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ON THE ANALOG OF SHEPHARD PROBLEM

FOR THE Lp –PROJECTION BODY

TONG-YI MA AND WEI-DONG WANG

(Communicated by Y. Burago)

Abstract. For p � 1 , Lutwak, Yang and Zhang introduced the concept of Lp -projection body.
In this paper, we develop a Fourier analytic approach in the Lp -Brunn-Minkowski theory. We
consider the question of whether ΠpK ⊆ΠpL implies Ωp(K) �Ωp(L) . We also formulate and
solve an analog of the Shephard problem for the Lp -projection body.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Rn . For the set of convex bodies containing the origin in their interiors and
the set of origin-symmetric convex bodies in Rn , we write K n

o and K n
s , respectively.

Let Sn−1,B denote the unit sphere and the standard unit ball in Euclidean space Rn ,
respectively. Denote by Voln(K) the n-dimensional volume of body K , for the standard
unit ball B in Rn , denote Voln(B) = ωn .

If K ∈ K n , its support function, hK = h(K, ·) : Rn −→ (0,∞) , is defined by
h(K,u) = max{u ·x : x ∈ K}, u ∈ Sn−1 . Where x ·y denotes the standard inner product
of x and y .

If K is a compact star-shaped (about the origin) in Rn , its radial function ρ(K, ·)
is defined by ρ(K,u) = max{λ � 0 : λu ∈ K},u ∈ Sn−1 . If ρ(K,u) is positive and
continuous, K will be called a star body (about the origin). Let Sn

o denote the set of
star bodies (about the origin) in Rn . Two star bodied K and L are said to be dilates (of
one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1 .

For K ∈ K n
o , the polar body of K , K∗ , is defined by K∗ = {x ∈ Rn : x ·y � 1,y ∈

K} . Obviously, we have ρ(K∗, ·) = 1/h(K, ·) and (K∗)∗ = K .
The projection body was introduced at the turn of the previous century by Min-

kowski. For K ∈ K n , the projection body of K , ΠK , is a centrally symmetric convex
body whose support function is given by (see [3])

h(ΠK,θ ) = Voln−1(K|θ⊥) =
1
2

∫
Sn−1

|θ ·u|dS(K,u), for all θ ∈ Sn−1 ,
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where voln−1 denotes (n− 1)-dimensional volume, K|θ⊥ denotes the image of the
orthogonal projection of K onto the codimensional 1 subspace orthogonal to θ , and
S(K, ·) is the surface area measure of K .

For the projection body, Koldobsky, Ryabogin and Zvavitch (see [4]) proved that
if the surface area measure of a convex body K is absolutely continuous, then

h(ΠK,θ ) = − 1
π

f̂ (K, ·)(θ ), ∀θ ∈ Sn−1, (1.1)

where f (K, ·) is the curvature function of the body K , we may extended f (K, ·) to

a homogeneous of degree −n− 1 function on Rn , and f̂ (K, ·) := f (K, ·)∧ is Fourier
transform of function f (K, ·) , which is in the sense of distributions. It turns out that
this formula can serve as the main tool in the study of different problems concerning
the volumes of projections. In particular, it can be applied to the following Shephard
problem of the projection body.

Let K,L be origin-symmetric convex bodies in Rn and suppose that, for every
θ ∈ Sn−1 ,

ΠK ⊆ΠL. (1.2)

Does it follow that
Voln(K) � Voln(L)? (1.3)

This problem was solved independently by Petty [14] and Schneider [16], who
showed that the answer is affirmative if n � 2 and negative if n � 3. It is also well
known [16] that the Shephard problem has an affirmative answer if L is a projection
body.

Ryabogin and Zvavitch (see [15]) extended the above facts to the Lp -projection
body which was introduced by Lutwak, Yang and Zhang (see [9]). For each K ∈ K n

o
and real p � 1, the Lp -projection body of K , ΠpK , be an origin-symmetric convex
body whose support function is given by

h(ΠpK,x)p =
1
2n

∫
Sn−1

|x ·u|pdSp(K,u), x ∈ Rn. (1.4)

Here Sp(K, ·) is Lp -surface area measure of K .
In [15], authors extended the analog of (1.1) as follows:

h(ΠpK,ξ )p =
2πCp

n
̂fp(K, ·)(ξ ). (1.5)

Here p is not an even integer, fp(K, ·) is Lp -curvature function of the body K , and Cp

is a constant depending only on p , i.e.

Cp =
2p+1√πΓ((p+1)/2)

Γ(−p/2)
= −2Γ(p+1)sin

π p
2

is positive for each p ∈ (4k−2,4k) and negative for p ∈ (4k,4k+2) .
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From formula (1.5) and together with Lutwak’s generalized Minkowski theorem,
Ryabogin and Zvavitch (see [15]) obtained a generalization of the following Shephard
problem for the Lp -projection body:

Shephard problem for Lp -projection body. Consider two origin-symmetric
convex bodies K and L in Rn . Fix p � 1 and suppose that

ΠpK ⊆ΠpL. (1.6)

Does it follow that
Voln(K) � Voln(L), for 1 � p < n,

and
Voln(K) � Voln(L), for n < p ?

In the case p = 1, condition (1.6) is equivalent to (1.2), and the answer is affirma-
tive if n � 2 and negative if n � 3. It was proved in [15] that the answer is negative
for any n � 2 and p > 1. Actually, it was proved that the Shephard problem for the
Lp -projection body has an affirmative answer if L is a Lp -projection body, and that the
existence of the body which is not a Lp -projection body leads to a counterexample.

In this paper, we prove that the analog of Shephard’s problem for the Lp -projection
body. For p � 1, let K and L be origin-symmetric convex bodies in Rn , and both of
them have a positive continuous curvature function, and ΛpL be Lp -curvature image
of body L (see Section 2 for definition), for which (Rn,‖ · ‖ΛpL) embeds in Lp , and

ΠpK ⊆ΠpL.

Then
Ωp(K) � Ωp(L).

Where Ωp(K) be Lp -affine surface area of K (see Section 2 for definition). On the
other hand, let K be an origin-symmetric convex body with a positive continuous cur-
vature function in Rn , and ΛpK be an infinitely smooth origin-symmetric strictly con-
vex body in Rn , for which (Rn,‖ · ‖ΛpK) does not embed in Lp . Then there exists an
origin-symmetric convex body L in Rn leads to a counterexample.

Using conclusion relating to isometric embedding, the conclusion of above can be
reformulated as follows theorem.

THEOREM 1.1. Let p � 1,K,L be infinitely smooth origin-symmetric convex bod-
ies in Rn with positive continuous curvature function such that ΠpK ⊆ ΠpL. Then if
p = 1 , Ωp(K) � Ωp(L) holds surely in R2 , while if p > 1 , this is no longer true in
dimensions n � 2 .

2. Preliminaries

2.1. Lp -Mixed Volume

Firey [2] extended the concept of Minkowski linear combination. For p � 1,
K,L ∈ K n

o and α,β > 0, the Firey Lp -combination αK +p βL ∈ K n
o is defined by

h(αK +p βL, ·)p = αh(K, ·)p +βh(L, ·)p.
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where ” ·” in ε ·L denotes the Firey scalar multiplication. For p = 1, K +p ε ·L is just
the Minkowski linear combination of K and L .

Lutwak (see [8,10]) showed that the Firey Lp -combination lead to a Brunn-Min-
kowski theory for p � 1. He introduced the notion of Lp -mixed volume as follows:
For K,L ∈ K n

o and p � 1, Lp -mixed volume of K and L , Vp(K,L) , is defined by [10]

n
p
Vp(K,L) = lim

ε→0

V (K +p εL)−V(K)
ε

.

Lutwak (see [10]) further proved that for each K ∈ K n
o , there exists a positive

Borel measure Sp(K, ·) on Sn−1 so that

Vp(K,L) =
1
n

∫
Sn−1

h(L,u)pdSp(K,u), (2.1)

for all L ∈ K n
o . It turns out that the measure Sp(K, ·) is absolutely continuous with

respect to S(K, ·) , and has the Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h1−p(K, ·).

If Sp(K, ·) is absolutely continuous with respect to spherical Lebesgue measure S , we
have

dSp(K, ·)
dS

= fp(K, ·). (2.2)

Together with (2.1) and (2.2), we have

Vp(K,L) =
1
n

∫
Sn−1

h(L,u)p fp(K,u)dS(u), (2.3)

for all L ∈ K n
o . In particular

Voln(K) =
1
n

∫
Sn−1

h(K,u)p fp(K,u)dS(u). (2.4)

If a body K has both Lp -curvature and the curvature functions, then (see [8])

fp(K, ·) = h(K, ·)1−p f (K, ·).

Lutwak (see [10]) generalized the Brunn-Minkowski inequality to the case of Lp -
mixed volumes: For K,L ∈ K n

o , p � 1, then

Vp(K,L)n � Voln(K)n−pVoln(L)p.

He also proved a generalization of the classical Minkowski theorem, which states that
given p > 0, p �= n, and a continuous even function g : Sn−1 →R+ , there exists a unique
convex body K such that fp(K, ·) = g .
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2.2. Lp -Affine Surface Area and ith Lp -Mixed Affine Surface Area

Let F n
o ,F n

s denote the set of all bodies in K n
o ,K n

s , respectively, and both of
them have a positive continuous curvature function.

Lutwak (see [8]) introduced the concept of Lp -affine surface area and can be de-
scribed as follows: For K ∈ F n

o , Lp -affine surface area of K , Ωp(K) , is defined by

Ωp(K) =
∫

Sn−1
fp(K,u)

n
n+p dS(u). (2.5)

Further, Lutwak (see [8]) introduced the notion of Lp -mixed affine surface area.
For p � 1, Lp -mixed affine surface area of K1, · · · ,Kn ∈ F n

o , Ωp(K1, · · · ,Kn) , is de-
fined by

Ωp(K1, · · · ,Kn) =
∫

Sn−1
[ fp(K1,u) · · · fp(Kn,u)]

1
n+p dS(u). (2.6)

In (2.6), let K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L(i = 0, · · · ,n) , then
Ωp,i(K,L) = Ωp(K, · · · ,K,L, · · · ,L) , with n− i copies of K , and i copies of L . If
i is any real, Wang and Leng [17] define that: For K,L ∈ F n

o , p � 1, i ∈ R , the ith
Lp -mixed affine surface area of K and L , Ωp,i(K,L) , is defined by

Ωp,i(K,L) =
∫

Sn−1
fp(K,u)

n−i
n+p fp(L,u)

i
n+p dS(u). (2.7)

Specially, for the case i = −p , we have that

Ωp,−p(K,L) =
∫

Sn−1
fp(K,u) fp(L,u)

−p
n+p dS(u). (2.8)

If p = 1, then Ω1,−1(K,L) is just Ω−1(K,L) (see[11]).
In (2.7), let L = B and we write

Ωp,i(K,B) = Ωp,i(K), (2.9)

From (2.2), we get fp(B, ·) = 1, which together with (2.7) and (2.9) lead to

Ωp,i(K) =
∫

Sn−1
fp(K,u)

n−i
n+p dS(u), (2.10)

where Ωp,i(K) is called the ith Lp -mixed affine surface area of K ∈ F n
o .

The Minkowski inequality for the ith Lp -mixed affine surface area is shown as
follows (see[17]):

If K,L ∈ F n
o , p � 1, i ∈ R , then for i < 0 or i > n ,

Ωp,i(K,L)n � Ωp(K)n−iΩp(L)i; (2.11)

for 0 < i < n ,
Ωp,i(K,L)n � Ωp(K)n−iΩp(L)i, (2.12)

with equality in every inequality for p = 1 if and only if K and L are homothetic, for
n �= p > 1 if and only if K and L are dilater. For i = 0 or i = n , (2.11) (or (2.12)) is
identical.
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2.3. Lp -Curvature Image

Lutwak (see [8]) introduced the notion of Lp -curvature image and can be de-
scribed as follows: For each K ∈ F n

o and real p � 1, define ΛpK ∈ S n
o be a star

body (about the origin) in Rn , the Lp -curvature image of K , by

ρ(ΛpK, ·)n+p =
Voln(ΛpK)

ωn
fp(K, ·). (2.13)

Note that for p = 1, this definition differs from the definition of classical curvature
image (see [8]).

For Lp -curvature image and Lp -affine surface area, we have the following result:
If K ∈ F n

o , p � 1, then

Voln(ΛpK)
p

n+p =
1
n
ω

− n
n+p

n Ωp(K). (2.14)

3. Main Results and its Proofs

The Minkowski functional of a star-shaped origin-symmetric body K ⊂ Rn is de-
fined as

‖x‖K = min{a � 0,x ∈ aK}.
The function ρK(x) = ‖x‖−1

K is called the radial function of K . If x ∈ Sn−1,ρK(x) is
the distance from the origin to the boundary of K in the direction of x . We denote by
(Rn,‖ · ‖K) the Euclidean space equipped with the Minkowski functional of the body
K . Clearly, (Rn,‖ · ‖K) is a normed space if and only if the body K is convex.

A well-known result (see [1,p.189] or [5, Section 6.1]) is that a space (Rn,‖ · ‖)
embeds into Lp, p > 0 if and only if there exists a finite Borel measure μ on the unit
space, such that

‖x‖p =
∫

Sn−1
|x ·ξ |pdμ(ξ ), (3.1)

for every x ∈ Rn . On the other hand, this can be considered as the definition of embed-
ding in Lp,−1 < p < 0 (see [6]).

It was proved in [7] that a space (Rn,‖ ·‖) embeds isometrically in Lp, p > 0, p �=
2,4, · · · , if and only if the Fourier transform Γ(−p/2)(‖ ·‖p

K)∧ is a positive distribution
on Rn\{0} . If −n < p < 0, a similar fact was proved in [6]: a space (Rn,‖ ·‖) embeds
in Lp if and only if the Fourier transform (‖.‖p)∧ of ‖ · ‖p is a positive distribution in
the whole Rn .

Now, we first prove a result as follows:

THEOREM 3.1. Consider p � 1 . Let K,L ∈ F n
s and ΛpL ∈ S n

o , so that (Rn,‖ ·
‖ΛpL) embeds in Lp and

ΠpK ⊆ΠpL.

Then Ωp(K) � Ωp(L) .



ON THE ANALOG OF SHEPHARD PROBLEM FOR THE Lp -PROJECTION BODY 187

Proof. Since (Rn,‖·‖ΛpL) embeds in Lp , there exists a finite Borel measure μΛpL

on the unit sphere Sn−1 such that

‖x‖p
ΛpL

=
∫

Sn−1
|x ·ξ |pdμΛpL(ξ ), x ∈ Rn.

Note that ΠpK ⊆ΠpL can be written as

1
2n

∫
Sn−1

|x ·ξ |p fp(K,x)dx � 1
2n

∫
Sn−1

|x ·ξ |p fp(L,x)dx, ξ ∈ Sn−1.

Integrating both sides of the last inequality over Sn−1 with measure μΛpL , we get

∫
Sn−1

∫
Sn−1

|x ·ξ |p fp(K,x)dxdμΛpL(ξ ) �
∫

Sn−1

∫
Sn−1

|x ·ξ |p fp(L,x)dxdμΛpL(ξ ).

Applying Fubini’s Theorem, we have
∫

Sn−1
‖x‖p

ΛpL
fp(K,x)dx �

∫
Sn−1

‖x‖p
ΛpL

fp(L,x)dx, (3.2)

note that ‖x‖ΛpL = h(Λ∗
pL,x) , therefore, (3.2) can be rewritten as

∫
Sn−1

h(Λ∗
pL,x)p fp(K,x)dx �

∫
Sn−1

h(Λ∗
pL,x)p fp(L,x)dx. (3.3)

On the other hand, from (2.5), (2.8) and (2.13), we have

Ωp(L) =
∫

Sn−1
fp(L,x)

n
n+p dx

=
∫

Sn−1
fp(L,x) fp(L,x)−

p
n+p dx

=
(Voln(ΛpL)

ωn

) p
n+p

∫
Sn−1

fp(L,x)ρ(ΛpL,x)−pdx

=
(Voln(ΛpL)

ωn

) p
n+p

∫
Sn−1

h(Λ∗
pL,x)p fp(L,x)dx,

and

Ωp,−p(K,L) =
∫

Sn−1
fp(K,x) fp(L,x)−

p
n+p dx

=
(Voln(ΛpL)

ωn

) p
n+p

∫
Sn−1

h(Λ∗
pL,x)p fp(K,x)dx.

This gives the formulas:

Ωp(L) =
(Voln(ΛpL)

ωn

) p
n+p

∫
Sn−1

h(Λ∗
pL,x)p fp(L,x)dx, (3.4)
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and

Ωp,−p(K,L) =
(Voln(ΛpL)

ωn

) p
n+p

∫
Sn−1

h(Λ∗
pL,x)p fp(K,x)dx. (3.5)

Therefore, (3.3) can be rewritten as

Ωp,−p(K,L) � Ωp(L).

Using (2.11), we have
Ωp(K) � Ωp(L).

The proof of Theorem 3.1 is completed. �
In order to show a negative counterpart of Theorem 3.1, we need a lemma. Now

recall a version of Parseval’s formula on the sphere, it is proved first by Koldobsky,
Ryabogin, Zvavitch in the case p = 1)(see [4]) and Ryabogin, Zvavitch in the case
p > 1 (see [15]).

LEMMA 3.2. Let p � 1 . If K,L ⊂ Rn be two infinitely smooth origin-symmetric
convex bodies, and both of them have a positive continuous curvature function. Then

ĥp
K(θ ) and fp(L, ·)∧(θ ) are continuous function on Sn−1 and

∫
Sn−1

ĥp
K(θ ) f̂ p(L, ·)(θ )dθ = (2π)n

∫
Sn−1

hp
K(ξ ) fp(L,ξ )dξ .

Now we prove the negative counterpart of Theorem 3.1.

THEOREM 3.3. Let K ∈ F n
s , and ΛpK be an infinitely smooth origin-symmetric

strictly convex body in Rn , for which (Rn,‖ ·‖ΛpK) does not embed in Lp, p � 1 . Then
there exists an origin-symmetric convex body L in Rn such that

ΠpK ⊆ΠpL,

but
Ωp(K) > Ωp(L).

Proof. First we consider that the case p � 1 is not even integer. Since (Rn,‖ ·
‖ΛpK) does not embed in Lp , there exists a ξ ∈ Sn−1 such that Γ(−p/2)(‖x‖p

ΛpK
)∧(ξ )

is negative, for more detail see [7]. Because Γ(−p/2)(‖x‖p
ΛpK

)∧(θ ) is a continuous

function on Sn−1 , there exists a neighborhood of ξ where it is negative. Define

Ω= {θ ∈ Sn−1 : Γ(−p/2)(‖x‖p
ΛpK

)∧(θ ) < 0}.

Consider a function υ ∈ C∞(Sn−1) such that Cpυ is non-positive even func-
tion supported on Ω and υ is not identically zero. We can extend υ to a homo-
geneous function |x|p2υ(x/|x|2) of degree p on Rn . From this we know that the
Fourier transform of |x|p2υ(x/|x|2) is a homogeneous function of degree −n− p :
(|x2|pυ(x/|x|2))∧ = |x|−n−p

2 g(x/|x|2) , where g is an infinitely smooth function on Sn−1

(see the proof of Lemma 3.16 from [5]).
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Since g is bounded on Sn−1 and fp(K,θ ) = h1−p
K (θ ) f (K,θ ) > 0, then an ε > 0

small enough can be choosed, so that for every θ ∈ Sn−1 and |x|2 > 0,

fp(L, |x|2θ ) = fp(K, |x|2θ )− ε|x|−n−p
2 g(x/|x|2) > 0. (3.6)

Form this and Lutwak’s (see [12]) extension of the Minkowski’s existence theorem, we
know that fp(L, ·) defines an unique origin-symmetric convex body L ⊂ Rn .

Now multiply both sides by Cp and apply the Fourier transform, we get

Cp f̂p(K, ·)(y) = Cp f̂p(L, ·)(y)+ ε(2π)2|y|p2Cpυ
( y
|y|2

)
� Cp f̂p(L, ·)(y),

from (1.5), this is equivalent to ΠpK ⊆ΠpL .
On the other hand, denote

λp =
(Voln(ΛpK)

ωn

) p
n+p

.

Since Cpυ is supported and non-positive in the set Sn−1 where Γ(−p/2)(‖x‖p
ΛpK

)∧(θ )<

0, apply Lemma 3.2 and (3.4), we have that

λpCpΓ(−p/2)
∫

Sn−1
(‖ · ‖p

ΛpK
)∧(θ ) f̂ p(L, ·)(θ )dθ

= λpCpΓ(−p/2)
∫

Sn−1
(‖ · ‖p

ΛpK
)∧(θ ) f̂ p(K, ·)(θ )dθ

+λpCpΓ(−p/2)
∫
Sn−1

(‖ · ‖p
ΛpK

)∧(θ )ε(2π)2υ(θ )dθ

> λpCpΓ(−p/2)
∫

Sn−1
(‖ · ‖p

ΛpK
)∧(θ ) f̂ p(K, ·)(θ )dθ

= λpCpΓ(−p/2)
∫

Sn−1
ĥp
Λ∗

pK
(θ ) ̂fp(K, ·)(θ )dθ

= (2π)nCpΓ(−p/2)λp

∫
Sn−1

hp
Λ∗

pK
(ξ ) fp(K,ξ )dξ

= (2π)nCpΓ(−p/2)Ωp(K).

Again using Parseval’s formula in Lemma 3.2 and combining (3.5), we obtain that

λpCpΓ(−p/2)
∫
Sn−1

(‖ · ‖p
ΛpK

)∧(θ ) f̂ p(L, ·)(θ )dθ

= λpCpΓ(−p/2)
∫
Sn−1

ĥp
Λ∗

pK
(θ ) f̂ p(L, ·)(θ )dθ

= (2π)nCpΓ(−p/2)λp

∫
Sn−1

hp
Λ∗

pK
(ξ ) fp(L,ξ )dξ

= (2π)nCpΓ(−p/2)Ωp,−p(L,K).

Combination of the above two inequalities, we can get

CpΓ(−p/2)Ωp,−p(L,K) > CpΓ(−p/2)Ωp(K).



190 T.-Y. MA AND W.-D. WANG

Note that p � 1,CpΓ(−p/2) is negative all along, thus

Ωp,−p(L,K) < Ωp(K).

This together with (2.11), hence

Ωp(K) > Ωp(L).

Next, we show that the answer is always negative if p � 1 is an even integer. It
turns out that for any body K ⊂ Rn there exists a body L in Rn such that the Lp -
projections of bodies K and L are equal but their Lp -affine surface area are different.

Let p be an even integer. Then |x · ξ |p = (x · ξ )p , and there exists a nonzero
continuous even function g on Sn−1 such that (see [15])

∫
Sn−1

|x ·ξ |pg(x)dx = 0, ∀ξ ∈ Sn−1. (3.7)

Indeed, if p = 2k , then (x ·ξ )2k is a polynomial of degree 2k with coefficients depend-
ing on ξ . So, it is enough to construct a nontrivial even function g , satisfying

∫
Sn−1

xi1
1 xi2

2 · · ·xin
n g(x)dx = 0,

for all integer powers 0 � i j � 2k such that i1 + i2 + · · ·+ in = 2k . Taking g(x) =
∑m

l=1 clx2l
1 and solving the system of linear equations, one can find a nontrivial solution

c1,c2, · · · ,cm provided m is big enough.
Consider a convex body K containing the origin in their interiors in Rn with a

positive continuous curvature function, such that Λ∗
pK is an origin-symmetric convex

body with a strictly positive Lp -curvature function (i.e. fp(Λ∗
pK,ξ ) > 0,∀ξ ∈ Sn−1 ).

We may assume that ∫
Sn−1

h(Λ∗
pK,ξ )pg(ξ )dξ � 0,

(otherwise consider−g(ξ ) instead of g(ξ )). Choose ε > 0 such that

fp(K,ξ )− εg(ξ ) > 0, ∀ξ ∈ Sn−1.

Using the existence theorem for Lp -curvature functions (see [9]), we conclude that
there exists an origin-symmetric convex body L in Rn such that

fp(L,ξ ) = fp(K,ξ )− εg(ξ ). (3.8)

Now multiply both sides by |x ·ξ |p and integrating, then

∫
Sn−1

|x ·ξ |p fp(L,ξ )dξ =
∫

Sn−1
|x ·ξ |p fp(K,ξ )dξ − ε

∫
Sn−1

|x ·ξ |pg(ξ )dξ .
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Applying (3.7) and (1.4), we get that h(ΠpL,x) = h(ΠpK,x) , i.e. ΠpL = ΠpK . Using
(3.4) and (3.5) in (3.8), we have

Ωp(K) = λp

∫
Sn−1

h(Λ∗
pK,x)p fp(K,x)dx

= λp

∫
Sn−1

h(Λ∗
pK,x)p fp(L,x)dx+ ελp

∫
Sn−1

h(Λ∗
pK,x)pg(x)dx

� λp

∫
Sn−1

h(Λ∗
pK,x)p fp(L,x)dx

= Ωp,−p(L,K).

From the argument from Theorem 3.1 we get that

Ωp(K) � Ωp(L).

If Ωp(K) = Ωp(L) , then the equality of (2.11) is hold, and L and K are dilates
(see [17]), i.e., K = L , but from (3.10), this is a contradiction with the uniqueness of
Lp -curvature function. The proof of Theorem 3.3 is completed. �

Together with Theorem 3.1 and Theorem 3.3, an immediate result can be obtained:

COROLLARY 3.4. If p � 1 , then ΠpK ⊆ ΠpL implies that Ωp(K) � Ωp(L) if
and only if for every Q ∈ F n

s , (Rn,‖ · ‖ΛpQ) is isometric embedding to a subspace of
Lp .

Because of all the 2-dimensional space (R2,‖ · ‖) must be isometric embedding
to a subspace of L1 (see [7]), while all n -dimensional space (Rn,‖ · ‖) be not surely
isometric embedding to a subspace of Lp(p > 1,n � 2) . Therefore, from Corollary 3.4,
we get immediately Theorem 1.1.

REMARK. From (2.14), we saw that Ωp(K) �Ωp(L) is equivalent to Voln(ΛpK)
� Voln(ΛpL) in Theorem 3.1, while Ωp(K) > Ωp(L) is equivalent to Voln(ΛpK) >
Voln(ΛpL) in Theorem 3.3.
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