < a < 1 and a type II function if a < 0.
Similar conclusion holds for the function γs(t) = Γ(s,t). By Theorem 2, the singular
integral along surface ℑ f is bounded in Lp(Rn+m+1) for 1 < p < ∞.

2) Let Γ(s, t) = sa1ea2s tb1eb2t , a1, b1 � 1 and a2, b2 � 0. Then γt(s) = Γ(s,t) is
a type I function for each fixed t > 0. Similarly, γs(t) = Γ(s,t) is also a type I function
for each s > 0. Thus, ℑ f is bounded in Lp(Rn+m+1) for 1 < p < ∞.

3) Consider the surface with a contact of infinite order at the origin, Γ(s,t) =
s2t2(e−1/s + e−1/t) (s, t > 0) . The functions γt(s) = Γ(s,t) and γs(t) = Γ(s,t) are
type I functions for each fixed s > 0 and each fixed t > 0 respectively. Hence, ℑ f is
bounded in Lp(Rn+m+1) for 1 < p < ∞.
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3.3. Proof of Theorem 2

The proof of this theorem is essentially similar to the proof of Theorem 1. It
is enough to prove the Lp boundedness of the operator ℑl , where ℑl f is obtained
from ℑ f by replacing the kernel Ω by Ωl . As in the proof of Theorem 1, we write
ℑl f =∑

j,k

σ j,k ∗ f , where

σ̂ j,k(ξ1,ξ2,ξ3)

=
∫

ρ1(y1)∼=2l j

∫
ρ2(y2)∼=2lk

ei(ξ1·y1+ξ2·y2)Ωl(y′1,y
′
2)h(ρ1(y1),ρ2(y2))eiξ3Γ(ρ1(y1),ρ2(y2))

ρα1 (y1)ρ
β
2 (y2)

dy2 dy1.

Let μ j,k denote the total variations of σ j,k for all j,k ∈ Z. In view of Theorems
A and B, we need to show that

||σ j,k||, ||μ j,k|| � Cl2||Ω||L1(El), and

σ̂ j,k (resp. μ̂ j,k ) satisfy the estimates (5)–(8) (resp. (1)–(4)) for all j,k ∈ Z , l ∈ A(Ω)
(with the bound Cl2||Ω||L1(El) ). Moreover, we need to prove that the partial maximal

functions M̃(1)g1, M̃(2)g2, and M̃(1,2)g are bounded in Lp for all p > 1.
It is clear that the measures σ j,k and μ j,k are uniformly bounded by Cl2||Ω||L1(El).

The proof for the estimates of σ̂ j,k and μ̂ j,k is the same as those in the proof of Theo-
rem 1 (simply replace h(ρ1(y1),ρ2(y2)) in the proof of Theorem 1 by eiξ3Γ(ρ1(y1),ρ2(y2))

h(ρ1(y1),ρ2(y2))).
Now observe that for g ∈ Lp(R) , g � 0, we have

M̃(1,2)g(x3) = sup
j,k

|μ (1,2)
j,k ∗ g(x3)|

� sup
j,k

∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∫ ∫
Sn−1×Sm−1

|Ωl(u,v)h(ρ1,ρ2)g(x3−Γ(ρ1,ρ2))|

×J1(u)J2(v)dσ(u)dσ(v)
dρ2

ρ2

dρ1

ρ1

� Cl2||h||∞
∫ ∫

Sn−1×Sm−1

|Ωl(u,v)|

× sup
r1,r2>0

{
1

r1r2

∫ r2

0

∫ r1

0
g(x3−Γ(s,t))dsdt

}
dσ(u)dσ(v).

� Cl2||h||∞
∫ ∫

Sn−1×Sm−1

|Ωl(u,v)|MHg(x3)dσ(u)dσ(v),

where the last inequality follows from Theorem 2 [11] and MHg denotes the Hardy-
Littlewood maximal function. Therefore, ||M̃(1,2)g||p � Cl2||Ω||L1(El)||MHg||p �
Cl2||Ω||L1(El)||g||p for 1 < p � ∞.



SINGULAR INTEGRALS WITH MIXED HOMOGENEITY IN PRODUCT SPACES 171

For g1 ∈ Lp(Rn ×R), g1 � 0, we have

M̃(1)g1(x1,x3) = sup
j,k

|μ (1)
j,k ∗ g1(x1,x3)|

� sup
j,k

∫ 2l( j+1)

2l j

∫ 2l(k+1)

2lk

∫ ∫
Sn−1×Sm−1

|Ωl(u,v)h(ρ1,ρ2)

×g1(x1 −A(1)
ρ1 u,x3−Γ(ρ1,ρ2))|J1(u)J2(v)dσ(u)dσ(v)

dρ2

ρ2

dρ1

ρ1

� Cl2||h||∞
∫ ∫

Sn−1×Sm−1

|Ωl(u,v)|

× sup
r1,r2>0

{
1

r1r2

∫ r1

0

∫ r2

0
g1(x1 −A(1)

s u,x3− γs(t))dt ds

}
dσ(u)dσ(v).

Note that
1
r2

∫ r2

0
g1(x1−A(1)

s u,x3− γs(t))dt � MH
3 g1(x1 −A(1)

s u,x3) for all r2 > 0 and

for each fixed s > 0 (please see the proof of Theorem 2 [11]). Here MH
3 g1 is the

Hardy-Littlewood maximal function acting on the variable x3 . Thus

sup
r1,r2>0

{
1

r1r2

∫ r1

0

∫ r2

0
g1(x1−A(1)

s u,x3− γs(t))dt ds

}

� sup
r1>0

{
1
r1

∫ r1

0
MH

3 g1(x1 −A(1)
s u,x3)ds

}
,

which is bounded in Lp for all p > 1 (see [7, Corollary 5.1]) and the bound is indepen-
dent of u ∈ Sn−1. Consequently,

||M̃(1)g1||Lp(Rn+1) � Cl2||Ω||L1(El)||g1||Lp(Rn+1) for 1 < p � ∞.

By symmetry we also obtain

||M̃(2)g2||Lp(Rm+1) � Cl2||Ω||L1(El)||g2||Lp(Rm+1) for 1 < p � ∞.

The proof of Theorem 2 is complete.
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