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SINGULAR INTEGRALS WITH MIXED
HOMOGENEITY IN PRODUCT SPACES

LARRY CHEN AND HUNG VIET LE

(Communicated by J. Marshall Ash)

Abstract. Let Q € L(logL™)?(S" 1 x =1} (n,m > 2) satisfy some cancellation conditions.
‘We prove the L boundedness (1 < p < o) of the singular integral

Tfx1,3) = p. v. Q1:¥5) h(p1(y1),p2(v2))

B

o f(x1 =y1,%2 —y2) dy) dyz,
- P (1) oy (2)

where pj, py are some metrics which are homogeneous with respect to certain non-isotropic
dilations. We also study the above singular integral along some surfaces.

1. Introduction

Consider the elliptic differential operator with constant coefficients

As noted by E. Stein and S. Wainger [14], in order to study the existence and regularity
results of D, one needs to consider singular integral operators with convolution kernels
K satisfying the following conditions

a) K is homogeneous of degree —n: K(txy,...,tx,) =t "K(x1,...,xn), >0,
b) K is C* away from the origin,
c) K(x)dx=0.
sn—1
Similarly, to study the existence and regularity results of the heat equation
ou & 9%u
L) =—-Y 2=
(1) oxi 2 ax; ’

J=2

one considers singular integral operators with the corresponding kernels K that satisfy

Mathematics subject classification (2010): 42B20, 42B25.

Keywords and phrases: Singular integrals, maximal functions, nonisotropic dilations, product spaces,
L? spaces.

© ﬂ‘(mv Zagreb 155

Paper MIA-14-13



156 LARRY CHEN AND HUNG VIET LE

a) K(t2xy,...,txy) =t " 1K (x1,...,%,), >0,
b) K is C* away from the origin,

é) /S » K(x) (2x’% —|—x’§ +--- —l—x’i)dx =0.

For a more general parabolic differential operator with constant coefficients, E.
Fabes and N. Riviere [9] studied singular integrals with kernels K which satisfy (among
some other conditions)

a) Kt xy,...,t%x,) =t*K(x1,...,x,), t>0, a=Y", o,

b) / K()J()dx=0, where J(x') € C*((0,27)" 2 x (0,7)) and without

s
loss of generality, 1 <oy <o0p < -+ < O

Note that the property (@) above can be expressed as K(A;x) = |det(A;)| 'K (x),
where A; = diag[t¥,---,r*] is a diagonal matrix. Note also that for each nonzero

x € R", the function F(x,7) = zt*m"xi2 is a strictly decreasing function of # > 0.
i=1
Therefore, there exists a unique value of 7 which satisfies the equation F(x,7) = 1. If
we define p(x) =¢ and p(0) = 0, then it follows from [9, 14] that p is a metric on
R”. It is well known that (R",p) is a homogeneous group which admits a family of
dilations &; = exp(Alogt) such that p(&x) =1p(x), t > 0. Here A is a diagonalizable
linear operator with positive eigenvalues oy, 0, ...,0,. By a change of variables to
polar coordinates, each nonzero x € R” can be written as x = &, (x'), (X' = x/|x|).
Thus, there is a unique Radon measure (see [9], [10, p. 14]) d6(x') = J(x')do(x'),
where J(¥') = aux'] + ... + a,x’> is a C function on S"~! which is bounded below
and above by o and o, respectively.
Now let Tf(x) = p. v.K x f(x), where the kernel K(x) = Q(x')p~%(x), and
n

a= Z ;. The following result has been obtained by E. Fabes and N. Riviere.
i=1

THEOREM 1.1. [9] If Q € C1(S"~1) satisfies the cancellation condition

- QX )J(xdo(x') =0,

then the singular integral operator T is bounded on LP (R") for 1 < p < eo.

Subsequently, A. Nagel, N. Riviere, and S. Wainger [12] improved the above the-
orem by weakening the regularity condition on Q as follows

THEOREM 1.2. [12] If Q € Llog" L(S""") satisfies the cancellation condition
above, then

T fll, < ClIfllp for 1 < p <eo.

Recently, the above result has been extended further by Y. Chen, Y. Ding, and D.
Fan:
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THEOREM 1.3. [4] If Q € H'(S"™1) (the Hardy space on the unit sphere S"~!)
satisfies the cancellation condition above, then

T fll, < ClIfllp for 1 < p <eo.

By the above Theorems 1.2 [12] and 1.3 [4], the L” boundedness of singular
integrals with mixed homogeneity in R” has been obtained. The extension of this
result to product spaces is not simple, since the singularity now becomes two lower
dimensional surfaces, instead of a singular point as in the previous case. The purpose
of this paper is to extend the result in [12] to product spaces (see section 2.3). In
classical harmonic analysis, it is well-known that singular integrals are dominated by
Hardy-Littlewood maximal functions and square functions. We will show in section
3.2 that a singular integral along surfaces in the product domain is controlled by Hardy-
Littlewood maximal functions acting on each variable along surfaces. We state our
theorems in sections 2.3 and 3.2, and their proofs are given in sections 2.4 and 3.3
respectively. For recent works on the topic of singular integrals, the reader may view
[1-9] among many other good references that are not listed in this paper.

2. Singular integral with rough kernels

2.1. Definitions and Notations

Most recent works dealing with singular integrals follow the ideas in [7]. In this
section, we will extend two lemmas in [7]. For notational convenience, throughout the
rest of this paper the dimesions n; and n are the same, and similarly the dimensions 7,
and m are equal to each other. Let p; be the metric on R"! obtained from the unique so-

ny

lution of the equation Zz‘zo"’x? =1,wheret >0, x=(x1,x2,...,x,) €ER™, and 0 <
i=1

o <0 < -+ - < 0, . Similarly, let p, be the metric on R obtained from the unique

ny
solution of the equation Zt_zﬁ"yl2 =1,1>0,y=(1,y2,.-¥n) € R?, and 0 <

i=1
Bi < By < - < Bu,. Denote A = diaglp®, ...p{" | and 4D = diag[pf' ..., p"].
p1,p2 > 0. Denote ot =y +0p+---+ 0y, and B = P+ o+ - - + By,. Denote
() = cqui 4 ...+ oup and Jr(v) = Bivi + ...+ Bu,vi, . where u = (uy, ..., uy,) €
Sn=tand v=(vy,...,vp,) € S27L.

If f is a function defined on R" x R x R™ and h; € R" (i =1,2), x; € R,
we define (following the notations in [5])

Aj f(x1,x2,x3) = F(x1 + o, xo,x3) — f(x0,%2,%3)
A, [ (x1,%2,%3) = f (X130 + ho,x3) — f(x1,%2,%3)

1,2
Ah717h2f(x17x27x3) = A}ll (A%Zf(x17x27x3)) .

Given a measure | € R"121  we define the measures u(!) ¢ R 32 ¢
R, w2 e R by ulV(E) = u(R" < E), u?(F) = u(R"™ x F), u"?(G) =
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U(R™ x R™ x G), where E, F, G are Borel sets in R"27"3  R"1T13 R" respectively.
Finally, we write |o| for the total variation of the measure o.

2.2. Preliminary Results

LEMMA 1. [10] Let @ be a functionin & (R™) (i=1,2) such that supp®") C
(LR 1/2< pi(G) <2}. Define WO by W)(&) = bl l(g». For j,k € Z,
x=(X1,%2,....%,) ER"M, y=(y1,¥2,....¥n,) € R™, define 51)( )= ja‘{’(l)(Agl,)jx)
and ‘I’,Ez) (y) = Z’kﬁ‘PQ)(Ag)ky). Set ¥(x,y) = YW ()PP (y) and let Wr(x,y) =
‘I’g-l)(x)‘l’,(f) (y). Let 8 be the Dirac distribution on R™. Then for f € LP(R™T"2),
g € LP(R™M 2113 e have

1/2
H Z‘I’Jk*fF) <ClIflps

p
and

1/2
<2| (Yjx®9) *g|2> <Cllgllp for 1 < p < eo.

p

REMARK 1. Lemma 1 is a discrete version of Theorem 7.7 [10, p. 223] which can
be extended to the product setting (see [8], [13, pp. 28—47]).

LEMMA 2. [5] Let 0} be Borel measures in R"*21 sych that ||oj || < C
for all j,k € Z. If 0*(f) = sup; ;||oj k| * f| is bounded in LI(R™M*"2"3) for some
q > 1, then the following vector value inquality holds

12 12
<Eﬁj,k*gj,k|2> <C <Zgj,k2> for
Jik Jik

Po Po

LEMMA 3. Let Q € L(logL™)?(S" ! x §"1), (n,m >2) satisfy
a) / lQ(u,v)Jl(u)dul(u) =0V ves™! and
=

) [ Q) R0) () =0 Y we ST, where Ji(u) = onid + -+ oy
Sm=

and J(v) = Blv%—I— o BV, u= (ug,...,uy) € ", and v = (vy,...,vy) € S"L.
Here Ly, Uy are normalized measures on "' and S"~1 respectively.

Let Ey={(u,v) € " 1 x "1 |Q(u,v)| <2}, andfor | €N, let E;={(u,v) €
S1lx smh 2l < 1Q(u,v)| <21} Let A(Q) = {l e N:p(E) >274}, where
U= Uy X Uy is the product measure on S"~' x S"~1. Then Q has a decomposition

Q=Q,+ 2 Qh
1€A(Q)
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where Q,, Q; (I € A(Q)) all satisfy the cancellation conditions above and
||QOHL2(S"*1><S"’*1) <G, HQOHL'(S"’IXS'"’I) <G,
19 25 1) < C2 1Rl s 1l lsgsr 15 1) <C NIl sy for ail 1 €AQ).

REMARK 2. The proof of this Lemma 3 will be given in section 2.5.

THEOREM A. [5] Let u;y be uniformly bounded positive measures in R+,
Suppose that

(0] < CIAS) i~ AS) G 2! 0
AL 174(0,5,85)| < ClA 21,+1)C1|”/Z\A2,ké’\ Y o
|A%2ﬂj’k(g’0’€3)| C| 211 Gl u/Z\Azl k1) o 3)
AL, 174(0,0,85)] < ClAL. G A, ! @

for some a,b >0 and some arbitrary positive integer | > 1, and for all j,k € Z. Sup-
pose also that the maximal functions

- ; ) - 12
Mg = su]?\u}f;)c*gi\ (i=1,2), Mg = Sufluﬁ,k Vgl
7 J

are bounded in L? for all p > 1. Then M f(x) = sup |u;jx * f(x)| is bounded in L? for
Jk
all p > 1, and the bound is independent of 1.
THEOREM B. [5] Let G} x be Borel measures in R" 27" such that ||0; || < C,
and

16,,k(81,8,8)| < C|A$)j+1)Cl\“/l\Ag)M)Czl”/’ )
< C|A2I e Cl\“/l\A ) 2, |b ©
<C|A2Ig ‘—a/l‘A N 1p/! o
< C|A2,jg ‘—a/l‘A AR ®

for some a,b > 0 and some arbitrary positive integer | > 1, and for all j k € Z. If
o*(f) = sup;illojl * f| is bounded in LI(R™*™*) for some q > 1, then

1/2
=Y 0j*f(x) and g(f <20'J ek f(x)] ) are bounded in
Jk Jik
1 1 ‘ 1
— — —| = — and the bound does not depend on 1.
p 2] 2q

REMARK 3. Theorems A and B are the modified versions of Theorems 1 and 2 [5]
respectively. Note thatwhen =1, 0y = =--=o,=land f1 = =---=f,=1,
Theorems A and B recover Theorems 1 and 2 [5]. The proofs of these theorems will be
given in section 2.6. Also for the rest of this paper, we denote the letter C as a constant
which may vary at different occurences. However, it does not depend on any essential
variable.

(Rnl +ny+nj3 ) for
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2.3. Main Theorem
Let h € L(R*t x RY), where RT = [0,00). Let Q € L(logL")?(s"~! x §"~1),
(n,m > 2) satisfy
a) / Q)W) dp () =0 ¥ ve ", and
S)l*

D) ~/S’”’1 Qu,v)h(v)dua(v) =0 V u € "1, where Jy(u) = oqu? + - - + o>

and L(v) = Bivi+ -+ Buvd, u= (Un,...,un) € S" 1 and v = (v1,...,vy) € "1 .
For f € S(R" xR™) (n,m > 2), define the singular integral T f by

Tf(x1,x2) = p. v. K f(x1,x2)
v, Q(y1,95) h(p1(v1),02(y2))
' R/é pE(n) o (2)

fx1 =y1,x2 —y2)dy1dy>

Recall that c = oy +---+ 0, and B =B+ -+ By

THEOREM 1. Let h € L*(RT x RT) and let Q € L(logL*)?(s"~! x sm~1),
(n,m > 2) satisfy the cancellation conditions above. Then the singular integral T f
initially defined on the Schwartz space /' (R" x R™) has a bounded extension from
LP(R" x R™) to LP(R" x R™) for 1 < p < oo, provided that 0 < oy < 0y < --- < O
and 0 < B1 < By < -+ < Bp. The above results also hold when 0 < o =0 = --- = Qi
or0<fr=PB=-=Pun.

It should be remarked that Q € L(logL™)?(8"~! x ") (n,m > 2) is best pos-
sible, since it has been shown in [3] that V& > 0, there is an Q € L(logL™)?~¢(§" ! x
§™=1) (satisfying certain cancellation conditions) such that the singular integral

Q(y’hy’z)f(xl —V1,X2 —yz)
v [*]y2|™

Tof(x1,x2) =p. V. // dy; dy,

R xR™

is not bounded on L?(R" x R™) for any p € (1,00).

2.4. Proof of Theorem 1

The decomposition of Q in Lemma 3 induces the decomposition of the corre-
sponding operators
T=T,+ ¥ T, ©)
leA(Q)
where T,f =p. v.K, = f and T;f =p. v.K; x f. Here K, and K; are defined the same
way as the kernel K with Q being replaced by Q, and ; respectively. We will show
that for 1 < p < oo,
T fllp <Cl|fll, and (10)

1Tif1lp < CPIIQ gy 11, 1 €AQ). (11
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Therefore we will obtain

NTfll, <Tofllp+ Y, ITifllp

leA(Q)

<C <1+ D 12|Q|L1(E,)> Lf1p

1€A(Q)
< € (1+11Q0lggoget s txsmn) ) 1l for 1< p <o

Since the proofs of inequalities (10) and (11) are basically the same, we will only prove
(11). We will apply Theorems A and B (without the third variable) to prove (11). For
(XI 7x2)7 (yl 7y2)7 (él ) 62) € R"x Rmv we write

Q (1, ¥5)h(p1(y1),02(y2))

T, f(x1,x2) = p. V.
SRR R/é Pt ()PP ()
_ z / Q (v}, y5)h(p1(v1),02(32))

B
1(1)2221 pa () 222k TP 02)

= Z(Q/’,k*f)(xlax2)~ (12)
Tk

fx1 =y1,x2 —y2)dy1dy>

fx1=y1,x2—y2)dy2dy;

(Here py(y;) = 2% means 24 < py(y;) < 2/U+D) and similar definition for p;(y;) =
Zlk).
The Fourier transform of o ; is

5068 :/ / e (v Y R(p1(v1),02(02))
PR o1 ()22l Jpy(yp) 222! Pf‘(yl)Pf(yz)

dy,dy;.

(13)
Let u; denote the total variations of o; ; for all j,k € Z. In order to apply Theorems
A and B, we must show that

lloj.kll, 1kl < CP(1Q 11 (g, and

6« (resp. fij ;) satisfy the estimates (5)—(8) (resp. (1)—(4)) forall j,k € Z, | € A(Q)
(with the bound CI?||Q|| () instead of C). Moreover, we need to show that the
partial maximal functions

Mg = sp}g)mﬂ*gi\ (i=1,2)
J

are bounded in L? for all p > 1. By a change of variables to polar coordinates,

2] J+1) 21 (k+1)

6ix(E1,8) = / / // A g 4D

2lj 2k gn—1y gm—1

dp, dp;
(v)——

x Q(u,v)h(p1,02)J1 ()J2(v)do(u)do (v (14)
P2 P



162 LARRY CHEN AND HUNG VIET LE

and note that

fjx(&1,8) = /2

2] j+1) 2] (k+1)

Lo [ ey
21k
sn—1y gm—1

X |€y (u,v)h(p1,02)|J1 (1) J2(v) do (u) do'(v)@ dp1

P2 P1

It is clear that ||o; ¢ = ||| = f4(0,0) < CP|[A| || || 11 g for all j.k € Z. By
the cancellation conditions of €;, we have

165.4(E1,8)| = AL, 67 <o o>|
[ iuwnnione)

Lk

15)

2] J+1)

sn—1 s gm—1
() . (2) doy d
| (01517 1) (A9 52 _ 1)\, () (v)d o (w)d o (v) % %
1 2
< CP|Q | g (AL & AT &l
Also,
16j.(81,&)| = |AL, 6540,
2[ Jj+1) d
/ / 1(p1, u)HelA”l S 1y (u)d o (u) P e
2lj sl P1
Sl(k+1) ® d
where I(py,u) :/2”( SnHQl(u,v)h(pl’pz)e"“pz 52'VJ2(v)d (v )% Note that

[1(p1,w)|* < C1[[A][2, / / Q) (14, v)Q (1, 0) | K (&3, 9) |1 ()2 (9)d & (v)d o (7),

sm—1y gm—1
where .
2 @e o ond
K(&xm¥) = / A (5 P2 .
21k p2
Itis clear that |K(&,;v,7)| < CI. On the other hand,
-1 2/k+j+1 ) i
[K(&iv )] < / e‘Af(Jzz)EZ'(V—v)dﬂ
j=0 2Ik+j Pz
1—
:2:1/26 zlkﬂéz(vvdl‘
j*O t

<3 2 mAG ey (o)
Jj=0

< ClAG GV - (v—) M
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(2)5

oIk 2
2
4508

where 1 = , and the next to last inequality follows from Theorem 1 [12]. Thus

K(&sv,9)] < Ctmin {1, Q& " (v~ )|~}
2) ¢ 1—1/2m A 1—1/2m
< CllAl) & - (v -9V,

and therefore by Holder’s inequality,
Hprwf <CPARE 2 [ (oiwm)Pdo().
sm=
An application of Holder’s inequality to (16) produces

167681, &) < Cllay), éllz/ / I(py,u 2dc(u)%

< Cl4‘A21(,’+1)§1‘ ‘A21k52‘71/2m‘ |QZH%

2l(j+1)

Thus |6;x(&1,&)| < CI2 \A;}()M)ifl|\Ag,zéz\—l/“’”ZZlHQHLl (). On the other hand, a

direct integration of inequality (16) yields |6; x(&1,&)| < CI? ‘AS()M)&H‘QHLI(E,)7
which together with the above inequality implies that

A 1 2) ¢ |—1/4m
167.4(E1, )| < CPJIQ |1 ) |AY 0 Eal|AS o 7147

By symmetry, we also obtain

1654(81,&)| = 182,6;.4(E1,0)| < CL|IQ | gy |45 &1~ #1AT L &l

An application of Holder’s inequality to (14) yields

/ // Q(u,v)J1(u)J2(v)

sn—1y gm—1
4D 2)
x ¢ Ao S A0 2V 46 (1) d o (v)

<cl // Qlqulﬁﬁ)

S” 1y gm— 1

1(k+1)
X /2 p2 52 (v=9) dp2
21k %)

< cral)a |~ Al sl oy 3.

I+ ol(k+1)

G488 < P [

2
dpz dpy
P2 P1

2l(j+1)

/ oA (i) AP
2l P1

do(u)do(v)do(ii)do (V)
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Thus |6; 4(&1, &) <Cl2\A2,J &~ 1/4"\A2,k§2\ Am2 Q|1 )~ Also a direct integra-
tion of (14) leads to |6 x(&;,&)| < C12|\§2|\L1 (E,)» Which together with the above in-
equality yields

167,4(81,E2)] < CLIQ |5 A5 &4 1AT & ] =/,

Consequently, 6 satisfy the estimates (5)—(8) in Theorem B for all j,k € Z. By
inspecting equations (14) and (15), we infer that fi; also satisfy the estimates (1)—(4)
in Theorem A for all j, k € Z.

It remains to prove the L” boundedness of the partial maximal functions M @ gi=
sup|,u;lli xgi| (i=1,2) for all p > 1. By symmetry it is enough to consider the case

Jik
i=1. We may assume g; > 0. For x € R", we have

Mgy (x) = supm;;’*gl(x»

by

Sl(j+1)  ol(k+1)

[ 19utmiior.pler(x—af)w)

sn—1y gm—1

le(u)JQ(v)da(u)do(v)dﬂdﬂ
P2 P1
2]]+1
< Cl| ||| // 12 (u,v)| {sup/ (r—alDy )dppl}dc(u)dc(v).
1

sn—1 s gm—1

Note that

2l(j+1) olj+i+1

sup/ g (x—A(l)u)dﬂ <Zl_zlsup L/ g (x—A(l)u)dt
P S 1 TS ST 2T fyug 1 t )

where each summand in the sum above is bounded in LP(R") for all p > 1 and the
bound is independent of the direction vector u € S"~! (see [7, Corollary 5.1]). It follows
from Minskowski’s inequality that |[M() g, ||, < Cl2\|Q\|L1(El)|\g1|\p for 1 < p < oo
Consequently, we have proved that

1T fllp < CPJIQ[ 125 1 £1]p 1 € AQ).

Finally observe that the estimate of the function K(&;v,7) in equation (17) and
Corollary 5.1 [7] both rely on Theorem 1 [14], which in turn require all coefficients ¢;
(and similarly all B;) to be distinct. However, the estimate of the function K(&;v,V)
and Corollary 5.1 [7] still holdincase O < oy =0p =---=ap,or 0< By =fr=---=
B - The proof of Theorem 1 is complete.

2.5. Proof of Lemma 3

The decomposition of Q € L(logL")(S"~!) can be found in [2]. We generalize
this idea to the product setting. Let u; and up be the normalized measures on ™!
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and "' respectively. Let u = u; x U be defined on §"~! x §”~1. For I € A(Q),
define

QM () = [ Q) 8 () 1o (v) dpa (v)

and

91(2) (v) = - Q(u,v) xg, (u,v)J1 (u) dpy (u).

Now define a; (I € A(Q)) on §"~1 x §"~! by

1
[l feo |2 leo €211 )

e} + G ] st
xJi(u)Jo(v)dp (u) dpa(v).

Then each g, satisfies the cancellation conditions as Q does. Moreover, |[a|[71 (gn-1,gn-1)
2143
< 4 and HalHLZ(S"’IXSm’l) <2 .
Define Q, as

ar(u,v) = {HJlHll\lehﬁ(u,\’)%El(u,V) — [l ()

Qy = [Nlh[I2lhQ— X [Millsll2ll=]19] 1 5@
leA(Q)

= [lhl[2liQ— Y, Qu, where Q= |[J1||e| 2|2 1 gyt
leA(Q)

Observe that Q, also satisfies the cancellation conditions. Moreover, by the cancella-
tion condtions of Q, we have

Qo) = 2l 20e) = lls [ Qunia(v)do()
2l [, | Qo)

+ / / Quv) i (W) h(Wdowdo®) — . &u,v)

sn—1y gm—1 IEA(Q')

- 1 - 2
— 11192120, v) = D[R () = 3 111287 (v)

=0 =0

> / / Qu,v) 15, () (W) (Ao (W do(v) — S, @y(u,v)

l:()sn—l wxsm—1 ZGA(Q)
= WLy Y 2wy - Y nhew- Y nlhev)
I¢A(Q) I¢A(Q) I¢A(Q)

+ 3 / / Qu,v) 2, (1, V)1 ()2 (v) d o (w)d 5 (v).

I¢A(Q) Sn—l x §m—1
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Now if =0, then |Q(u, ), (u,v)] <2, and / / 1Qu,v) P s, (1, v)do (w)d s (v)

sn—1y gm—1
<C.

If 1 € N\A(Q), then [Q(u,v)xg (u,v)| <2, w(E) < 27#, and thus
1Q(u,v) > xE, (u,v)do (w)do (v) < 27272 Tt follows that HQ()HLZ(Sn—Ixsm—l) <
sn—1y gm—1 .
C, which implies |[€[11 (g1, gm-1) < C.
Now let Q, = ||[/1||; " |[72]7'Qy and @ = ||1]|;"|[72]|7 'Q;. We then have the
decomposition

Q=Q,+ Z Qh
1€A(Q)

where Q, and Q; (I € A(Q)) satisfy the desired conclusions stated in the lemma.
Lemma 3 is proved.

2.6. Proofs of Theorems A and B

The proofs of these theorems are essentially similar to the proofs of Theorems
1 and 2 [5] respectively, except for some modifications. However for clarity, we will
prove Theorem B in detail, and omit the proof of Theorem A since the proof of this
Theorem A (unlike the proof of Theorem B) only requires some minor adjustments
(see Remark 4 at the end of this section). We now proceed to prove Theorem B.

Let ¢() be a functionin .#(R™) (i = 1,2) such that suppd!) C {& € R" :1/2 <
s N 2
pi(6) <2}, 0< q)(’) < 1. Moreover, we require 2 {¢<’>(2’in(§,-))} =1 for all

Jj=—00

& #0. For i=1,2 and j € Z, define w() and u/j(-i) by (&) = @ (p;(&)) and

#(5) = 60(2pi(5)) respectively. Now set y(xi,0) = y(w)y®(w) (x €

R",i=1,2) andlet ;. (x1,x2) =y (x))w” (x2) for j,k € Z. Note that (81, &)

=297 (&) and zw,k (G1.%) =1 forall (1,5) #0 € R™ x R™. We write

Tf= Zﬁj,k*fzzﬁj,k* <Z(Wj+m,k+n®5)*(W/+m,k+n®5)*f>

= 22 Vijtm, kin®6) (Gj k*(ulj+mk+n®8 *f) = ZTm nf-

ﬂ’l}’l,7

Then ||T f|[p, < Xpp || Tnnf|lp- We estimate each of the terms of this sum by interpo-
lating between the [? norm and the LP° norm (where p, is as in Lemma 2). Observe
that
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1/2
Tnnfllp, < C| <2|Gf,k*(ll/j+m,k+n®5)*f2> 1o

Jjk

1/2
<C| <2l(wj+m,k+n®5)*f2> 1po < CIIflpo

Jjk

where the first and the last inequalities follow from Lemma 1, and the second inequality
follows from Lemma 2. We now calculate the L? estimates of Ty f. Notice that

T f1l5 < 2/ //\Ujk (6,8,8)F(61, 6, 86)Pd6i1d6d G,

where
R} = {(€17€2) eRM xR™:1/2 <20 (4) <2, 1/2< 20y (5) < 2}.
By a change of the first two variables to polar coordinates, we obtain
Innsl <3 [, / [ [ 1o gl s cofag) gl 6.8
sm=txgm=t DY
i o (G () dprdpada (§)da(8h)d S,

where D" =4 (p1,p2) € Rt x Rt :1/2 <2!Utmp, <2, 1/2 <2kt p, <21 For
Jk

p1,02) € D™, we consider four cases: m,n >0, m>0and n<0, m<0and n>0,
J.k
and finally m,n < 0.

Case 1. m,n > 0. By inequality (5) we have
A 1 2 1 1) sr1a/l) 4 (2 2
16,645 814 6, 6] < ClAG) A0 G 1A AR G
< C2—(m—l)0(1a2—(n—l)ﬁ1b.

Thus

[T f |3 < C2720m~Denay=2-Dib 30 /IR . / / / / AR C1LAR &, 5)
Tk

Snlfl S"Z’l D'f”'
xp® P (E)I(8)dprdpada (E])da(5)d s,
and hence ||T;, . f||2 < €2~ (m=Dorag=(=0Bb|| |5, m,n > 0.

Case 2. m >0 and n < 0. It follows from (6) that

A 1 2 1 1 2 2 _ —(m—
167.4(AR L1 AR 6.5 < CIAL) AR Gl A AS) |81 < comm=Denagnbid,
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which leads to the inquality ||T,.f||» < €2~ ("= N@amBib|| £]|, m >0 and n < 0.

Case 3. m < 0 and n > 0. By using inequality (7) we obtain
~ 1 2 1 1 —a 2 2 moyan—(n—
16,45 21,45 8, &) < ClAS)AS &l A, AR G|/t < camena= (D,
5o that || T, f||2 < C2m4192=(=DBib|| £]5,, m < 0 and n > 0.
<

Case 4. m,n < 0. From (8) we have

A 1 2 1) (1) gr — 2) ((2) #1—
‘o-j.,k(Al()l) Cl/7A;()2) €2/7 €3)‘ < C|A;II)A[()1) g“ a/l |A;II?A[()2) €2/‘ bt < szalaznﬁlba
and thus || T, f|]» < C2"%192"Bib||£|,, m,n <O0.

Consequently, ||T;,.f]]2 < C2~8m2=&ll|| £, for some &,& > 0 and for all
m,n € Z.

1—
Now if 0 0

1 1

— — —| < =, then by interpolation we have — = — +

p 2q p 2 po

0 <0 < 1. Therefore, ||Tfll, < X || Tuafll, < C X, 270lm270%k) 111, < C ||l
m,n

m,n

for some

The proof of the L” bounds of g(f) is similar. Theorem B is proved.

REMARK 4. To prove Theorem A, we choose positive Schwartz functions ¢ in
(R") (i=1,2) suchthat $()(0) = 1 = $*(0), and define ¢{" (1) =V (Al) , &1)
and qSk(Z)(gz) = é(z)(A;?()kH)Cz) for all j,k € Z. Observe that for each f; € L?(R™)
(i=1,2), ;u;z)|¢}i) * fi(xi))| SCMjo---oM,fi(x;), where each M; (j=1,....,n;) is

je

the Hardy-Littlewood maximal operator acting on the j-th component of the variable
x;. The rest of the proof of this theorem is identical to the proof of Theorem 1 [5].

3. Singular integrals along surfaces

3.1. Notations, Definitions and Background

Let RT stand for [0,e0). A function ¢ : R™ — R is called a type I function if ¢
is strictly increasing on [0,e0) and ¢’ is increasing on (0,e0).

A function ¢ : RT — R or ¢ : (0,00) — R is a type II function if ¢ is strictly
decreasing on its domain and ¢’ is increasing on (0,o).

A function ¢ : RT™ — R is a type III function if

i) ¢(0) =0 and ¢ is strictly increasing on [0,e0),

ii) ¢’ is decreasing on (0,e°) and

iii) 9’ (t) = c9(r) forall 7 € (0,°0) and for some fixed ¢ > 0.

For f € Z(R" x R" xR) (n,m > 2), consider the following singular integral
along surface

S f(x1,x2,X3) = p. V. / Q(y/hy/z)h(pl(ZI)a.DZ(YZ))

R xRm pla(yl)p2 (yz)
X f(x1 = y1,%2 —y2,03 = L(p1(y1), 02(y2))) dy1 dy2,
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where x1,y; €R", xp,y2 € R, x3 € R, yi =y;/|vi| (i=1,2), and h and T are mea-
surable real-valued functions defined on Rt x R*.

Denote ¥ (s) = I'(s,7) for every fixed ¢ > 0. Similarly, denote y;(¢) = I'(s,t) for
every fixed s > 0.

THEOREM 2. [11] Suppose I'(s,t) has continuous first order partial derivatives
Sorall st >0.If v, (s) and ys(t) are either type I, type II or type Il functions (with the
constant c in the definition of type IlI function independent of both variables s and t )
for each fixed t > 0 and for each fixed s > O respectively, then the maximal functions

rn
Mjg(x3) = sup { / / glx3—T(s t))|dsdt}
ry,rp >0 rir
rn 1
M, gi(x1,x3) = sup E/O /0 lg1(x1 — 5,03 — ['(s,1))| dsdt

ri,r >0

and

1 rnoorr
M>gs(x2,x3) = sup {E/O /0 |g2(x2—t7x3—F(s,t))dsdt}

ri,r >0

(x1,%2,x3 €ER, g € LP(R), and g1, g» € L (R?) ) are bounded in L for all p > 1.

3.2. Theorem 2

Let Q and h be given as in Theorem 1. Suppose I'(s,#) has continuous first order
partial derivatives for all s,7 > 0. If y;(s) and y,(z) are either type I, type II or type
IIT functions (with the constant ¢ in the definition of type III function independent of
both variables s and ¢) for each fixed ¢ > 0 and for each fixed s > 0 respectively, then
the singular integral along surface 3 f initially defined on the Schwartz space .7 (R" x
R™ x R) has a bounded extension from L?((R" x R™ x R) to L?((R" x R" x R) for
I <p<eoo.

EXAMPLES.

1) Consider the surface I'(s,t) = s%?, a,b# 0 and s,t >0 (s >0 if a <0 and
similarly 7 > 0 if b < 0). For each fixed ¢ > 0, the function ¥ (s) = I'(s,#) is a type
I function if a > 1, a type III function if 0 < a < 1 and a type II function if a < 0.
Similar conclusion holds for the function ¥;(¢) = I'(s,z). By Theorem 2, the singular
integral along surface 3£ is bounded in LP(R""*+1) for 1 < p < oo.

2) Let I'(s,t) = s“e®5tP1eb2'  ay by > 1 and ay, by > 0. Then y;(s) = ['(s,2) is
a type I function for each fixed ¢ > 0. Similarly, y,(¢) = T'(s,7) is also a type I function
for each s > 0. Thus, 3f is bounded in LP (R"*+1) for 1 < p < 0.

3) Consider the surface with a contact of infinite order at the origin, I'(s,7) =

22(¢= 15 4 ¢7 /") (5,1 > 0). The functions 7;(s) = ['(s,z) and 1,(¢) = ['(s,¢) are
type I functions for each fixed s > 0 and each fixed ¢ > 0 respectively. Hence, 3f is
bounded in LP (R""+1) for 1 < p < oo
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3.3. Proof of Theorem 2

The proof of this theorem is essentially similar to the proof of Theorem 1. It
is enough to prove the L? boundedness of the operator 3;, where 3;f is obtained
from 3f by replacing the kernel Q by Q;. As in the proof of Theorem 1, we write

Sif =Y. 0jx*f, where
Jjk

61(&1,8,83)
Gyithmn), 1,5 h(p1 (y1)7p2(y2))ei§3F(m 1):02(v2))
2

P (1) Py

dy,dy;.

; Y2
p1(v1)2224 py (v7)222k )

Let p; 4 denote the total variations of o; 4 for all j,k € Z. In view of Theorems
A and B, we need to show that

lloj.kll, 11kl < CP(1Q 11 (g, and

6« (resp. fij ;) satisfy the estimates (5)—(8) (resp. (1)—(4)) forall j,k € Z, | € A(Q)
(with the bound CI2(|Q||,1 () )- Moreover, we need to prove that the partial maximal
functions Mg, MPg,, and M2 g are bounded in L? forall p > 1.

Itis clear that the measures 0 x and p; x are uniformly bounded by CI2[|Q |11 g,
The proof for the estimates of &; ; and fi;x is the same as those in the proof of Theo-
rem 1 (simply replace h(p;(y1),p2(y2)) in the proof of Theorem 1 by ¢/&31(P1071)-02(2))

h(p1(y1),02(y2)))-
Now observe that for g € L?(R), g > 0, we have

W2 g(x3) = supl

Jk

*g(xs)|

2] J+1)

sup /
2lj 21k

21 (k-+1)

[ [ 12u@iierpgts —Tipnpn)

sn—1y gm—1

dp, d
XJI(”)Jz(V)dG(u)do(v)ﬂﬂ
P2 P

< CP||h[ // 19 (u,v)|

sn—1y gm—1

1 rorr
xrlfggo{a/o /0 g(x3—F(s,t))dsdt}dc(u)do‘(v).
<cllille [ [ 1@uMg)dowdo).

sn—1y gm—1

where the last inequality follows from Theorem 2 [11] and Mg denotes the Hardy-
Littlewood maximal function. Therefore, ||M(!?g]|, < CleQHLl(E[)HMHgHP <

CP(Q] 1 g llgllp for 1 < p <o
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For g; € LP(R" x R), g1 > 0, we have

1)

MW g (x1,x3) = sup |y« g1 (x1,3)]

Sl(j+1)  ol(k+1

Jik

) )
Sl-l;?/zlj /21k // | (u,v)h(p1,02)
Js

sn—1y gm—1

N

dp dpy

xg1(x1 — AV u, x5 — T(p1,02)) 1 ()2 (v)d o (w)d o (v) —

el [ [ i)
sn—1y gm—1

% sup {L/' /rzgl(xl—A_El)u,xg—yv(t))dtds}dcr(u)da(v).
0 0

r1,r>0 rnr

N

1 [
Note that —/ g1(xy —A§1>u,x3 —15(2))dt < Mfgl(xl —A_El)u,xg) for all r», > 0 and
2 Jo

for each fixed s > 0 (please see the proof of Theorem 2 [11]). Here Mf g1 is the
Hardy-Littlewood maximal function acting on the variable x3. Thus

1 r r (1)
sup { — g1(x1 —As 'u,x3 —15(t)) dtds
r,r>0 L1172 J0 JO

1 /m
< sup {Z/o M5 g1 (x; —A§1>u,x3)d5},

r1>0

which is bounded in L forall p > 1 (see [7, Corollary 5.1]) and the bound is indepen-
dent of u € §"~!. Consequently,

HM(l)ngLI’(R"“) < CleQHLl(EI)HglHLI’(R"“) for 1 <p <o
By symmetry we also obtain
1M s | gty < PRI g g2l sy for 1< p < oo

The proof of Theorem 2 is complete.
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