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THE BEST CONSTANT FOR THE CENTERED MAXIMAL

OPERATOR ON RADIAL DECREASING FUNCTIONS

J. M. ALDAZ AND J. PÉREZ LÁZARO

(Communicated by Z. Ditzian)

Abstract. We show that the lowest constant appearing in the weak type (1,1) inequality satisfied
by the centered Hardy-Littlewood maximal operator on radial, radially decreasing integrable
functions is 1.

1. Introduction

A considerable amount of work has been devoted in the literature to finding good
bounds, or best bounds if possible, in the inequalities satisfied by the several variants
of the Hardy-Littlewood maximal operator. We mention, for instance, [1], [2], [3], [4],
[5], [6], [7], [8], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[25], [26], [27], [28], [29]. Additional references can be found in the aforementioned
papers.

Let Md be the centered maximal operator (cf. (1) below for the definition) associ-
ated to euclidean balls and Lebesgue measure on R

d . It is well known that if 1 < p �∞ ,
then there exists a constant cp,d such that for all f ∈ Lp(Rd) , ‖Md f‖p � cp,d‖ f‖p , and
the problem lies in determining the lowest such cp,d . When p = ∞ , trivially we can
take cp,d = 1 for all d , since averages never exceed a supremum, while if p = 1, then
Md f /∈ L1(Rd) unless f = 0 almost everywhere. So for p = 1 one considers instead the
best constant cd appearing in the weak type (1,1) inequality (cf. 3 below). Obviously,
cd � 1, since by the Lebesgue Differentiation Theorem, Md f � | f | a.e. whenever
f ∈ L1(Rd) . We shall see that if we impose on f the additional conditions of being
radial and radially decreasing, then actually cd = 1 for every dimension d . This im-
proves on the previously known upper bound cd � 4 (which nevertheless holds for all
radial functions, not necessarily decreasing, cf. [24, Theorem 3]).

Our result is obtained by identifying the extremal case: For the class of radial,
radially decreasing functions f of norm one, the Dirac delta “function” δ is extremal.
That is, Mdδ (x) � Md f (x) for every x . Since Mdδ can be easily computed, and it
yields a best constant equal to 1, the result follows. Without the decreasing assumption
on f , the value of the best constant is not known (as indicated above, it is bounded by
4).
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Regarding the dependency of cp,d on d , for general functions, E. M. Stein showed
that when 1 < p <∞ , the constants cp,d <∞ could be chosen to be uniform in d ([26],
[27], see also [28]).

With respect to weak type (1,1) bounds, best constants grow at most like O(d)
(cf. [29]). Additionally, for the maximal function associated to cubes (rather than
euclidean balls) it is known that best bounds approach infinity with the dimension (cf.
[5], and also [10], where it is shown that bounds increase at least as O(log1−ε d) , for
arbitrary ε > 0). While the corresponding problem for euclidean balls has not yet
been solved, it seems very likely that uniform bounds do not exist in this case either.
Hence the renewed interest in finding natural subspaces of L1(Rd) for which bounds
independent of d can be obtained, and when uniform bounds are known, in determining
their optimal values.

2. Notation and results

Let λ d denote the Lebesgue measure on R
d , and let B(x,r) be the euclidean

closed ball centered at x of radius r > 0. Thus, B(x,r) is defined using the �2 distance

‖x‖2 :=
√

x2
1 + . . .+ x2

d . The centered maximal function Md f of a locally integrable
function f is

Md f (x) := sup
r>0

1
λ d(B(x,r))

∫
B(x,r)

| f |dλ d (1)

(the choice of closed balls in the definition is mere convenience; using open balls in-
stead does not change the value of Md f (x)). Likewise, the centered maximal function
Mdμ of a locally finite measure μ is

Mdμ(x) := sup
r>0

μ(B(x,r))
λ d(B(x,r))

. (2)

It is well known that the maximal function satisfies the following weak type (1,1)
inequality:

λ d({Md f � α}) � cd‖ f‖1

α
, (3)

where cd does not depend on f ∈ L1(Rd) .
We denote the average of the function h over the set E by

hE :=
1

λ d(E)

∫
E

hdλ d . (4)

Likewise, the average (with respect to Lebesgue measure) of the measure μ over the
set E is denoted by

μE :=
μ(E)
λ d(E)

. (5)

The next “geometric lemma on averages”, states the intuitively plausible fact that
for a radial decreasing function on R

d , the average over any ball B centered at zero
is at least as large as the average over any other ball with center outside B (or on its
border). By decreasing we mean non-strictly decreasing.
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LEMMA 2.1. Let f : (0,∞)→ (0,∞) be a decreasing function. Define g : R
d →R

by setting g(x) := f (‖x‖2) . If g is locally integrable, then for every pair of radii
R,r > 0 , and every y ∈ R

d with ‖y‖2 � R, we have

gB(0,R) � gB(y,r). (6)

REMARK 2.2. Actually, for the application below we only need the case r < R ,
but since the result is also true when R � r , we do not exclude this from the statement
of the lemma.

REMARK 2.3. Obviously, if f is locally integrable then so is g . Local integrabil-
ity of g is all we need, so we only assume this weaker condition.

REMARK 2.4. It is natural to ask whether the hypothesis that y does not belong
to the interior of B(0,R) can be relaxed to B(y,r)\B(0,R) �= /0 . In fact, it is easy to see
that the latter condition is not enough, even in one dimension: Let ψ(x) := (1− |x|)+
be the positive part of 1−|x| . Then ψ[−1,1] <ψ[−1/2,1] , so if ε > 0 is sufficiently small,
we also have ψ[−1,1] < ψ[−1/2,1+ε] .

REMARK 2.5. In order to obtain large averages, one must integrate over the parts
of the space where a function is large. And this is so no matter what measure is used.
Thus, it is tempting to conjecture that Lemma 2.1 actually holds for a large class of
measures, rather than just Lebesgue’s. While this may be the case, some condition on
the measure is needed, as the following example shows.

Let d = 2 and set μ(A) := λ 2(A ∩ B(0,1)) , i.e., μ is the restriction of pla-
nar Lebesgue measure to the unit ball. Let ψ(x) := (1−‖x‖2)+ , and observe that
ψB(0,1) < ψB(e1,1) . This is so since ψB(0,1) is exactly equal to the average over the cone

C contained in B(e1,1)∩B(0,1) and between the lines y = ±√
3x , while obviously

ψC < ψB(e1,1)∩B(0,1) . But μ(B(e1,1) ∩ B(0,1)) = μ(B(e1,1)) , so ψB(e1,1)∩B(0,1) =
ψB(e1,1) . Therefore, Lemma 2.1 does not extend to all radial measures.

REMARK 2.6. Another natural attempt to generalize Lemma 2.1 is to consider
norms different from the euclidean one. Since the most often used maximal functions
on R

d are defined either using euclidean balls or cubes with sides parallel to the axes,
i.e., �∞ balls, the case of the �∞ norm ‖x‖∞ := max{|x1|, . . . , |xd |} is particularly in-
teresting. Here a function g : R

d → R is radial decreasing if there exists a decreasing
function f : (0,∞) → (0,∞) such that g(x) = f (‖x‖∞) . Likewise, the corresponding
maximal operator is obtained by averaging over �∞ balls B∞ in (1), instead of using �2

balls.
The following example, due to Professor Guillaume Aubrun and included here

with his permission, shows that Lemma 2.1 fails when ‖ · ‖2 is replaced by ‖ · ‖∞ .
Let g = χ[−2−1,2−1]d , let B∞(0,R) = [−4−13,4−13]d , and let B∞(y,r) = [4−1,4−15]×
[−2−1,2−1]d−1 , i.e., y = 3e1/4 and r = 1/2. Since 2d+2 < 3d provided d � 4, for
every d = 4,5, . . . we have

gB∞(0,R) =
2d

3d <
1
4

= gB∞(y,r).
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The preceding inequality is strict, so sufficiently small perturbations of the sets involved
will preserve it. Thus, Lemma 2.1 also fails when ‖ · ‖2 is replaced by ‖ · ‖p , provided

that p is high enough (perhaps depending on d ). Here ‖x‖p := (|x1|p + . . .+ |xd|p)1/p .

Proof of Lemma 2.1. Observe first that the result for ‖y‖2 � R can be immediately
derived from the special case ‖y‖2 = R . To see why, assume it holds for ‖y‖2 = R , and
suppose ‖w‖2 > R . Then

gB(w,r) � gB(0,‖w‖2) � gB(0,R),

since the average over a ball centered at 0 of a radial decreasing function does not
decrease when we reduce the radius. So we assume that ‖y‖2 = R . Using a change
of variables if necessary, we suppose that R = 1 (just to simplify expressions). Then
we take y = e1 , by symmetry; finally, we suppose that f is left continuous. This last
assumption is made purely for notational convenience: It entails that nonempty level
sets {g � m} are closed balls, agreeing with our notation B(0,t) .

We show that rd ∫
B(0,1) g �

∫
B(e1,r) g . To this end, it is enough to prove that for

every m > 0 the corresponding level sets satisfy

rdλ d(B(0,1)∩{g � m}) � λ d(B(e1,r)∩{g � m}). (7)

If either m < g(e1) , or m > g(x) for all x �= 0, then inequality (7) holds trivially. If
g(e1) � m � g(x) for some x �= 0, then there exists a t ∈ (0,1] such that {g � m} =
B(0,t) , so it suffices to show that

rdλ d(B(0,t)) � λ d(B(e1,r)∩B(0, t)). (8)

We assume that r < 1 (for otherwise (8) is obvious) and also that t + r > 1 (for oth-
erwise B(e1,r)∩B(0,t) is the either the empty set or just one point). With these as-
sumptions, the boundaries of the balls B(e1,r) and B(0, t) are d − 1 spheres whose
intersection is a d − 2 sphere S , with center ce1 for some c ∈ (0,1) , and radius ρ .
Since B(e1,r)∩B(0,t) ⊂ B(ce1,ρ) , all we need to do is to prove that ρ � rt , from
which (8) follows.

Let us write x = (x1, . . . ,xd) . Using symmetry, the center and the radius of the
sphere S can be determined by considering the intersection of S with the x1x2 -plane,
that is, by simultaneously solving x2

1 + x2
2 = t2 and (x1−1)2 + x2

2 = r2 . Solving for x1

yields c = (1+ t2−r2)/2, and solving for x2
2 , together with some elementary algebraic

manipulations, gives

ρ2 = t2− (1+ t2− r2)2

4
= (rt)2− (1− t2− r2)2

4
� (rt)2. � (9)

THEOREM 2.7. Let g ∈ L1(Rd) be a radial decreasing function. Then for every
α > 0 ,

λ d({Mdg > α}) � ‖g‖1

α
. (10)
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Proof. Suppose ‖g‖1 �= 0; using the 1-homogeneity of the maximal operator Md

we see that {Mdg > α} = {Md(g/‖g‖1) > α/‖g‖1} , so we can always replace g with
g/‖g‖1 . Thus, we assume from the start that ‖g‖1 = 1. Let δ denote the Dirac delta
mass placed at the origin, i.e., δ is the probability measure defined by δ ({0}) = 1. In
this case it is easy to compute Mdδ explicitly: Mdδ (x) = 1/λ d(B(x,‖x‖2)) . Hence,
for every α > 0 the set {Mdδ � α} is a ball, and

λ d({Mdδ � α}) =
1
α

. (11)

Inequality (10) is implied by (11), since δ is extremal in the following sense: For every
x ∈ R

d we have Mdg(x) � Mdδ (x) . To see why, note that if ‖x‖2 = R > 0 and r > 0
is any radius, by Lemma 2.1 we have

gB(x,r) � gB(0,R) � 1/λ d(B(0,R)) = 1/λ d(B(x,R)) = δB(x,R)

(of course, if r � R we do not need the Lemma, since then 0 ∈ B(x,r) and there-
fore gB(x,r) � δB(x,r) � δB(x,R) ). By taking the supremum over r > 0 we conclude that
Mdg(x) � Mdδ (x) , as was to be shown. �

Using the preceding bound we obtain refined estimates for the operator norm of
Md , from the space of radial decreasing functions in Lp(Rd) to Lp(Rd) , for 1 < p <∞ .
The proof, a standard Marcinkiewicz interpolation type argument, is omitted (cf., for
instance [28, p. 14]).

COROLLARY 2.8. Let p > 1 and let g ∈ Lp(Rd) be a radial decreasing function.
Then

‖Mdg‖p � 2

(
p

p−1

)1/p

‖g‖p. (12)

REMARK 2.9. Denote by cp,d the operator norm of Md , from the radial decreas-
ing functions in Lp(Rd) to Lp(Rd) . Here d is fixed. The preceding result entails that

cp,d = O
(

p
p−1

)
as p ↓ 1. Next we show by example that actually cp,d = Θ

(
p

p−1

)
,

where Θ denotes the exact order as p ↓ 1. Let f be the characteristic function of the
unit ball. Then ‖ f‖p = (λ d(B(0,1)))1/p . On B(0,1) the maximal function is identi-
cally one, while off B(0,1) , writing r = ‖x‖2 , we have Md f (x) � (r+1)−d � (2r)−d ,
where the first inequality is obtained by averaging over the smallest ball centered at x
that fully contains B(0,1) , and the second inequality is used to trivialize integration in
polar coordinates. Thus,

∫
(Md f )p � |B(0,1)|

(
1+

1
(p−1)2dp

)
, (13)

so

cp,d �
(

1+
1

(p−1)2dp

)1/p

. (14)

Since
(
1+ 1

(p−1)2dp

)1/p (
p−1
p

)
→ 2−d as p ↓ 1, the assertion about the exact order of

cp,d follows.
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REMARK 2.10. If Lebesgue measure in dimension d is replaced by the standard
gaussian measure, or more generally, by any finite measure defined by a bounded, ra-
dial, radially decreasing density, the situation is very different: The same example (one
delta placed at the origin) shows that constants for the weak type (1,1) inequality grow
exponentially fast with the dimension (cf. [4]) rather than being uniformly bounded
by 1. In fact, exponential growth can be shown to hold for some (sufficiently small)
values of p > 1, simply by using, instead of δ0 , the characteristic function of a small
ball centered at 0 , and then arguing as in [4]; a step in this direction is carried, for weak
type (p, p) inequalities, in [9].
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